Game Algorithms
Go and MCTS

Petr Baudiš, 2011
Outline

- What is Go and why is it interesting
- Possible approaches to solving Go
- Monte Carlo and UCT
- Enhancing the MC simulations
- Enhancing the tree search
- Automatic pattern extraction
- Unsolved problems
What is Go

History
Concepts
Rules
Basic Tactics
The Go Board Game

- Go / Igo / Goe / Baduk / Wei-Qi
- ~3000 years old - the oldest board game
- Very simple rules, very high complexity
- Wide-spread in China, Korea, Japan
- Rich culture surrounds the game
- http://senseis.xmp.net/
Go: Basic Concepts

- Square board with 19x19 intersections
 - Small board variation with 9x9
- Black and white players alternate in placing stones on the intersections
- Stones do not move; they can be removed if completely surrounded
- Players surround territory and capture enemy stones
• Directly connected stones == *group*
• # of unoccupied intersections around group == *liberties*
• When group has no liberties, it is removed from board
• Removed group: *capture*; single lib.: *atari*
• Ko rule - later
Go: Tromp-Taylor Rules

- Players place stones alternately
- If the board is filled, players play “pass”
- The player controlling more intersections wins
- Eye: empty places completely surrounded by stones of one color
- Controlling intersection: Either occupied by a stone, or an eye of given color
- Komi: Point bonus for white

final position – appendix 4
Go: Other Rule sets

- Many Go rulesets: Tromp-Taylor, Chinese, Japanese, ...
- Tromp-Taylor: Formal, terse, easy for computers
- Japanese: Easier for humans, most common, hard for computers; slightly different counting
- All rulesets are equivalent or 1pt-equivalent in common situations
Go: Life and Death

- So much for the rules; now basic tactics!
- Group is alive: Can form two eyes
- Group is dead: Can be always captured locally
- Group is in seki: Cannot form two eyes, but opponent cannot capture it
- Semeai: Capturing race between two groups
Go: Tactical Concepts

- **Semeai**: Capturing race between two groups, the one which captures first also kills the other
- **Ladder**: Player keeps escaping, but opponent always plays atari and eventually captures
 - Extremely long move sequence, but easy even for beginners to read
- **Net**: Player plays a distant move preventing enemy group from escaping
Go: The Ko Rule

• **Ko**: The same board position cannot repeat in single game

• To re-take ko: Play a *ko threat* elsewhere on the board
 - Opponent replies and ko can be re-taken
 - Opponent connects ko and you can follow up on the threat

• Group is *in ko*: Goal can be achieved if player wins a ko fight
Go: Strategic Concepts

- **Territory**: Empty area where opponent cannot make live group anymore
- **Moyo**: Territorial framework part of which can be still reduced by the opponent (at the cost of turning the rest to territory)
- **Influence**: Using hard-to-kill group to attack weak group of the opponent
Ranking in Go

• Several rating systems
• We will use KGS server ranking system:
 - 30kyu … absolute beginner
 - 15kyu … average beginner after 4 weeks
 - 5kyu – 1kyu … intermediate player
 - 1dan – 9dan … advanced to expert ama.
 - 1pro – 9pro … professional player
• Handicaps based on rank difference
Solving Go

The Problem
Special Sub-Problems
Possible Approaches
Classic Solutions
Programming Game Solvers

- Move combinations in “game tree”
- Leaves assessed by “evaluation function”
- “Minimax” decision
- Heuristics:
 - pruning branches
 - evaluation order
 - transpositions
What's So Hard?

- Extreme branching factor
 - Chess: 10^{126}; Go: 10^{360}
 - Transposition tables are ineffective
- Evaluation function is difficult
 - Has to take into account changing status of stones
 - Influence, territory-moyo hard to assess
- Pruning branches is difficult
 - Universal pruning function hard to find
Specialized Sub-Problems

- Playing perfect late endgame (Berlekamp, 1994)
 - Combinatorial Game Theory, performs better than professional players
 - Does not scale before last few moves

- Solving tsumego problems
 - Small board sub-section, short sequence
 - Best solvers can find the move in few seconds (Wolf, 2007)
How To Do It?

• alpha,beta search + hand-coded patterns
 – GNUGO, weaker MFoG, ~6kyu
• Neural networks, pure (auto-gen.) patterns
 – Unsuccessful in general (~15-20kyu?)
 (Ezenberger, 1996)
• Monte Carlo, Monte Carlo Tree Search
 – Most modern bots, on commodity HW
 up to ~3-4dan (on 9x9, up to ~8dan?)
Classic Approach

- GNUGO – complex classic knowledge, many hand-coded patterns, alpha,beta search
 - Very useful test opponent for MC bots
- Frequently misses moves – overpruning
 - Causes major tactical mistakes
- Drastic misjudgements of group status
- Points-greedy move choice (cannot adjust style for disparate situation)
- Strength does not scale with time
Monte Carlo and UCT

Monte Carlo Approach
Multi-armed Bandits
Upper Confidence Trees
Monte Carlo Go

- Basic idea: evaluate a position by playing many random games (simulations) and averaging the outcome
- Primitive: Run N simulations for each valid move, pick the one with best value (reward) *(Bruegmann, 1993)*
Monte Carlo Go

- Basic idea: evaluate a position by playing many random games (simulations) and averaging the outcome
- Primitive: Run N simulations for each valid move, pick the one with best value (reward) (Bruegmann, 1993)
- Outcome coding:
 - points_difference: too unstable
 - 0,1 (loss, win): usual approach
 - 0.01 for pts difference is slight bonus
Monte Carlo Tree Search

- Primitive MC cannot converge to best result
 - Does not discover forced sequences
- Tree Search: Explore best replies of best replies of best replies of best moves... (minimax tree)
- Exploration vs exploitation:
 - Focus simulations on the best candidates
 - Make sure we know which are the best
Multi-armed Bandit

- => Multi-armed bandit
Multi-armed Bandit

- Multi-armed bandit
- Each node has urgency based on value and exploration desire
- **Urgency policy**: Minimize regret – expected total loss of selecting suboptimal nodes

\[
\mu_i = \mathbb{E} \left[\frac{1}{T_i(n)} \sum_{t=1}^{T_i(n)} X_{it} \right]
\]

\[
\mu^* = \max_i \mu_i
\]

\[
R_n = n\mu^* - \sum_{i=1}^{K} \mathbb{E}[T_i(n)] \mu_i
\]
Multi-armed Bandit

- Multi-armed bandit
- Each node has urgency based on value and exploration desire
- **Urgency policy**: Minimize regret – expected total loss of selecting suboptimal nodes
- Several approaches: ε-greedy, upper confidence bounds

\[
\mu_i = \mathbb{E} \left[\frac{1}{T_i(n)} \sum_{t=1}^{T_i(n)} X_{it} \right]
\]

\[
\mu^* = \max_i \mu_i
\]

\[
R_n = n\mu^* - \sum_{i=1}^{K} \mathbb{E} [T_i(n)] \mu_i
\]
Upper Confidence Bound

- **urgency** = **value** + **bias**
- **value** = **expectation** = **wins** / **simulations**
- **bias** = UCB1 (Auer, 2002)
 - upper bound on possible value

\[
\pi_{UCB1}(n) = \arg\max_i \left(\mu_i + c \sqrt{\frac{2 \ln n}{T_i(n)}} \right)
\]

- **c** is parameter; best for random Go \(\sim 0.2\)
- **Optimistic** strategy – try most promising node
UCB1 Hardcore
(supplementary slide)

- (Lai & Robbins, 1985) #tries bound:

\[E[T_j(n)] = \theta \left(\frac{1}{D(P_j \| P)} + o(1) \right) \ln(n) \]

- \(D(P \| Q) \) – Kullback-Leibler divergence

\[D(P \| Q) = \int P \ln \left(\frac{P}{Q} \right) \]

- In good policies, the optimal node is selected exponentially more often than any other, i.e. asymptotically logarithmic regret

- UCB1: uniformly logarithmic regret!
Upper Confidence Tree

- Minimax tree with UCB-based urgencies (Kocsis & Szepesvari, 2006)
- Leaf node: MC simulation, expand after k visits
- Converges – given unlimited time, will find optimal solution
- Online algorithm – can be stopped anytime and give meaningful result
Upper Confidence Tree

- Minimax tree with UCB-based urgencies (Kocsis & Szepesvari, 2006)
- Leaf node: MC simulation, expand after k visits
- Converges – given unlimited time, will find optimal solution
- Online algorithm – can be stopped anytime and give meaningful result
 - Final move selection: node with highest #simulations
MCTS: Other Applications

- General planning tasks with large search space and stochastic evaluation function
- Other games (Poker, Amazons, Arima, ...)
- Robot online task planning
- Sailing “auto-navigator”
- Etc. etc.
Better Simulations

Basic Implementation
Trivial Heuristics
Local Patterns
Caveats!
Uniformly Random...

- In each move, pick a random element from the set of legal moves \ pass
- Never fill single-point eyes
- **Common termination rule:**
 - Pass only if no valid move remains
 - => Easy + fast counting
 - Mercy rule
Playout Requirements

- **Speed** – more simulations mean deeper tree and more accurate values
 - Small board, light playouts: Tens of thousands playouts per second
 - Large board, heavy playouts: ~2000 pPs

- **Plausibility** – situations should be resolved like in a real game

- **Balance** – all reasonable results should have the chance to appear in playouts
Simple Heuristics

- Hard to find heuristics that don't fail often
- Capture stones in atari vs. escape with stones in atari (possibly detect ladders)
 - Except when the stones cannot escape
- Do not self-atari – *but sometimes do!*
 - Putting large group in atari instead of connecting is bad
 - Self-atari of your stones in opponent's dead eyespace is necessary
- 2-liberty tactics similar to atari tactics
3x3 Patterns

- ~10 wildcard 3x3 patterns centered at the candidate move (Gelly, 2006)
- Considered only around last move
- => Produces “nice” local sequences
- 3x3 patterns = 16bit numbers => Very fast

appendix 5
Balanced Patterns

- Stronger playout is not better playout!
 - Imbalance => consistently biased assessment of position, UCT misbehaves
- Fresh approach – machine learning of patterns based on playout balance, not strength
 - (Silver, 2009) Don't minimize error but expected error – error over multiple moves in row (small mistakes cancel)
 - (Huang, 2010) Works on 19x19 too
Better Tree Search

Prior Node Values
All Moves As First
Rapid Action EValuation
Criticality
Dynamic komi
Multithreaded Search
Time Management
Fresh Nodes

- **UCT**: Play each node once first – too ineffective
- **First Play Urgency**: Initialize \(urgency \) with fixed value (~1.2), start UCB-selecting nodes
- “Progressive widening”, initialize \(value \) heuristically
- “Progressive unpruning”, rank nodes heuristically, consider only \(f(n) \) best nodes
Prior Values

• Priors:
 - Playout policy hinting – capture, atari, 3x3 patterns, eye filling
 - Distance from the board border
 - CFG distance from the last move
 - Smart static evaluation function
Common Fate Graph

(Graepel, 2001)

- Intersections: vertices, lines: edges
- Edges between same color: $d=0$, others: $d=1$
- CFG distance: the shortest path in CFG
 - Useful for the concept of “tactical locality”
 - Takes into account all moves affecting local groups
All Moves As First

- UCT converges very slowly, especially on large boards – no information sharing
- Idea: Find out and prefer moves that give good performance in all games (Bruegmann, 1993)
- UCT value of M: Winrate of games starting by M
- AMAF value of M: Winrate of games where we played M anytime in the rest of the game(!)
- Moves in-tree and in most of the playout are considered (late moves cut, or weighting)
Rapid Action Evaluation

- How to incorporate AMAF in the node value? (Gelly & Silver, 2007)
- \(\text{value} = \beta \times \text{amafval} + (1-\beta) \times \text{uctval} \)

\[
\beta = \text{amafsims} \times \left(\text{amafsims} + \text{uctsims} + \frac{\text{amafsims} \times \text{uctsims}}{r} \right)^{-1}
\]

- With small \(\text{uctsims} \), \(\beta \sim 1 \), but goes \(\rightarrow 0 \)
- \(r \): RAVE weight ("equivalence") parameter, e.g. \(\sim 3000 \)
• **Key result** in MCTS Go, making it stronger than the classical engines:
 - ~ 30% UCT → 70% UCT-RAVE
• Good playout policy is crucial for good AMAF!
• Priors: *amafval* vs *uctval* – small difference
 - Important new prior: “Even game” $p=0.5$ protects against inaccurate first results
• No exploration: Best results with $c=0$ on 19x19 ($c=\sim0.005$ on 9x9) – AMAF is sufficiently noisy
RAVE Performance
Criticality

- (Coulom, 2009) Focus on places that are “key” for both players – owning the point is important for winning the game
- Similar to AMAF, but statistical covariance of winrates for both players

\[
\frac{v(x)}{N} - \left(\frac{w(x)}{N} \frac{W}{N} + \frac{b(x)}{N} \frac{B}{N} \right)
\]

- Small improvement (49% → 54%)
Playing in Extreme Situations

- **Extreme situation:** The computer has either a huge advantage or a huge disadvantage
- Common in handicap games
- Black: **big advantage** – suboptimal moves, no account for difference in strength
- White: **big disadvantage** – the problem is not so visible and harder to solve
- Interpretation: Too low signal-noise ratio when the outlook is extreme
Black in Handicap

- Linear dynamic komi, situational dynamic komi, artificial passes
- **Dynamic komi:** Before counting the final position in the simulation, subtract a certain amount of points from black score
- **Situational komi:** Adjust the komi to keep probabilities between $\sim[0.4,0.5]$; universal (not only handicap games), \sim57% self-play
 - Fixed step or avgscore-based step
Linear Dynamic Komi

- **Linear DK:** Calculate komi value K based on the handicap amount
- $K \sim -cH$ where c is point value of handi stone
 - $c=8$ (based on default komi value) seems optimal; non-linear scaling experiments discouraging
- Apply for first M moves: $k = K(1-m/M)$
- $M=200$ works well on 19x19
- **Adaptive:** Keep winrate between 0.85 and 0.8
Handicap Performance

(19x19 vs GNUGo level 10)

Figure 2: Dynamic komi in handicap games.
Parallel MCTS

(Chaslot, 2008)

- **Root-level** – independent search in each thread, merge at the end
 - Threads “vote” on best move
 - Slight-to-medium improvement, does not seem to scale much

- **Leaf-level** – single thread searches, all threads play in parallel
 - More accurate node value
 - Small improvement, large overhead
Parallel MCTS in-tree

- **In-tree** – all threads search in the same tree
 - No locking necessary if we are careful (Enzenberger, 2009)
 - Never delete nodes during search
 - Update values atomically
 - *Virtual loss* spreads exploration (add loss in descend, remove during update)
Distributed MCTS

- **Distributed** – cluster of machines (nodes) with separate trees
- Independent searches + information exchange
- Information exchange = higher overhead
- Best: *Little* exchange, e.g. only single level
- Virtual wins *(Baudiš and Gailly, 2011)*
Parallel Performance
(19x19 vs Fuego)
Time Management

• How to allocate time during the game?
• Main time, overtime n periods of m moves
• Pachi: Default and maximal time, unclear results imply overspending
• Allocate most time in the “middle game”
Learning Patterns

Pattern Features
ELO Pattern Ranking
Storing Patterns
Pattern Usage
Pattern Usage

- Wildcard 3x3 centered patterns: see before
- Circular n-radius patterns – hash matching
- Arbitrarily shaped patterns: incremental decision trees
- Shape matching only
- Tactical goal matching
- Point owner matching
- Used both in playouts (simplified) and in priors (full features set)
Zobrist Hashing

• Hashing board positions (Zobrist, 1990)
Zobrist Hashing

- Hashing board positions (Zobrist, 1990)
- Initialization: Each point gets assigned random numbers \(b, w \)
- Position: XOR of \(b \) values for all black stones and \(w \) values for all white stones
- Good uniform distribution, reasonable hash size
- Incremental updates on move plays possible!
Shape Patterns

- Represented as Zobrist hashes of the area
 - All rotations and color reversals
 - Matching can be incremental for multiple shape sizes
 - Lookup is very fast

- Extended board with special "edge color" - already common in fast board implementations
Circular Shapes

- ...on square grid? (Stern, 2006)
- Metric?
Circular Shapes

- ...on square grid? (Stern, 2006)
- Metric:
 \[d(x,y) = |dx| + |dy| + \max(|dx|,|dy|) \]
- Incrementally matched nested circles
- Commonly used
Arbitrary Shapes

- Hard to recognize and harvest automatically, useful mostly for expert patterns
- Use probably uncommon
Arbitrary Shapes

- Hard to recognize and harvest automatically, useful mostly for expert patterns
- Use probably uncommon
- Proposed method: Incremental Patricia trees (Boon, 2009)
 - Build a decision tree (node-per-intersection) from the patterns
 - For each intersection, store nodes from decision trees
 - When the point changes, re-walk branch
Pattern Features

- For each candidate move, a pattern is matched:
 - Shape – as just described
 - Capture, atari, selfatari, liberty counts, ko… (van der Werf, 2002)
 - Distance to the last, next-to-last move
 - CFG distance or circular distance
 - Monte Carlo owner – portion of simulations where I am point owner at the game end
 - Each feature can have its zobrist hash
Elo Ratings

- Elo: Putting competitive strength of many individuals on a single scale (Elo, 1978)
- Used in Chess and Go to rate players strength
- Based on **Bradley-Terry model**:
 - Each individual has strength γ
 - $P(i$ beats $j) = \gamma_i / (\gamma_i + \gamma_j)$
- Works for competition of >2 players too
- Works for teams: $\gamma_1 \gamma_3 / (\gamma_1 \gamma_2 \gamma_3 + \gamma_1 \gamma_2 + \gamma_1 \gamma_3)$
- Makes rather strong assumptions
Elo Patterns

- **Key result:** 38.2% → 90% (Coulom, 2007)
- Consider *teams of pattern features*, assign each feature its “strength”
 - capture=30, atari=1.7 self-atari=0.06
- Total strength of each intersection is product of the features strength
- Produces probability distribution over moves
- Use to choose the next move in playout; only easy features (e.g. shapes up to 3x3) are used
- Use to progressively unprune nodes
Current Programs

- Mogo – UCT pioneer
- CrazyStones – Elo
- ManyFaces – UCT+classic
- Zen – Elo reimplemented?
- Erica – Elo + Balancing

Opensource UCT:
- Fuego – complex, general
- **Pachi** – simple, Go focus
Current Strength

- WCCI 2010 Barcelona
- @9x9: MoGoTW -9p, +9p; MoGo -4p, -4p; Fuego -4p, +4p, -9p, -9p; Zen +6d, +6d, -6d, +6d
- @13x13H2: MoGo +6d, +6d; Fuego -6d, -6d; MFoG -6d, +6d
- @19x19: Zen -9p@H7, +4p@H6; MFoG -4p@H6, -9p@H7
- MoGo: 15x8c, BlueFuego: 112c w/ shared mem.
Pachi

- Densely-commented C code, about 17k LOC
- Modular architecture for play engines (random, playout, MonteCarlo, UCT)
- Modular architecture for UCT policies (UCB1, UCB1AMAF/RAVE)
- Modular architecture for playout policies (random, “Moggy”, probability distribution)
- Modular dynamic komi policy, priors, etc.
- **Autotest** – generic UNIX framework for testing of stochastic engines performance
Unsolved Problems

Narrow sequences
HPC implementation
Aesthetically pleasing play
Abstract understanding of the board
Narrow Sequences

- The most visible and probably most important current issue
- UCT/RAVE bots miserably fail in most semeai situations, some classes of unsettled tsumego and sometimes even misread simple ladders
- RAVE gives single-level information, same problem as Monte Carlo vs UCT
Narrow Sequences: The Problem

- General situation description: After one player's move X, the other player has one right reply Y* (winrate converges) and many wrong replies \{Y-\} (winrate diverges)
- All replies have equal simulation probability, giving player's move X too high winrate
- Thus, RAVE gives the move massive bias everywhere in the tree; tree quickly discovers Y*, but this only pushes X down in tree
Narrow Sequences: Solutions?

- Common: Enhance simulations to natively choose Y* after X with high probability
 - Simulations must be fast, only static evaluation reasonably possible, case-by-case, tedious

- Prefer best local moves found by tree search in simulations?

- Pre-bias node values based on local sequences found in other tree branches?

- Preliminary results promising, still researching
High Performance Computing

- Big clusters tried – Mogo on 900 cores etc.
- Mix of root and tree parallelization
- Scaling limits: overhead, limited information sharing
- GPGPU needs a lot of research, preliminary experiments not too encouraging
 - Game parallelization – playout / thread
 - Point parallelization – intersection / thread
Aesthetically Pleasing Play

- Computers like to play “strange-looking” moves
- Unclear if solving these problems would improve win rate
- Playing opening moves very far from the edge
- Playing suboptimal moves at the game end when win is secured
Abstract Understanding

- Useful since simulations cannot be deep enough to assess true values of some aspects
- E.g. solidness of territory and groups, thickness value, ko fights status, latent aji
- Maybe ManyFaces does it to a degree, no published results; can be obsoleted by narrow sequences solution
- Describe point/chain dynamics as polynomial system (nice prediction results, in research – Wolf, 2009 preprint)
Thank you!

pasky@ucw.cz
http://pasky.or.cz/go/
http://senseis.xmp.net/
http://gokgs.com/
http://computer-go.org/
http://www.citeulike.org/group/5884/library