Evolution meets reinforcement learning

Matyáš Lorenc

Faculty of Mathematics and Physics, Charles University

8th April 2025

Prerequisites

Evolutionary algorithms in reinforcement learning

³ Various hybrid approaches for reinforcement learning

Prerequisites

Evolutionary algorithms in reinforcement learning

Over the second seco

Deep Q-learning
Direct policy learning

Monte Carlo (TRPO, PPO)
Actor-Critic (TD3, SAC)

• On-policy / off-policy

- Genetic algorithms
- Evolution strategies
 - Classical
 - Distributional
- Genetic programming

• Prerequisites

Evolutionary algorithms in reinforcement learning

Over the second seco

Beyond the gradients - EAs in RL

- NNs = parametrized functions
 - GAs or ESs \rightarrow weights
 - \bullet GAs or GP \rightarrow structures
- $\mathsf{GP} \to \mathsf{interpretable}$
 - and / or compact policies
- Novelty search, Quality-diversity

Showdown time! - Comparison with gradient algorithms

Gradients

Showdown time! - Comparison with gradient algorithms

Gradients

Evolution

+ Faster convergence

- + Faster convergence
- + Better sample efficiency

- + Faster convergence
- + Better sample efficiency
- + The TD methods can handle even infinite episodes

- + Faster convergence
- + Better sample efficiency
- + The TD methods can handle even infinite episodes

Evolution

+ Strong out-of-the-box exploration (+ powerful exploration techniques)

- + Faster convergence
- + Better sample efficiency
- + The TD methods can handle even infinite episodes

- + Strong out-of-the-box exploration (+ powerful exploration techniques)
- + Easy (massive) parallelization

- + Faster convergence
- + Better sample efficiency
- + The TD methods can handle even infinite episodes

- + Strong out-of-the-box exploration (+ powerful exploration techniques)
- + Easy (massive) parallelization
- + No problem with sparse or long action-reward time horizont rewards

- + Faster convergence
- + Better sample efficiency
- + The TD methods can handle even infinite episodes

- + Strong out-of-the-box exploration
 (+ powerful exploration techniques)
- + Easy (massive) parallelization
- + No problem with sparse or long action-reward time horizont rewards
- More robust convergence properties (fewer and less sensitive hyperparameters)

- + Faster convergence
- + Better sample efficiency
- + The TD methods can handle even infinite episodes

- + Strong out-of-the-box exploration (+ powerful exploration techniques)
- + Easy (massive) parallelization
- + No problem with sparse or long action-reward time horizont rewards
- More robust convergence properties (fewer and less sensitive hyperparameters)
- + Multiobjective optimization \rightarrow uniformly approximated Pareto front

- + Faster convergence
- + Better sample efficiency
- + The TD methods can handle even infinite episodes

- + Strong out-of-the-box exploration
 (+ powerful exploration techniques)
- + Easy (massive) parallelization
- + No problem with sparse or long action-reward time horizont rewards
- More robust convergence properties (fewer and less sensitive hyperparameters)
- + Multiobjective optimization \rightarrow uniformly approximated Pareto front
- + Multiagent $RL \rightarrow$ no need to have problem formulated as MDP

• Prerequisites

Evolutionary algorithms in reinforcement learning

³ Various hybrid approaches for reinforcement learning

- Gradient mutation
- Sequential combination (for example, in multiobjective RL)
- Utilize principles from some gradient algorithms in evolutionary ones (e.g., trust regions, natural gradients, etc.)

The (mostly) obvious (continuation)

- Hyperparameter optimization
- Population-based training
- Evolving partial policies (GP + NNs to default to for non-specified actions)

- Agent morphology
- Parameters of loss function for policy gradients (Meta-RL)
- Reward functions (Meta-RL)
- Critics

In RL, an action might be needed for:

- Each step in the environment
- Critic update (estimating TD error)
- Policy update (imitation learning)

• Prerequisites

Evolutionary algorithms in reinforcement learning

Over the second seco

0.4 0.4 Time Steps (1e6)

How best to combine known components and approaches?

Two levels of a cooperative multiagent RL: • Single agent

- Gradient RL
- Basic skills

Team

- Evolutionary RL
- The overall task

How to utilize gradients to improve novelty? Generally, we still don't know. But...

