
On Compiling Data Mining Tasks to PDDL ∗

Susana Fernández and Fernando Fernández and Alexis Sánchez
Tomás de la Rosa and Javier Ortiz and Daniel Borrajo

Universidad Carlos III de Madrid. Leganés (Madrid). Spain

David Manzano
Ericsson Research Spain

Madrid, Spain

Abstract

Data mining is a difficult task that relies on an exploratory
and analytic process of large quantities of data in order to
discover meaningful patterns and rules. It requires complex
methodologies, and the increasing heterogeneity and com-
plexity of available data requires some skills to build the data
mining processes, or knowledge flows. The goal of this work
is to describe data-mining processes in terms of Automated
Planning, which will allow us to automatize the data-mining
knowledge flow construction. The work is based on the use of
standards both in data mining and automated-planning com-
munities. We use PMML (Predictive Model Markup Lan-
guage) to describe data mining tasks. From the PMML, a
problem description in PDDL can be generated, so any cur-
rent planning system can be used to generate a plan. This plan
is, again, translated to a KFML format (Knowledge Flow file
for the WEKA tool), so the plan or data-mining workflow
can be executed in WEKA. In this manuscript we describe
the languages, how the translation from PMML to PDDL,
and from a plan to KFML are performed, and the complete
architecture of our system.

Introduction
Currently, many companies are extensively using data-
mining tools and techniques in order to answer questions
as: who would be interested in a new service offer among
your current customers? What type of service a given user
is expecting to have? These questions, among others, arise
nowadays in the telecommunication sector and many others.
Data mining (DM) techniques give operators and suppliers
an opportunity to grow existing service offers as well as to
find new ones. Analysing the customer generated network
data, operators can group customers into segments that share
the same preferences and exhibit similar behaviour. Using
this knowledge the operator can recommend other services
to users with a high probability for uptake. The problem is
not limited to operators. In every business sector, compa-
nies are moving towards the goal of understanding their cus-

∗This work has been partially supported by the Spanish
MICINN under project TIN2008-06701-C03-03, the regional
project CCG08-UC3M/TIC-4141 and the Automated User Knowl-
edge Building (AUKB) project funded by Ericsson Research.
Copyright c© 2009, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

tomers’ preferences and their satisfaction with the products
and services to increase business opportunities.

Date mining is a difficult task that relies on an exploratory
and analytic process of large quantities of data in order to
discover meaningful patterns and rules. It requires a data
mining expert able to compose solutions that use complex
methodologies, including problem definition, data selection
and collection, data preparation, or model construction and
evaluation. However, the increasing heterogeneity and com-
plexity of available data and data-mining techniques requires
some skills on managing data-mining processes. The choice
of a particular combination of techniques to apply in a par-
ticular scenario depends on the nature of the data-mining
task and the nature of the available data.

In this paper, we present our current work that defines
an architecture and tool based on Automated Planning that
helps users (non necessarily experts on data-mining) on per-
forming data-mining tasks. Only a standardized model rep-
resentation language will allow for rapid, practical and re-
liable model handling in data mining. Emerging standards,
such as PMML (Predictive Model Markup Language), may
help to bridge this gap. The user can represent and describe
in PMML data mining and statistical models, as well as
some of the operations required for cleaning and transform-
ing data prior to modelling. Roughly speaking, a PMML file
is composed of three general parts: the data information, the
mining build task and the model. But, during the complete
data mining process, not all of them are available. The data
part describes the resources and operations that can be used
in the data mining process. The mining build task describes
the configuration of the training task that will produce the
model instance. It can be seen as the description of the se-
quence of actions executed to obtain the model, so from the
perspective of planning, it can be understood as a plan. This
plan would include the sequence of data-mining actions that
should be executed over the initial dataset to obtain the fi-
nal model that could be also added to the third part of the
PMML. Therefore, a complete PMML file contains all the
information describing a data mining task, from the initial
dataset description to the final model, through the knowl-
edge flow that generates that model. We use a PMML file
containing only the data information, and leaving empty the
other two parts, as an input to create PDDL (Planning Do-
main Definition Language) problem files. These files allow,

8



together with the PDDL domain file and a planner, to auto-
matically create a plan or knowledge flow. This knowledge
flow will be executed by a machine learning engine. In our
case, we use one of the most used data mining tools, the
WEKA system (Witten & Frank 2005). In WEKA, knowl-
edge flows are described as KFML files. The results of this
process can be evaluated, and new plans may be requested
to the planning system. The plans generated by the plan-
ner for solving the translated PDDL problem are encoded in
XML and can be directly added to the PMML mining build-
ing task. However, so far, stable versions of WEKA do not
encode models in XML, so we leave empty the model part
of the PMML file. Instead, the system returns to the user
a result zip file containing all the model files together with
statistical information files in WEKA format. In this paper,
we describe the first implementation of such a tool, empha-
sizing the compilations between PMML and PDDL.

There has been previous work whose aim is also to apply
planning techniques to aumotatize data mining tasks (Amant
& Cohen 1997; Morik & Scholz 2003; Provost, Bernstein, &
Hill 2005), but any of them use standard languages to repre-
sent the knowledge, as we have done in the work presented
in this paper. Next section presents an introduction to data
mining. The remainder sections describe the general archi-
tecture, the languages used in the application, the modeliza-
tion of the DM tasks in PDDL, the implemented translators
and the conclusions.

Introduction to KDD and Data Mining
Knowledge Discovery in Databases (KDD) concerns with
the development of methods and techniques for analyzing
data. The first part of the KDD process is related to the se-
lection, preprocess and transformation of the data to be an-
alyzed. The output of this part of the KDD process is a set
of patterns or training data, described in terms of features,
typically stored in a table. Data mining is the following step
in the KDD process, and consists of applying data analysis
and discovery algorithms that generate models that describe
the data (Fayyad, Piatetsky-Shapiro, & Smyth 1996). The
modelling task is sometimes seen as a machine learning or
statistical problem where a function must be approximated.
The KDD process finishes with the interpretation and evalu-
ation of the models.

Learning algorithms are typically organized by the type
of function that we want to approximate. If the output of the
function is known “a priori” for some input values, we typi-
cally talk about supervised learning. In this case, we can use
regression (when the approximated function is continuous),
or classification (the function is discrete) (Mitchell 1997).
There are many models for supervised learning. Some ex-
amples are neural networks, instance-based, decision and re-
gression rules and trees, bayesian approaches, support vec-
tor machines, etc. When the output of the function to ap-
proximate is not known “a priori”, then we talk about unsu-
pervised learning. In this kind of learning, the training set is
composed only of the list of input values. Then, the goal is
to find a function which satisfies some learning objectives.
Different learning objectives can be defined, like clustering,

dimensionality reduction, association, etc, and they all may
require different models and learning algorithms.

The evaluation of a data mining problem typically re-
quires to apply the obtained model over data that were not
used to generate the model. But depending on the amount of
data, or the type of function modelled, different evaluation
approaches may be used, such as split (dividing the whole
data set in training and test sets), cross-validation, or leave-
one-out (Mitchell 1997).

Therefore, In the data mining process, there are four main
elements to define: the training data, the model or language
representation, the learning algorithm, and how to evaluate
the model. The number of combinations of those four ele-
ments is huge, since different methods and techniques, all
of them with different parameter settings, can be applied.
We show several examples of these operators in the paper.
Because of that, the data mining process is sometimes seen
as an expert process where data mining engineers transform
original data, execute different mining operators, evaluate
the obtained models, and repeat this process until they fit or
answer the mining problem. Because of the complexity of
the process, it is suitable as a planning problem that can be
solved with automated approaches (Fernández et al. 2009).

Architecture
Figure 1 shows the general architecture of the approach.
There are four main modules; each one can be hosted in a
different computer connected through a network: the Client,
the Control, the Datamining and the Planner. We have used
the Java RMI (Remote Method Invocation) technology that
enables communication between different servers running
JVM’s (Java Virtual Machine). The planner incorporated
in the architecture is SAYPHI (De la Rosa, Garcı́a-Olaya, &
Borrajo 2007) and the DM Tool is WEKA. Although, any
others could be used. Next, there is a description of each
module.

The Client Module
It offers a control command console interface that provides
access to all application functionalities and connects the user
to the Control module using RMI. It captures the PMML file
and sends it to the Control module. At this point, the PMML
file only contains the information concerning the dataset and
operations that can be executed in the data mining process.
The other two parts are empty. Before performing any DM
task, the corresponding dataset must be placed in the DM
Tool host, through this module.

The Control Module
It is the central module of the architecture that intercon-
nects and manages the planning and DM modules, serv-
ing requests from the user module. This module is also re-
sponsible of performing the conversions between the PDDL
and PMML formats invoking the PMML2PDDL external ap-
plication. It also transforms the output plan generated by
the planner to a KFML format used by the WEKA Knowl-
edge Flow. This KFML format transformation is performed

9



Figure 1: Overview of the architecture.

through the invocation of the external PlanReader applica-
tion.

The input to the module is the user choice together with
the required files to carry out that option. In case the user’s
option is to perform a DM request, the algorithm of Figure 2
is executed. First, the PMML2PDDL translator generates
the PDDL problem file from the PMML file. Then, the plan-
ner is invoked through RMI to solve the translated problem.
The returned plan is translated to a KFML file. Finally, the
DM Tool is invoked to execute the translated KFML file.
The result is a compressed file containing the model gener-
ated by the DM Tool and the statistics.

The Datamining Module
This module provides a Java wrapper that allows the execu-
tion of DM tasks in the WEKA DM Tool through Knowl-
edge Flow plans. The Java wrapper is able to obtain the
model output and the statistics generated as a result of the
Knowledge Flow execution. This module also contains an
Arff directory for managing the storage of the datasets that
are necessary for the PlanReader and WEKA executions.
The inclusion or removal of arff files are managed by the
user through the options offered in the command control
user interface.

DM-Request(pmml-file,domain):result

pmml-file: PMML file with the DM task
domain: PDDL domain

problem=PMML2PDDL(pmml-file)
plan=RMI-Planner(domain,problem)
kfml-file=Plan2KFML(plan)
result=RMI-DMTool(kfml-file)
return result

Figure 2: Algorithm for executing a DM request.

The input to the module is a KFML file and the output
is a compressed file including the model and the statistics
generated during the KFML execution.

The Planner Module
The planning module manages requests from the control
module receiving the problem and the domain in PDDL for-
mat. It returns the result to the Control module in XML for-
mat ready for the conversion to a KFML format. Currently,
planning tasks are solved by the planner SAYPHI, but the ar-
chitecture could use any other planner that supports fluents
and metrics. We have used SAYPHI because: i) it supports
PDDL (requirements typing and fluents); ii) it incorporates
several search algorithms able to deal with quality metrics;
iii) it is implemented in Lisp allowing rapid prototyping of
new functionalities; and iv) it is in continuous development
and improvement in our research group.

Standard Languages of the Tool
This section describes the two languages used in this work
(apart from PDDL). First, we describe PMML (Predictive
Model Markup Language), an XML based language for data
mining. Then, we describe KFML (Knowledge Flow for
Machine Learning), another XML based language to repre-
sent knowledge flows in data mining defined in the WEKA
tool (Witten & Frank 2005). The PDDL language is not
explained since it is a well-known standard in the planning
community. We use the PDDL 2.1 version (Fox & Long
2003) for handling classical planning together with numeric
state variables.

The Predictive Model Markup Language (PMML)
PMML is a markup language for describing statistical and
data mining tasks and models. It is based on XML, and it is
composed of five main parts:1

• The header contains general information about the file,
like the PMML version, date, etc.

• The data dictionary defines the meta-data, or the descrip-
tion of the input data or learning examples.

1The language is being developed by the Data Mining Group
(DMG). See www.dmg.org for further information

10



Models Functions
AssociationModel
ClusteringModel
GeneralRegressionModel
MiningModel
NaiveBayesModel
NeuralNetwork
RegressionModel
RuleSetModel
SequenceModel
SupportVectorMachineModel
TextModel
TreeModel

AssociationRules
Sequences
Classification
Regression
Clustering

Table 1: Models and Functions defined in the PMML stan-
dard

• The transformation dictionary defines the functions ap-
plicable over the input data, like flattening, aggregation,
computation of average or standard deviation, normaliza-
tion, principal component analysis (PCA), etc. In our
case, this knowledge defines the actions that can be ap-
plied over the data, which will be defined in the planning
domain file.

• The mining build task describes the configuration of the
training task that will produce the model instance. PMML
does not define the content structure of this part of the file,
so it could contain any XML value. This mining build
task can be seen as the description of the sequence of ac-
tions executed to obtain the model, so from the perspec-
tive of planning, it can be understood as a plan. This plan
would include the sequence of data-mining actions that
should be executed over the initial dataset to obtain the
final model.

• The model describes the final model generated after the
data mining process, i.e. after executing the mining build
task. There are different models that can be generated de-
pending on the data analysis technique used, ranging from
bayesian, to neural networks or decision trees. Depending
on the type of model the description will use a different
XML format.

The models implement some functions, and depending on
the function, they may introduce different constraints over
the data (which will have to be considered in the planning
domain file). For instance, a TreeModel can be used both for
classification or regression, but depending on the implemen-
tation itself, only one of such functions may be available.
If, for instance, only regression has been implemented, then
the class attribute of the dataset must be continuous if we
want to apply the TreeModel. The complete list of models
and functions defined in the PMML standard are defined in
Table 1. Different models can implement different functions
and, as introduced above, the applicability of the model to
a function may depend on the implementation of the model
itself and the advances of the state of the art, so they are not
constrained “a priori”.

A complete PMML file contains the information about the
five parts. However, during the data mining process, not
all the data is available. At the beginning, the PMML file
contains only the header, the data dictionary and the trans-
formation dictionary. In addition, it includes the different
models that may be used to find a solution. This can be con-
sidered as the input of the data mining process. The min-
ing build task contains the steps or process that should be
followed to obtain a model using the data described in the
PMML initial file. In our case, we generate this version
of the PMML file from the result of planning by encoding
the plans in XML. Finally, the model could be included af-
ter the data mining tool executes the data-mining workflow
generated by the planner. In our case, we generate the model
using the WEKA Knowledge Flow tool that receives as in-
put a KFML file. The tool automatically translates the plan
into the KFML file, but the model is not incorporated in the
PMML file, because WEKA does not encode it yet in XML.

WEKA and the Knowledge Flow Files (KFML)
WEKA (Witten & Frank 2005) is a collection of machine
learning algorithms to perform data mining tasks. It includes
all the software components required in a data mining pro-
cess, from data loading and filtering to advanced machine
learning algorithms for classification, regression, etc. It also
includes many interesting functionalities, like graphical vi-
sualization of the results. WEKA offers two different us-
ages. The first one is using directly the WEKA API in Java.
The second one consists of using the graphical tools offered:
the Explorer permits to apply data mining algorithms from
a visual interface; the Experimenter permits to apply differ-
ent machine learning algorithms over different datasets in a
batch mode; the Simple CLI, which permits to make calls
to WEKA components through the command line; and the
Knowledge Flow.

WEKA Knowledge Flow is a data-flow inspired interface
to WEKA components. It permits to build a knowledge flow
for processing and analysing data. Such knowledge flow can
include most of the WEKA functionalities: load data, pre-
pare data for cross-validation evaluation, apply filters, apply
learning algorithms, show the results graphically or in a text
window, etc. Knowledge flows are stored in KFML files,
that can be given as input to WEKA.

A KFML file is an XML file including two sections. The
first one defines all the components involved in the knowl-
edge flow, as data file loaders, filters, learning algorithms,
or evaluators. The second one enumerates the links among
the components, i.e. it defines how the data flows in the data
mining process, or how to connect the output of a compo-
nent with the input of other components. WEKA Knowl-
edge Flow permits to load KFML files, edit them graphi-
cally, and save them. KFML files can be executed both by
using the graphical interface or the WEKA API.2

A knowledge flow can be seen as the sequence of steps
that must be performed to execute a data mining process.
From our point of view, the knowledge flow is not more

2The WEKA API can be used to execute KFML files only from
version 3.6.

11



than the plan that suggest to perform a data mining process.
Later, we will show how a plan generated in our architecture
can be saved in the KFML format and executed through the
WEKA API.

Modelling Data-Mining Tasks in PDDL
The PDDL domain file contains the description of all the
possible DM tasks (transformations, training, test, visualiza-
tion, . . . ). Each DM task is represented as a domain action.
The PDDL problem files contain information for a specific
dataset (i.e. dataset schema, the suitable transformation for
the dataset, the planning goals, the user-defined metric, etc.).
Domain predicates allow us to define states containing static
information (i.e. possible transformations, available train-
ing or evaluation tasks, etc.) and facts that change during
the execution of all DM tasks (e.g. (preprocess-on ?d
- DataSet) when the dataset is pre-processed). Fluents in
the domain allow us to define thresholds for different kinds
of characteristics (e.g. an execution time threshold, or the
readability of a model) and to store numeric values obtained
during the execution (e.g. the total execution time, the mean-
error obtained, etc.).

There are different kinds of actions in the domain file:
• Process Actions: for specific manipulations of the dataset.

For instance, load-dataset or datasetPreparation
for splitting the dataset or preparing it for cross-validation
after finishing the data transformation. Preconditions ver-
ify the dataset and test mode availability with the predi-
cates available and can-learn, respectively. Figure 3
shows the PDDL datasetPreparation action. It adds
the effect (eval-on) for allowing the training and test-
ing. We use fluents for estimating the execution time of
actions, whose values are defined in the problem. We as-
sume the execution time is proportional to the number of
instances (in fact thousands of instances) and depends on
the test mode. For example, we estimate that the prepara-
tion factor for splitting is 0.001 and for cross-validation is
0.005. The (loaded ?d) precondition is an effect of the
load-dataset action.

(:action datasetPreparation
:parameters (?d - DataSet ?t - TestMode)
:precondition (and (loaded ?d)

(can-learn ?d ?t))
:effect (and (eval-on ?d ?t)

(not (preprocess-on ?d))
(not (loaded ?d))
(increase (exec-time) (* (thousandsofInstances)

(preparationFactor ?t)))))

Figure 3: Example of PDDL process action.

• Transformation Actions: in the form of
apply-transformation-<filter>. Preconditions
verify field type constraints and whether the filter has
been included as a DM task for the dataset or not. The
action usually adds a fact indicating that the task has
been done (e.g. the normalize transformation adds to
the state the fact (normalized DataSet)). Figure 4
shows the attribute selection PDDL action. We assume
this is the last transformation we can perform because

afterwards we stop knowing the remaining attributes and
the metric estimation would return an unknown value.
Precondition (known-fields) checks it. Precondi-
tion (transformation ?i AttributeSelection)
verifies the filter has been included in the PMML file
and (preprocess-on ?d) prevents from applying the
transformation before performing the pre-process and
after preparing the data for splitting or cross-validation.
Again, we assume an execution-time increment that is
computed from several fluents whose values are defined
in the problem.

(:action apply-transformation-AttributeSelection
:parameters (?d - DataSet ?i - TransfInstance)
:precondition (and (preprocess-on ?d)

(known-fields ?d)
(transformation ?i AttributeSelection))

:effect (and (applied-instance ?d ?i)
(applied-transformation ?d AttributeSelection)
(not (known-fields ?d))
(increase (exec-time)

(* (* (filter-time AttributeSelection)
thousandsofInstances))

(* (dataDictionaryNumberOfFields)
(dataDictionaryNumberOfFields)))))

Figure 4: PDDL action representing the attribute selection
transformation.

• Training Actions: in the form of train-<model-
type>, where <model-type> can be classification,
regression or clustering. In each type, the action
parameters indicate different models previously defined
in the PMML file. There is a precondition for verifying
if the model instance is learnable, predicate learnable,
and another one to verify the model, predicate is-model.
These actions add to the state that the selected option is
a model for the dataset with the predicate is-<model-
type>-model. Figure 5 shows the PDDL action for train-
ing in a classification task. Training tasks always incre-
ment errors, in case of classification they are the classifi-
cation error, percentage-incorrect, and the readability of
the learned model, unreadability. And, we assume values
for these increments.

(:action train-classification
:parameters (?mi - ModelInstance ?m - Model ?n -
ModelName ?d - DataSet ?fi - FieldName ?t - TestMode)

:precondition (and (learnable ?mi)
(is-model ?mi ?m)
(implements ?m classification ?n)
(is-field ?fi ?d)
(dataDictionaryDataField-otype ?fi categorical)
(eval-on ?d ?t))

:effect (and (is-classification-model ?mi ?d ?fi)
(not (preprocess-on ?d))
(not (learnable ?mi))
(increase (unreadability)

(model-unreadability ?m))
(increase (percentage-incorrect)

(model-percentage-incorrect ?m))
(increase (exec-time)

(* (* (model-exec-time ?m)
(thousandsofInstances))

(* (dataDictionaryNumberOfFields)
(dataDictionaryNumberOfFields))))))

Figure 5: PDDL action for training.

• Testing Actions: in the form of test-<model-type>.

12



These actions usually follow their corresponding train-
ing action. For instance, cross-validation or split. They
are separated from the training actions, because they are
needed when handling the process flow in the KFML.
Testing actions add the fact that the learned model has
been evaluated.

• Visualizing and Saving Actions: in the form of
visualize-<result-option>. These actions are related to
goals defined in the problem file. Action parameters indi-
cate the preferred option depending on the learned model,
the pre-defined options in the PMML file and the goal de-
fined for the specific planning task. There is a precondi-
tion to verify if the visualization model is allowed for that
model, predicate allow-visualization-model.

The domain actions represent specific DM tasks. A
matching between domain actions and the DM tasks defined
in the KFML file is required. To have an idea of the com-
plexity of this planning domain, we have to take into account
that WEKA implements more than 50 different transforma-
tion actions or filters, more than 40 training actions for clas-
sification and regression, and 11 training actions for classi-
fication. Each of these transformation and training actions
can be parameterized, so the number of different instantia-
tions of those actions is huge. Obviously, not all of them
must be included in the PDDL files to generate a plan, and
the user can define in the PMML which of them s/he is in-
terested in using.

There are different ways to define the domain actions. For
instance, in our case the actions train-classification
and train-regression are coded separately because they
correspond to different DM tasks in WEKA. However, they
could have been merged in only one action, obtaining a more
compact domain representation with an easier maintenance.
With the current implementation we gain the opportunity of
faster integration with other DM tools different than WEKA.
The performance of the planner is not affected, since it per-
forms the search using grounded actions, so both domain
definitions will become equivalent in search time.

Information in the problem file is automatically obtained
from the PMML file using the translator described in the
next section. This information, specific to a dataset, is used
by the planner to instantiate all the possible actions speci-
fied in the PMML file by the user and to handle constraints
imposed to the planning task.

The whole domain contains the following actions.
load-dataset is always the first action in all plans. Then,
the plans can contain any number of filter actions such
as apply-transformation-DerivedField-2op,
apply-transformation-normalize,
apply-transformation-discretization or
apply-transformation-AttributeSelection.
There could be no filter action, as well. After the attribute
selection filter is applied no other filter is allowed. The
following action is the datasetPreparation action
that prepares the dataset for splitting or for a cross-
validation. Then, there are three possible actions for train-
ing, train-classification, train-regression
and train-clustering, another three for testing,

test-classification, test-regression and
test-clustering, and three more for visualizing
the model visualize-classification-model,
visualize-regression-model and
visualize-clustering-model. The last action in
all plans is the visualize-result for knowing the
learning results (errors, execution time, . . . ).

Translators
PMML to PDDL
The PMML2PDDL translator automatically converts parts
of a PMML file with the DM task information into a PDDL
problem file. The problem file together with a domain file,
that is assumed to stay fixed for all the DM tasks, are the
inputs to the planner. The problem file contains the particu-
lar data for each DM episode, including the dataset descrip-
tion, the transformations and models available for that prob-
lem, and the possible preferences and constraints the user
required. An example of preference is minimizing the total
execution time. Obtaining an error less than a given thresh-
old is an example of constraint.

A PDDL problem file is composed of four parts: the ob-
jects, the inits, the goals and the metric. Inits represents
the initial state of the problem and there is one proposi-
tion for each fact in the state. There are some propositions
common to all problems (static part of the problem specifi-
cation) and others are translated from the PMML file (dy-
namic part). Goals represent the problem goals. So far, they
are fixed for all the problems, and consist of visualizing the
result, (visualized-result result text), for saving
the statistics required to analyze the generated DM models.
Metric represents the formula on which a plan will be eval-
uated for a particular problem. A typical DM metric con-
sists of minimizing the classification error, but others could
be used, as minimizing execution time or maximizing the
readability of the learned model. SAYPHI, as the planners
based on the enhanced relaxed-plan heuristic introduced in
Metric-FF (Hoffmann 2003), only work with minimization
tasks. So, we transform maximizing the understandability
of the learned model for minimizing complexity. The other
preferences considered in our model are: exec-time, for min-
imizing the execution time; percentage-incorrect, for mini-
mizing the classification error; and mean-absolute-error, for
minimizing the mean absolute error in regression tasks and
clustering. We can handle similar constraints.

The static part of the problem specification includes
all the propositions concerning the predicates is-model,
learnable, allow-visualization, available and
can-learn, explained in the previous section, and the ini-
tial values of the fluents. The dynamic part includes the in-
formation about the dataset, the constraints and preferences,
the transformations and the models available for the DM re-
quest. Figure 6 shows and example of PMML file represent-
ing the well-known Iris DM set, allowing only one trans-
formation (a discretization) and two models (a neural net-
work and a decision tree). In general, for most DM tasks, a
user would include in the PMML file all WEKA DM tech-
niques (there are plenty of them). In the example of PMML

13



file, the user also defines: two constraints, concerning the
execution time and the complexity; and one preference, to
minimize the percentage-incorrect value, or classification
error. We obtain information from the following parts of
the PMML: Header, DataDictionary, TransformationDic-
tionary and Models. Header includes the constraints and the
preferences. Constraints are translated by adding numeri-
cal goals to the PDDL problem. Preferences are translated
by changing the metric of the problem. DataDictionary in-
cludes one field for each attribute in the dataset and they are
translated into propositions in the initial state and objects
of the problem. TransformationDictionary is translated by
adding some objects and propositions in the initial state of
the problem. Finally, each model defined in the Models part
is translated by adding a proposition in the initial state.

Figure 6 shows an example of the translation from a
PMML file to a PDDL problem file. It is easy to see
how some information is translated. For instance, the
tag DataField in the PMML file generates some predi-
cates in the PDDL file, like dataDictionaryDataField-type,
dataDictionaryDataField-otype, one for each attribute
of the initial dataset. The transformation Dis-
cretize of the PMML file is translated by adding
the predicate (transformationInstance-type discretize

continuous). When a model appears in the PMML, as
<NeuralNetwork modelName=”nnmodel1” function-
Name=”classification” algorithmName=”Neural Net”
activationFunction=”radialBasis”>, it enables the plan-
ner to use neural networks. The parameters of that
model are also defined in the PMML file, so the predi-
cate (implements NeuralNetwork classification nnmodel1)

and other related predicates are added to the problem
file. Similarly, the preference described in the header
of the PMML file, <Constraint variable=”percentage-
incorrect” value=”minimize”/>, is translated by including
a metric (:metric minimize (percentage-incorrect)) in
the problem file; while the constraints <Constraint
variable=”exec-time” value=”30”/ > and <Constraint
variable=”complexity” value=”8”/ > are translated by
including the numerical goals (< (exec-time) 30) and (<

(complexity) 8).
The translator makes the following conversions from the

PMML file to the PDDL problem file (<variable> repre-
sents the value of field variable in the PMML file):

1. Translates entry <DataDictionary> into the following
propositions in the inits:

(a) (= (DataDictionaryNumberOfFields) <numberOfFields>)

(b) (dataDictionaryDataField-type <name> <dataType>),
for each <DataField> entry

(c) (dataDictionaryDataField-otype <name> <optype>),
for each <DataField> entry

(d) (is-field <name> DataSet), for each <DataField> en-
try

(e) Creates an object <name> of type SchemaFieldName in
objects

2. Adds the following proposition in the inits for each
<DefinedFunction> entry:

(a) (transformationInstance-type <name> <opType>)

(b) (transformation <name> valueX), where valueX is in
<DefinedFunction.Extension.WekaFilterOptions.option.value>
when variable=”filter” value=valueX>

(c) Create an object <name> of type transfInstance in ob-
jects

3. Adds the following proposition in the inits for each
<DerivedField> entry:

(a) (dataDictionaryDataField-type <name> <dataType>)

(b) (dataDictionaryDataField-type <name> <optype>)

(c) (derivedField-operation <name> <Apply.function>)

(d) (derivedField-source <name>

<Apply.FieldRef.field>) for each <FieldRef> in
each <DerivedField>

(e) Create an object <name> of type DerivedFieldName in
the objects

4. Adds the following proposition in the inits for each
<modelName> entry:
(implements <model> <functionName> <modelName>)

5. Adds a numeric goal (< (<Constraint variable>)

<value>) for each <DataMiningConstraints> entry

6. Translates entry <DataMiningPreferences> for
(:metric minimize (<Constraint variable>)) in metric.

In order to make the translation process easier and more
general, we have defined an intermediate XML file, trans-
lation.xml, to drive the translation explained above. The
translator interprets this file each time together with the input
PMML file and generates a PDDL problem file. So, it is pos-
sible to include, modify or eliminate PMML entries from the
translation process without changing the program, but mod-
ifying this file. This intermediate XML file permits to con-
figure the information we need from the PMML file, so that
in case the PMML file or the domain change we only have
to change this file without modifying the translator. For ex-
ample, the translation 1.(b) explained above is represented
with the following entry in the translation.xml file:

<elements value=”dataDictionaryDataField-type”
where=”DataDictionary/DataField”>

<field type=”attribute”>name</field>

<field type=”attribute”>dataType</field>

<format>(/0/ /1/ /2/)</format>
</elements>

Planning for DM Tasks
As we mentioned in the previous section, SAYPHI solves
the planning task depending on the metric specified in the
PMML file. SAYPHI has a collection of heuristic algorithms.
For this application, the planner performs a Best-first Search
that continues exploring nodes in order to find multiple solu-
tions. Figure 7 shows an example of a best-cost solution plan
when the translated PDDL indicates the percentage error as
the problem metric. Likewise, Figure 8 shows a best-cost
solution plan for the same problem, but using the execution
time metric. In the first plan a Neural Network is preferred

14



(a) Example of PMML file encoding a DM request for the Iris
domain. The PMML file has been simplified to eliminate non-
relevant information for the purpose of generating the problem
file.

(b) Problem file in PDDL generated from the PMML file shown
in (a). Again, irrelevant information has been eliminated.

Figure 6: Simplified PMML and PDDL problem files.

15



0: (LOAD-DATASET INITIALDATASET)

1: (DATASETPREPARATION INITIALDATASET CROSS-VALIDATION)

2: (TRAIN-CLASSIFICATION NN NEURALNETWORK

NNMODEL4 INITIALDATASET CLASS CROSS-VALIDATION)

3: (TEST-CLASSIFICATION NN INITIALDATASET NEURALNETWORK

CLASS CROSS-VALIDATION RESU)

4: (VISUALIZE-RESULT NN INITIALDATASET CROSS-VALIDATION

RESU TEXT)

Figure 7: An example plan minimizing the percentage error.

0: (LOAD-DATASET INITIALDATASET)

1: (DATASETPREPARATION INITIALDATASET SPLIT)

2: (TRAIN-CLASSIFICATION TREE TREEMODEL

TREEMODEL1 INITIALDATASET CLASS SPLIT)

3: (TEST-CLASSIFICATION TREE INITIALDATASET

TREEMODEL CLASS SPLIT RESU)

4: (VISUALIZE-RESULT TREE INITIALDATASET

SPLIT RESU TEXT)

Figure 8: An example plan minimizing the execution time.

in the train-classification action because in the de-
fault definition it has a lower cost than applying the same ac-
tion with another model. On the other hand, the second plan
has two differences. The Split parameter is selected instead
of Cross-validation, and Tree Model is preferred instead of
Neural Network. Both differences arise because these ac-
tions are cheaper in terms of execution time. The best-cost
solution using the readability metric coincides with the sec-
ond plan, since the Tree Model is the parameter the mini-
mizes the cost for the training action.

Most of the action costs rely on formulae af-
fected by pre-defined constants for each parame-
ter (e.g. a constant fluent defined in the initial
state, such as (= (model-percentage-incorrect
NeuralNetwork) 5). These constant values were set by
a data mining expert in order to reproduce common results
depending on different executed tasks. Accordingly, the
total cost for a solution is taken as an estimation, since the
real cost in this application can not be known in advance.
Sensing the environment after each action execution could
establish real costs, but we have not included this process at
the current state of the project.

Plan to KFML
This section describes the translator that generates the
KFML files. Once the planner generates a plan, it has to
be translated into a KFML file, so it can be executed by the
WEKA Knowledge Flow. The translator reads a plan in an
XML format. Figure 9 shows a plan (in a standard format,
not XML) generated by SAYPHI using the PDDL problem
shown in Figure 6.

The translator generates as output a new KFML file with
an equivalent plan plus some new actions that the WEKA
Knowledge Flow can execute. Each action in the PDDL
Domain corresponds to one or many WEKA components.
Therefore, the translator writes for each action in the plan
the corresponding set of XML tags that represent the WEKA

0: (LOAD-DATASET INITIALDATASET)

1: (APPLY-TRANSFORMATION-ATTRIBUTESELECTION

INITIALDATASET ATTRIBUTESELECTION4)

2: (DATASETPREPARATION INITIALDATASET CROSS-VALIDATION)

3: (TRAIN-CLASSIFICATION TREE TREEMODEL TREEMODEL1

INITIALDATASET CLASS CROSS-VALIDATION)

4: (TEST-CLASSIFICATION TREE INITIALDATASET

INITIALDATASET CLASS CROSS-VALIDATION RESULT)

5: (VISUALIZE-CLASSIFICATION-MODEL TREE

TREEMODEL GRAPH INITIALDATASET CLASS)

6: (VISUALIZE-RESULT TREE INITIALDATASET

CROSS-VALIDATION RESULT TEXT)

Figure 9: A example plan generated by SAYPHI.

...
<object class="weka.gui.beans.BeanInstance" name="2">
<object class="int" name="id" primitive="yes">2</object>
<object class="int" name="x" primitive="yes">450</object>
<object class="int" name="y" primitive="yes">145</object>
<object class="java.lang.String" name="custom_name">
CrossValidationFoldMaker

</object>
<object class="weka.gui.beans.CrossValidationFoldMaker" name="bean">
<object class="int" name="seed" primitive="yes">1</object>
<object class="int" name="folds" primitive="yes">10</object>

</object>
</object>
...

Figure 10: A part of the KFML file corresponding to
the DATASETPREPARATION action in the solution plan pre-
sented in Figure 9.

component. For instance, Figure 10 shows a brief section of
the KFML file generated from the plan in Figure 9. This
part corresponds to the third action in the plan, i.e., the
DATAPREPARATION action.

Actions appearing in a plan can correspond to one of these
cases:

• The action corresponds to exactly one WEKA compo-
nent. For instance, the LOAD-DATASET action corre-
sponds to the ArffLoader component of the knowledge
flow. Some additional information may be needed from
the PMML file (e.g., the URI of the dataset to be loaded).

• The action corresponds to many WEKA components and
the action parameters decide which component needs to
be selected. For instance, in the DATASETPREPARATION
action, the second parameter indicates the type of
operation. Thus, CROSS-VALIDATION corresponds
to the CrossValidationFoldMaker component in
the knowledge flow, and SPLIT corresponds to the
TrainTestSplitMaker component.

• The action corresponds to many WEKA components and
the action parameters only specify the name of a tech-
nique or model. In these cases, the translator needs to
extract that information from the PMML file in order to
decide which KFML components should be selected. The
information extracted from the PMML file includes the
name of the component and the parameters that has to be
written in the XML code. For instance, the TREEMODEL
parameter of the TRAIN-CLASSIFICATION action corre-
sponds to the J48 algorithm and some other component

16



properties defined in the PMML file (See Figure 6).

After writing all components into the KFML file, the
translator connects them in the order specified by the plan
using the linking primitives of KFML. Finally, the translator
adds some extra components in order to save the informa-
tion generated during the execution. That information are
the learned models and the results of the plan execution. Fig-
ure 11 shows the knowledge flow diagram that the WEKA
GUI presents when reading the KFML file generated for this
example.

Figure 11: The knowledge flow diagram of the KFML file
translated from the plan in Figure 9

Conclusions and Future Work
This paper presents a proposal for modelling data mining
tasks by using automated planning, based on extensive use
of standard representation languages. The contribution of
the work is twofold: modelling the data mining task as an
automated planning task and implementing translators able
to compile any data mining episode represented in the stan-
dard language PMML into the planning standard language
PDDL. We have defined a PDDL domain that contains ac-
tions to represent all the possible DM tasks (transformations,
training, test, visualization, . . . ). The domain is assumed to
stay fixed for all the DM episodes, but each action contains
preconditions to control its activation. The PDDL problems
are automatically translated from a PMML file representing
a DM episode adding the propositions for activating the al-
lowed actions in the particular DM episode. This model al-
lows to deal with plan metrics as minimizing the total execu-
tion time or the classification error. During the planning pro-
cess the metrics are computed from a planning point of view
giving some estimated values for their increments experi-
mented in the actions, but we cannot know their true value
until a DM Tool executes them. Once the planner solves a

problem the solution plan is translated into a KFML file to
be executed by the Knowledge Flow of WEKA. The gen-
erated model and the statistics are returned to the user. We
have implemented a distributed architecture to automate the
process.

In the future, we would like to generate several plans to
solve the same problem, to execute them in WEKA and to
return all the models to the user. Probably, the best models
according to the planner are not necessarily the best models
according to the user. Thus, we would also like to apply
machine learning for improving the plan generation process
and the quality of the solutions.

References
Amant, R. S., and Cohen, P. R. 1997. Evaluation of a
semi-autonomous assistant for exploratory data analysis. In
Proc. of the First Intl. Conf. on Autonomous Agents, 355–
362. ACM Press.
De la Rosa, T.; Garcı́a-Olaya, A.; and Borrajo, D. 2007.
Using cases utility for heuristic planning improvement. In
Case-Based Reasoning Research and Development: Pro-
ceedings of the 7th International Conference on Case-
Based Reasoning, 137–148. Belfast, Northern Ireland, UK:
Springer Verlag.
Fayyad, U.; Piatetsky-Shapiro, G.; and Smyth, P. 1996.
From data mining to knowledge discovery in databases. AI
Magazine 17(3):37–54.
Fernández, F.; Borrajo, D.; Fernández, S.; and Manzano,
D. 2009. Assisting data mining through automated plan-
ning. In Perner, P., ed., Machine Learning and Data Min-
ing 2009 (MLDM 2009), volume 5632 of Lecture Notes in
Artificial Intelligence, 760–774. Springer-Verlag.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. Journal
of Artificial Intelligence Research 61–124.
Hoffmann, J. 2003. The Metric-FF planning system:
Translating “ignoring delete lists” to numeric state vari-
ables. Journal of Artificial Intelligence Research 20:291–
341.
Mitchell, T. M. 1997. Machine Learning. McGraw-Hill.
Morik, K., and Scholz, M. 2003. The miningmart ap-
proach to knowledge discovery in databases. In In Ning
Zhong and Jiming Liu, editors, Intelligent Technologies for
Information Analysis, 47–65. Springer.
Provost, F.; Bernstein, A.; and Hill, S. 2005. Toward intel-
ligent assistance for a data mining process: An ontology-
based approach for cost-sensitive classification. IEEE
Transactions on Knowledge and Data Engineering 17(4).
Witten, I. H., and Frank, E. 2005. Data Mining: Practi-
cal Machine Learning Tools and Techniques. 2nd Edition,
Morgan Kaufmann.

17




