
Exercise 1 
 
Just to recall: 

Name and define all grammars and automata in the Chomsky hierarchy: 
FSA RG 
PDA CFG 
LBA CSG 
TM G0 

 Explain the reasons for vertical (automata – grammars) and horizontal (FSA – TM) 
split. 
 Define formally the finite state automaton. 
 
Practice: 
 Design a finite state automaton that counts a tennis score. 
  

Design finite state automata working with the alphabet {a,b}, that accept the following 
words: 

• the number of letters „a“ is divisible by 3, 
• the number of letters „a“ is divisible by 2, 
• the number of letters „a“ is divisible by 3 or by 2, 
• the number of letters „a“ is divisible by 3 and by 2, 
• the number of letters „a“ is divisible by 3 but not by 2, 
• finishes by „baba“, 
• contains „baba“, 
• starts with „baba“, 
• finishes by „b“ and its length is (3k+1), 
• finishes by „b“ or its length is (3k+1), 
• finishes by two or more letters „b“ that are immediately preceded by at least one 

letter „a“, 
• its length is at least 2 and the first and the last letter in the word are identical, 
• the first and the last letter in the word are identical, 
• its length is at least 4 and the first two letters are identical to the last two letters, 
• the first two letters are identical to the last two letters. 
 
What are the following automata doing (describe the language)? 
 
 a) b) 

 0 1   0 1 
↔q0 q1 q0  →q0 q1 q0 

q1 q2 q1  ←q1 q2 q1 
q2 q0 q2  ←q2 q0 q2 

   

 c) d) 
 0 1   0 1 
→q0 q0 q1  →q0 q0 q1 

q1 q0 q2  ←q1 q2 q1 
←q2 q0 q2  ←q2 q0 q1 

   

 



Exercise 2 
 
 
Just to recall: 

Formulate the Myhill-Nerode Theorem and the Pumping Lemma. 
Define the state equivalence. 

 
Practice: 

Decide and prove if the following languages are regular 
• 0k1l, k ≤ l 
• 0k1k 
• 1k0k1l 
• 1k0l1k 
• 1k1k0l 
• 1k1l0k 
• 0n1m for n ≤ m ≤ 2n 
• 0n1m0n for m ≤ n 
• ww, w∈{0,1}* 
• w, w ∈{0,1}* and w contains identical counts of letters 0 and 1 
• wwR, w∈{a}* 
• a2n 
• n

a 2  
• 2na  
• ap, p is a prime number 
• aibici 
• aibicj pro i<j 

 
Find all equivalent states in the following automata: 
 a) b) c) d) 

 a b   b a   a b   b a 
↔0 0 5  A F A  →1 2 3  A G H 

1 1 3  B A B  2 2 4  B A B 
2 2 7  C D C  ←3 3 5  C D E 
3 3 2  D B D  4 2 7  D B D 

←4 6 1  E C E  ←5 6 3  E D C 
5 5 1  ↔F E F  ←6 6 6  F E F 

←6 4 2      7 7 4  ↔G F G 
7 7 0      8 2 3  H G A 

        9 9 4     

 
 e) f) g) 

 a b   a b   a b 
↔0 1 2  →0 1 2  ↔0 0 1 

1 3 0  1 0 3  ←1 2 3 
2 4 5  2 4 1  2 3 4 
3 0 2  3 0 1  3 1 0 
4 2 5  ←4 2 2  4 3 2 
5 0 3  5 4 3     
  
 
 



Exercise 3 
 
 
Just to recall and to think about: 

1) The Pumping lemma as formulated in the lecture assumes that the part to iterate is 
located at the beginning of the world (|uv|≤ n). Think if it is possible to formulate 
the Pumping lemma, where: 
• the part to iterate is located anywhere in the world  
• the part to iterate is located at the end of the world  
• the part to iterate is located close to some given place in the world. 

2) Does the Pumping lemma hold also for complements of regular languages? In 
particular “we can divide the word outside the regular language in such a way 
that we can iterate the “middle” part and the resulting word is still outside the 
language” 

3) Define formally the equivalence of automata. Is there any relation to state 
equivalence? 

4) What is a reduced finite state automaton? Define it. 
 
Practice: 

Decide and prove if the following automata are equivalent: 
 a) b) c) 

 a b   b a   b a 
↔0 0 5  A F A  A G H 

1 1 3  B A B  B A B 
2 2 7  C D C  C D E 
3 3 2  D B D  D B D 

←4 6 1  E C E  E D C 
5 5 1  ↔F E F  F E F 

←6 4 2      ↔G F G 
7 7 0      H G A 

           

What is the shortest word in automaton (a) that differentiates states 1 and 5? Are the 
more such words? 
 
In the following automata find all the shortest words that differentiate a given pairs of 
states: 

 
 e) states 3 and 5 f) states 0 and 1 g) states 2 and 4 

 a b   a b   a b 
↔0 1 2  →0 1 2  ↔0 0 1 

1 3 0  1 0 3  ←1 2 3 
2 4 5  2 4 1  2 3 4 
3 0 2  3 0 1  3 1 0 
4 2 5  ←4 2 2  4 3 2 
5 0 3  5 4 3     

 
 

  



Exercise 4 
 
 
Just to recall and to think about: 

1) Which set and string operations have the closure property for regular languages? 
2) Do we obtain a complement of language if we swap the role of accepting and non-

accepting states in a nondeterministic finite-state automaton? 
 
Practice: 

Convert the following automaton to a reduced finite state automaton: 
 
 
 
 
 
 
 
 
 
 
Propose algorithms that decide if the following propositions hold: 
• L(A) = ∅ 
• L(A) = L(B) 
• L(A) = X* 
• L(A)⊆L(B) 
• L(A) je nekonečný 

 
Let L= {ab, c}. Describe the following languages: L+,L*,(L*)* 
 
Propose a FSA accepting all words in the alphabet {a,b} that do not contain the word 
“baba”. 
 
Let X={0,1} be an alphabet. Design a FSA accepting words where the number if 
letters 0 is divisible by: 
• 2 
• 3 
• 2 or 3 
• 2 and 3 
• 2 but not by 3. 

 
Let L1={u|u∈{0,1}* & |u|0=2k} and L2={u|u∈{0,1}* & |u|0=3k} be languages.  
Propose the smallest FSA accepting the language L2\ L1. 
 
What is the minimal number of states in a FSA that accepts the following language? 

Ln = { w | w∈{0,1}*, w=u1v, |v|=n-1 }. 
What is the minimal number of states in a FSA that accepts the language (Ln)R? 
 
 
 

A B 

C D 

a a 

a 
b 

b 

b 

b 
b 



Let the following automat accepts some language L: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Propose (nondeterministic) FSAs accepting the following languages: 

• L1 = {uv | uav∈L ∨  ubv∈L} 
• L2 = {uv | uav∈L} 
• L3 = {uav | uv∈L} 
• L∪ L1 , L∪ L2 , L∪ L2 

 
  

1 

2 

3 

4 5 

a 

a 

a a 

a,b 

b b 

b 

b 



Exercise 5 
 
 
Just to recall and to think about: 

1) What are the core algebraic operations to obtain all regular languages? 
2) How is the language {λ} composed from the elementary languages? 
3) Is there any relation between the proof of the Kleene’s theorem and all-pairs-

shortest-path algorithms? 
 
Practice: 

1) Write a regular expression whose value is a language in the alphabet {a,b} 
consisting exactly from the words that start with “ba” and finish with “ab”. 
Convert the regular expression to a corresponding FSA. 

2) Write a regular expression whose value is a language containing words a, a*a, 
a*a*a,…. 

3) Convert the following regular expressions to FSAs accepting the languages that 
are values of these expressions: 
• ab+ba 
• a2+b2+ab 
• a+b* 
• (ab+c)* 
• ((ab+c)+a(bc)*+b)* 
• ((ab+c)*a(bc)*+b)* 
• (01*+101)*0*1 
• (01)*1111(01)*+(0+1)*000 

 
4) Convert the following automata to regular expressions such that the value of the 
expression is the language accepted by a given FSA: 

 
a) b) 

 
 
 
 
 

c)  d) 
 
 
 
 

 
e) f) 
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Exercise 6 
 
 
Just to recall and to think about: 

1) Regular expression is a word. Is the language consisting of all regular expressions 
acceptable by some finite state automaton? 

2) How can a finite state automaton inform about its computation? What is the 
difference between Moore and Mealy machines? 

3) What is the advantage of non-determinism and the possibility to move the reading 
head in both directions? 

 
Practice: 

1) Let L be a regular language. Is the language {u| #u#∈L} also regular? Prove it! 
Note: The symbol “#” is a part of the alphabet. 

2) Let L be a language accepted by a finite state automaton A. Construct a two-way 
(non-deterministic) finite state automaton accepting the following language: 
• {#u# | uuR∈L} 
• {#u# | uu∈L} 
• {#u# | uv∈L & |u\=|v|} 
• {#u# | u=wv & wRwv∈L} 

Convert the obtained automata to a finite state automata. 
 

3) Design a Mealy machine working with the alphabet {0,1} that inverts the input 
word (0→1,1→0). Convert the machine to an equivalent Moore machine. 

 
4) Design a Mealy Machine working with the alphabet {0,1} that implements the 

following output function: 
 

output 1, if the input symbol is a part of sequence of 1s, which is directly 
preceded by symbols 00, 

output 0 in all other cases. 
Convert the Mealy machine to an equivalent Moore machine. 
 
5) Design a formal machine that sums two binary numbers. Think about defining the 

input for such a machine. 
 
  



Exercise 7 
 
 
Just to recall and to think about: 

1) Explain the notion of a formal grammar. 
2) What is the difference between generative and analytical formal grammar? 
3) How are the types of grammars in the Chomsky hierarchy distinguished? 
4) What is the reason for the names of context-sensitive and context-free grammars? 
5) If we combine left-linear and right-linear rewriting rules do we obtain a grammar 

accepting a regular language? 
 
Practice: 

 
1) Design a formal grammar that generates the following language: 
 

• {aibi |  i≥0} 
• well-formed expressions with left and right brackets 
• well-formed arithmetic expressions with a single constant “c”, operations + 

and *, and left and right brackets 
• {w | w∈{a,b}* |w|b=3k} 
• binary numbers that are multiples of 3 
• {aibici |  i≥0} 
• {aibjci+j |  i,j≥0} 
• {aibjck | 0≤ i ≤ j≤ k} 
• {aibjck | i=j ∨ j=k} 
• {wwR | w∈{a,b}*} 
• {ww | w∈{a,b}*} 
• {0n1m0 n | 0≤ m ≤ n} 
• {0n1m | 0≤ n≤ m ≤ 2n } 
• a2n

 
 
 
2) Is the following grammar context-sensitive (the capital letters denote the non-
terminal symbols)? Can the grammar be converted to a context-sensitive form? 
 

S→ aSbA | λ 
A→ aBbA | bCB | CD 
B→ bbBa | aS 
C→ aAaA | λ 
D→ SC | aABb 

 
 
3) Convert the following FSA to a grammar that generates the language accepted by 
the FSA. What type of grammar do we obtain? 

 
 
 
 
 

A B 

C D 

a a a 

a 
b b 

b 



 
 
4) Convert the following grammar to a finite state automaton accepting the same 

language. Can any grammar be converted to an “equivalent” finite state 
automaton? 

 
S→ abS | bbaA | λ 
A→ abA | bB | C 
B→ acS | bC | λ 
C→ abb | bA | A 

 
  



Exercise 8 
 
 
To recall and to think about: 

1) Whatis the main difference between the reduced context-free grammar and 
reduced FSA? 

2) Assume a word generated by a given context-free grammar. Is the derivation for 
this word unique? 

3) Does the order of application of production rules influence the final generated 
word for a CFG? Explain. 

4) Is there another way to describe how the word is derived (different from the 
derivation)? 

 
Practice: 

 
1) The figure shows a syntax (derivation) tree for some context-free grammar G. 
 
 
 
 
 
 
 
 
 
 

• What is the generated word given by this tree? 
• Write a left derivation for this word. 
• Write all the rewriting rules used in this syntax tree. 
• Can we say something about ambiguity of the grammar G? 

 
 
2) Reduce the following CFGs: 
 
 S→ aA | bB | aSa | bSb | λ 

S→ aSb | aAbb | λ A→ bCD | Dba 
A→ aAB | bB B→ Bb | AC 
B→ aAb | BB C→ aA | c 
C→ CC | cS D→ DE 
 E→ λ 

 
 
3) Decide (and prove) if the following grammar G satisfies L(G)=∅. 
 

S→ aS | AB | CD 
A→ aDb | AD | BC 
B→ bSb | BB 
C→ BA | ASb 
D→ ABCD | λ 

S 

A B a 

A A A S 

a a S B S B A

a 

b 

a c c λ 

λ 

λ λ 



Exercise 9 
 
 
To recall and to think about: 

1) What is main difference between a pushdown automaton and a finite state 
automaton? 

2) Describe the mechanism how the pushdown automata accept words. 
3) Is there any difference if the pushdown automaton accepts the works using an 

acceptance state or using an empty stack? 
4) Do deterministic pushdown automata accept the same class of languages as 

nondeterministic pushdown automata? 
 
Practice: 

 
1) Design pushdown automata accepting the following languages. For each 

automaton explore both types of accepting the words. If possible, try to design the 
automaton as a deterministic automaton. For the automata that use an empty stack 
to accept the words, try to design an automaton with a single state. 

 
• {0n1m | 0≤ n≤ m } 
• {wcwR | w∈{a,b}*} 
• {wwR | w∈{a,b}*} 
• {w | w∈{a,b,c}* w↓a,b = uuR}, where w↓a,b is a word w, where all symbols 

different from “a” and “b” were removed 
• {w | w∈{a,b}* |w|b=|w|a } 
• {ucv | u,v∈{a,b}* |u|≠|v| } 
• Li = {ucv | u,v∈{a,b}* u and v are different in the i-th symbol from the left } 
• {ucv | u,v∈{a,b}* u≠ v } 
• well-formed bracketed expression (such as “(())()”) 
• {aibi |  i≥0} 
• {aibjci+j |  i,j≥0} 
• {aibjck | i=j ∨ j=k} 

 
 
2) Convert the following grammar G to a pushdown automata accepting language 
L(G) using the acceptance states. Show, how the automaton accepts the word (a+a)*a. 

 
E→ E+T | T 
T→ T*F | F 
F→ (E) | a 

 
 
3) Take the context-free grammars from Exercise 7 and convert them to pushdown 
automata. 

 
  



Exercise 10 
 
 
To recall and to think about: 

1) What is typical for derivations done with the grammar in the Greibach normal 
form is used? 

2) What is typical for syntax trees for grammars in the Chomsky normal form is 
used? 

3) What is the relation between the depth of the syntax tree for grammars in the 
Chomsky normal form and the length of the generated word? 

4) Formulate and prove the pumping lemma for context-free languages. 
5) Formulate and prove the pumping lemma for linear languages (use the ideas from 

CFL). 
 
Practice: 

 
1) Convert the following grammars to the Chomsky normal form: 

 
S→ A | 0SA | λ S→ 0A10B11 
A→ 1A | 1 | B1 A→ 0A1 | λ 
B→ 0B | 0 | λ B→ 0B11 | λ 

 
 
2) Convert the following grammar to the Greibach normal form: 

 
S→ (E) 
E→ F+F | F*F 
F→ a | S 
 
 

3) Decide and prove if the these languages are context-free: 
 

• {aibici |  i≥0} 
• {aibjck | 0≤ i ≤ j≤ k} 
• {aibjci+j |  i,j≥0} 
• {wwR | w∈{a,b}*} 
• {ww | w∈{a,b}*} 
• {0n1m0 n | 0≤ m ≤ n} 
• {0n1m | 0≤ n≤ m ≤ 2n } 
• {0n1n0 n1n | 0≤ n} 
• {0i1j0 i1j | 0≤ i≤ j} 
• n

a 2  
• 2na  

 
 

 
 

 


