
Lambda calculus I 1

Lambda calculus

Petr �těpánek
Department of Theoretical Computer Science

and Mathematical Logic
Charles University, Prague

Based on material provided by H. P. Barendregt

Lambda calculus I 2

Alonzo Church 1932

Haskell B Curry 1935-1981

Dana S. Scott 1969

Lambda calculus I 3

The functional computational model

A functional program - an expression E

Rule

Reduction

Output E*

´PP →

]'[][PEPE →

Lambda calculus I 4

Example
)()()(326332658 ∗+∗→∗+∗−

)(663 +∗→
123 ∗→

36→

)()()()(665832658 +∗−→∗+∗−
1258 ∗−→)(

123 ∗→
36→

Lambda calculus I 1

Lambda calculus

Petr �těpánek
Department of Theoretical Computer Science

and Mathematical Logic
Charles University, Prague

Based on material provided by H. P. Barendregt

Lambda calculus I 2

Alonzo Church 1932

Haskell B Curry 1935-1981

Dana S. Scott 1969

Lambda calculus I 3

The functional computational model

A functional program - an expression E

Rule

Reduction

Output E*

´PP →

]'[][PEPE →

Lambda calculus I 4

Example
)()()(326332658 ∗+∗→∗+∗−

)(663 +∗→
123 ∗→

36→

)()()()(665832658 +∗−→∗+∗−
1258 ∗−→)(

123 ∗→
36→

Lambda calculus I 1

Lambda calculus

Petr �těpánek
Department of Theoretical Computer Science

and Mathematical Logic
Charles University, Prague

Based on material provided by H. P. Barendregt

Lambda calculus I 2

Alonzo Church 1932

Haskell B Curry 1935-1981

Dana S. Scott 1969

Lambda calculus I 3

The functional computational model

A functional program - an expression E

Rule

Reduction

Output E*

´PP →

]'[][PEPE →

Lambda calculus I 4

Example
)()()(326332658 ∗+∗→∗+∗−

)(663 +∗→
123 ∗→

36→

)()()()(665832658 +∗−→∗+∗−
1258 ∗−→)(

123 ∗→
36→

Lambda calculus I 1

Lambda calculus

Petr �těpánek
Department of Theoretical Computer Science

and Mathematical Logic
Charles University, Prague

Based on material provided by H. P. Barendregt

Lambda calculus I 2

Alonzo Church 1932

Haskell B Curry 1935-1981

Dana S. Scott 1969

Lambda calculus I 3

The functional computational model

A functional program - an expression E

Rule

Reduction

Output E*

´PP →

]'[][PEPE →

Lambda calculus I 4

Example
)()()(326332658 ∗+∗→∗+∗−

)(663 +∗→
123 ∗→

36→

)()()()(665832658 +∗−→∗+∗−
1258 ∗−→)(

123 ∗→
36→

Lambda calculus I 5

Lambda Calculus

Part I
Untyped calculus

Lambda calculus I 6

Conversion

Application
The data (expression) F considered as an algorithm are
applied to the data A considered as input. Notation

(FA)

Lambda calculus I 7

Abstraction

Let M[x] be an expression possibly depending on a
variable x , then

λx.M[x]

denotes the map

x M[x]a

Lambda calculus I 8

Example

52332xx =+=+).(λλλλ

]:[])[.(NxMNxMx ==λλλλ(β)

The left-hand side of (β) is called redex and the right-
hand side is called contractum.

Lambda calculus I 5

Lambda Calculus

Part I
Untyped calculus

Lambda calculus I 6

Conversion

Application
The data (expression) F considered as an algorithm are
applied to the data A considered as input. Notation

(FA)

Lambda calculus I 7

Abstraction

Let M[x] be an expression possibly depending on a
variable x , then

λx.M[x]

denotes the map

x M[x]a

Lambda calculus I 8

Example

52332xx =+=+).(λλλλ

]:[])[.(NxMNxMx ==λλλλ(β)

The left-hand side of (β) is called redex and the right-
hand side is called contractum.

Lambda calculus I 5

Lambda Calculus

Part I
Untyped calculus

Lambda calculus I 6

Conversion

Application
The data (expression) F considered as an algorithm are
applied to the data A considered as input. Notation

(FA)

Lambda calculus I 7

Abstraction

Let M[x] be an expression possibly depending on a
variable x , then

λx.M[x]

denotes the map

x M[x]a

Lambda calculus I 8

Example

52332xx =+=+).(λλλλ

]:[])[.(NxMNxMx ==λλλλ(β)

The left-hand side of (β) is called redex and the right-
hand side is called contractum.

Lambda calculus I 5

Lambda Calculus

Part I
Untyped calculus

Lambda calculus I 6

Conversion

Application
The data (expression) F considered as an algorithm are
applied to the data A considered as input. Notation

(FA)

Lambda calculus I 7

Abstraction

Let M[x] be an expression possibly depending on a
variable x , then

λx.M[x]

denotes the map

x M[x]a

Lambda calculus I 8

Example

52332xx =+=+).(λλλλ

]:[])[.(NxMNxMx ==λλλλ(β)

The left-hand side of (β) is called redex and the right-
hand side is called contractum.

Lambda calculus I 9

x.x)y.Ny)((N]:x.x)[xy.xy)((λλλλλλλλλλλλλλλλ ==

Free and bound variables
Abstraction is said to bind the free variables in M.
Substitution [x:=N] is only performed in the free
occurences of x:

Lambda calculus I 10

Functions of several arguments
can be obtained by iteration of application.

),(yxfIf we have

Put

x

x

FxF
yxfyF

.
),(.

λλλλ
λλλλ

=
=

then
),()(yxfyFyFx x == (1)

Lambda calculus I 11

The equation (1) shows that it is convenient to associate
parentheses to the left for iterated application:

n21 MMFM ... denotes))...)(...((n21 MMFM

then (1) becomes

),(yxfFxy =

Lambda calculus I 12

On the other hand it is convenient to use association parentheses
to the right for the iterated abstraction

))...))...(..(...((
)...(....

,.

,

n21n21

n21n21

xxxfxxx
xxxfxxx

λλλλλλλλλλλλ
λλλλ

Then we have for F defined above

),(. yxfxyF λλλλ=
and (1) becomes

),()),(.(yxfxyyxfxy =λλλλ

denotes

Lambda calculus I 9

x.x)y.Ny)((N]:x.x)[xy.xy)((λλλλλλλλλλλλλλλλ ==

Free and bound variables
Abstraction is said to bind the free variables in M.
Substitution [x:=N] is only performed in the free
occurences of x:

Lambda calculus I 10

Functions of several arguments
can be obtained by iteration of application.

),(yxfIf we have

Put

x

x

FxF
yxfyF

.
),(.

λλλλ
λλλλ

=
=

then
),()(yxfyFyFx x == (1)

Lambda calculus I 11

The equation (1) shows that it is convenient to associate
parentheses to the left for iterated application:

n21 MMFM ... denotes))...)(...((n21 MMFM

then (1) becomes

),(yxfFxy =

Lambda calculus I 12

On the other hand it is convenient to use association parentheses
to the right for the iterated abstraction

))...))...(..(...((
)...(....

,.

,

n21n21

n21n21

xxxfxxx
xxxfxxx

λλλλλλλλλλλλ
λλλλ

Then we have for F defined above

),(. yxfxyF λλλλ=
and (1) becomes

),()),(.(yxfxyyxfxy =λλλλ

denotes

Lambda calculus I 9

x.x)y.Ny)((N]:x.x)[xy.xy)((λλλλλλλλλλλλλλλλ ==

Free and bound variables
Abstraction is said to bind the free variables in M.
Substitution [x:=N] is only performed in the free
occurences of x:

Lambda calculus I 10

Functions of several arguments
can be obtained by iteration of application.

),(yxfIf we have

Put

x

x

FxF
yxfyF

.
),(.

λλλλ
λλλλ

=
=

then
),()(yxfyFyFx x == (1)

Lambda calculus I 11

The equation (1) shows that it is convenient to associate
parentheses to the left for iterated application:

n21 MMFM ... denotes))...)(...((n21 MMFM

then (1) becomes

),(yxfFxy =

Lambda calculus I 12

On the other hand it is convenient to use association parentheses
to the right for the iterated abstraction

))...))...(..(...((
)...(....

,.

,

n21n21

n21n21

xxxfxxx
xxxfxxx

λλλλλλλλλλλλ
λλλλ

Then we have for F defined above

),(. yxfxyF λλλλ=
and (1) becomes

),()),(.(yxfxyyxfxy =λλλλ

denotes

Lambda calculus I 9

x.x)y.Ny)((N]:x.x)[xy.xy)((λλλλλλλλλλλλλλλλ ==

Free and bound variables
Abstraction is said to bind the free variables in M.
Substitution [x:=N] is only performed in the free
occurences of x:

Lambda calculus I 10

Functions of several arguments
can be obtained by iteration of application.

),(yxfIf we have

Put

x

x

FxF
yxfyF

.
),(.

λλλλ
λλλλ

=
=

then
),()(yxfyFyFx x == (1)

Lambda calculus I 11

The equation (1) shows that it is convenient to associate
parentheses to the left for iterated application:

n21 MMFM ... denotes))...)(...((n21 MMFM

then (1) becomes

),(yxfFxy =

Lambda calculus I 12

On the other hand it is convenient to use association parentheses
to the right for the iterated abstraction

))...))...(..(...((
)...(....

,.

,

n21n21

n21n21

xxxfxxx
xxxfxxx

λλλλλλλλλλλλ
λλλλ

Then we have for F defined above

),(. yxfxyF λλλλ=
and (1) becomes

),()),(.(yxfxyyxfxy =λλλλ

denotes

Lambda calculus I 13

Formal description of lambda calculus

The set of lambda terms Λ is built up from infinite
sets of constants and variables using application and
abstraction.

,...}",',{ cccC = ,...}",',{ vvvV =

ΛΛΛΛ∈⇒∈ cCc ΛΛΛΛ∈⇒∈ xVx

ΛΛΛΛΛΛΛΛ ∈⇒∈)(, MNNM
ΛΛΛΛλλλλΛΛΛΛ ∈⇒∈∈).(, MxVxM

Lambda calculus I 14

ΛΛΛΛλλλλΛΛΛΛΛΛΛΛΛΛΛΛ VVC |||=

Example

v)(vc))((vcvλλλλ)))(('(vcvv λλλλ)'))(((vvcvλλλλ

Description by abstract syntax

are Λ terms.

Lambda calculus I 15

The set FV(M) of free variables of M

}{)(xxFV =)()()(NFVMFVMNFV ∪=

}{)().(xMFVMxFV −=λλλλ

M is a closed λ-term if

The set of closed λ-terms is denoted .0ΛΛΛΛ

0MFV =)(

Lambda calculus I 16

Lambda calculus as a theory of equation

The principal axiom scheme

for all

)(ββββ]:[).(NxMNMx ==λλλλ

., ΛΛΛΛ∈∈∈∈NM

Lambda calculus I 13

Formal description of lambda calculus

The set of lambda terms Λ is built up from infinite
sets of constants and variables using application and
abstraction.

,...}",',{ cccC = ,...}",',{ vvvV =

ΛΛΛΛ∈⇒∈ cCc ΛΛΛΛ∈⇒∈ xVx

ΛΛΛΛΛΛΛΛ ∈⇒∈)(, MNNM
ΛΛΛΛλλλλΛΛΛΛ ∈⇒∈∈).(, MxVxM

Lambda calculus I 14

ΛΛΛΛλλλλΛΛΛΛΛΛΛΛΛΛΛΛ VVC |||=

Example

v)(vc))((vcvλλλλ)))(('(vcvv λλλλ)'))(((vvcvλλλλ

Description by abstract syntax

are Λ terms.

Lambda calculus I 15

The set FV(M) of free variables of M

}{)(xxFV =)()()(NFVMFVMNFV ∪=

}{)().(xMFVMxFV −=λλλλ

M is a closed λ-term if

The set of closed λ-terms is denoted .0ΛΛΛΛ

0MFV =)(

Lambda calculus I 16

Lambda calculus as a theory of equation

The principal axiom scheme

for all

)(ββββ]:[).(NxMNMx ==λλλλ

., ΛΛΛΛ∈∈∈∈NM

Lambda calculus I 13

Formal description of lambda calculus

The set of lambda terms Λ is built up from infinite
sets of constants and variables using application and
abstraction.

,...}",',{ cccC = ,...}",',{ vvvV =

ΛΛΛΛ∈⇒∈ cCc ΛΛΛΛ∈⇒∈ xVx

ΛΛΛΛΛΛΛΛ ∈⇒∈)(, MNNM
ΛΛΛΛλλλλΛΛΛΛ ∈⇒∈∈).(, MxVxM

Lambda calculus I 14

ΛΛΛΛλλλλΛΛΛΛΛΛΛΛΛΛΛΛ VVC |||=

Example

v)(vc))((vcvλλλλ)))(('(vcvv λλλλ)'))(((vvcvλλλλ

Description by abstract syntax

are Λ terms.

Lambda calculus I 15

The set FV(M) of free variables of M

}{)(xxFV =)()()(NFVMFVMNFV ∪=

}{)().(xMFVMxFV −=λλλλ

M is a closed λ-term if

The set of closed λ-terms is denoted .0ΛΛΛΛ

0MFV =)(

Lambda calculus I 16

Lambda calculus as a theory of equation

The principal axiom scheme

for all

)(ββββ]:[).(NxMNMx ==λλλλ

., ΛΛΛΛ∈∈∈∈NM

Lambda calculus I 13

Formal description of lambda calculus

The set of lambda terms Λ is built up from infinite
sets of constants and variables using application and
abstraction.

,...}",',{ cccC = ,...}",',{ vvvV =

ΛΛΛΛ∈⇒∈ cCc ΛΛΛΛ∈⇒∈ xVx

ΛΛΛΛΛΛΛΛ ∈⇒∈)(, MNNM
ΛΛΛΛλλλλΛΛΛΛ ∈⇒∈∈).(, MxVxM

Lambda calculus I 14

ΛΛΛΛλλλλΛΛΛΛΛΛΛΛΛΛΛΛ VVC |||=

Example

v)(vc))((vcvλλλλ)))(('(vcvv λλλλ)'))(((vvcvλλλλ

Description by abstract syntax

are Λ terms.

Lambda calculus I 15

The set FV(M) of free variables of M

}{)(xxFV =)()()(NFVMFVMNFV ∪=

}{)().(xMFVMxFV −=λλλλ

M is a closed λ-term if

The set of closed λ-terms is denoted .0ΛΛΛΛ

0MFV =)(

Lambda calculus I 16

Lambda calculus as a theory of equation

The principal axiom scheme

for all

)(ββββ]:[).(NxMNMx ==λλλλ

., ΛΛΛΛ∈∈∈∈NM

Lambda calculus I 17

)(ξξξξ−rule ´).().(´ MxMxMM λλλλλλλλ =⇒=

´´ ZMZMMM =⇒=

ZMMZMM ´´ =⇒=

MNNM =⇒=
MM =

The logical axioms and rules

LMLNNM =⇒== ,

Lambda calculus I 18

If NM =

NM =−|λλλλ

or just say that M and N are β-convertible.

denotes that M and N are the same term
or can be obtained from each other by renaming bound
variables.

NM ≡

we write
is provable from the axioms and rules

Lambda calculus I 19

Examples

zyxzyx).().(λλλλλλλλ ≡ zyxzxxzyyzxx).().().().(λλλλλλλλλλλλλλλλ ≡/≡

An alternative

]:)[.().()(yxMyMx == λλλλλλλλαααα y does not occur in M.

Name-free notation

)()..(21xyyx λλλλλλλλλλλλλλλλ is denoted by

Lambda calculus I 20

Development of the theory
standard combinators

xxyKxxI .. λλλλλλλλ ≡≡

)(..* yzxzxyzSyxyK λλλλ≡≡≡≡λλλλ≡≡≡≡

We have

)(* NLMLSMNLNMNK
MKMNMIM
==
==

Lambda calculus I 17

)(ξξξξ−rule ´).().(´ MxMxMM λλλλλλλλ =⇒=

´´ ZMZMMM =⇒=

ZMMZMM ´´ =⇒=

MNNM =⇒=
MM =

The logical axioms and rules

LMLNNM =⇒== ,

Lambda calculus I 18

If NM =

NM =−|λλλλ

or just say that M and N are β-convertible.

denotes that M and N are the same term
or can be obtained from each other by renaming bound
variables.

NM ≡

we write
is provable from the axioms and rules

Lambda calculus I 19

Examples

zyxzyx).().(λλλλλλλλ ≡ zyxzxxzyyzxx).().().().(λλλλλλλλλλλλλλλλ ≡/≡

An alternative

]:)[.().()(yxMyMx == λλλλλλλλαααα y does not occur in M.

Name-free notation

)()..(21xyyx λλλλλλλλλλλλλλλλ is denoted by

Lambda calculus I 20

Development of the theory
standard combinators

xxyKxxI .. λλλλλλλλ ≡≡

)(..* yzxzxyzSyxyK λλλλ≡≡≡≡λλλλ≡≡≡≡

We have

)(* NLMLSMNLNMNK
MKMNMIM
==
==

Lambda calculus I 17

)(ξξξξ−rule ´).().(´ MxMxMM λλλλλλλλ =⇒=

´´ ZMZMMM =⇒=

ZMMZMM ´´ =⇒=

MNNM =⇒=
MM =

The logical axioms and rules

LMLNNM =⇒== ,

Lambda calculus I 18

If NM =

NM =−|λλλλ

or just say that M and N are β-convertible.

denotes that M and N are the same term
or can be obtained from each other by renaming bound
variables.

NM ≡

we write
is provable from the axioms and rules

Lambda calculus I 19

Examples

zyxzyx).().(λλλλλλλλ ≡ zyxzxxzyyzxx).().().().(λλλλλλλλλλλλλλλλ ≡/≡

An alternative

]:)[.().()(yxMyMx == λλλλλλλλαααα y does not occur in M.

Name-free notation

)()..(21xyyx λλλλλλλλλλλλλλλλ is denoted by

Lambda calculus I 20

Development of the theory
standard combinators

xxyKxxI .. λλλλλλλλ ≡≡

)(..* yzxzxyzSyxyK λλλλ≡≡≡≡λλλλ≡≡≡≡

We have

)(* NLMLSMNLNMNK
MKMNMIM
==
==

Lambda calculus I 17

)(ξξξξ−rule ´).().(´ MxMxMM λλλλλλλλ =⇒=

´´ ZMZMMM =⇒=

ZMMZMM ´´ =⇒=

MNNM =⇒=
MM =

The logical axioms and rules

LMLNNM =⇒== ,

Lambda calculus I 18

If NM =

NM =−|λλλλ

or just say that M and N are β-convertible.

denotes that M and N are the same term
or can be obtained from each other by renaming bound
variables.

NM ≡

we write
is provable from the axioms and rules

Lambda calculus I 19

Examples

zyxzyx).().(λλλλλλλλ ≡ zyxzxxzyyzxx).().().().(λλλλλλλλλλλλλλλλ ≡/≡

An alternative

]:)[.().()(yxMyMx == λλλλλλλλαααα y does not occur in M.

Name-free notation

)()..(21xyyx λλλλλλλλλλλλλλλλ is denoted by

Lambda calculus I 20

Development of the theory
standard combinators

xxyKxxI .. λλλλλλλλ ≡≡

)(..* yzxzxyzSyxyK λλλλ≡≡≡≡λλλλ≡≡≡≡

We have

)(* NLMLSMNLNMNK
MKMNMIM
==
==

Lambda calculus I 21

Fixed Point Theorem

(i) For every there is an such that

)(XFXXF =∃∀

ΛΛΛΛ∈XΛΛΛΛ∈F

XFX =−|λλλλ

(ii) There is a fixed point combinator

Y

such that

))(.))((..(xxfxxxfxf λλλλλλλλλλλλ≡

YFYFFF =∀)(

Lambda calculus I 22

Proof. (i) Define and)(. xxFxW λλλλ≡ WWX =

FXWWFWxxFxWWX ≡=≡≡)())(.(λλλλ

(ii) By the proof of (i)

Then

Lambda calculus I 23

A term C[f,x] possibly containing the displayed
variables is called a context.

Context lemma.
Given a context C[f,x], we have

],[XFCFXXF =∀∃

Where C[F,X] is the result of the substitution

C[f,x][f:=F][x:=X]

Lambda calculus I 24

Proof.

]).,[.(
]),[.(

],[.
],[],[

xfCfxYF
FxfCfxF

xFCxF
xFCFxXFCFXX

λλλλ====⇐⇐⇐⇐
λλλλ====⇐⇐⇐⇐
λλλλ====⇐⇐⇐⇐
====⇐⇐⇐⇐====∀∀∀∀

Lambda calculus I 21

Fixed Point Theorem

(i) For every there is an such that

)(XFXXF =∃∀

ΛΛΛΛ∈XΛΛΛΛ∈F

XFX =−|λλλλ

(ii) There is a fixed point combinator

Y

such that

))(.))((..(xxfxxxfxf λλλλλλλλλλλλ≡

YFYFFF =∀)(

Lambda calculus I 22

Proof. (i) Define and)(. xxFxW λλλλ≡ WWX =

FXWWFWxxFxWWX ≡=≡≡)())(.(λλλλ

(ii) By the proof of (i)

Then

Lambda calculus I 23

A term C[f,x] possibly containing the displayed
variables is called a context.

Context lemma.
Given a context C[f,x], we have

],[XFCFXXF =∀∃

Where C[F,X] is the result of the substitution

C[f,x][f:=F][x:=X]

Lambda calculus I 24

Proof.

]).,[.(
]),[.(

],[.
],[],[

xfCfxYF
FxfCfxF

xFCxF
xFCFxXFCFXX

λλλλ====⇐⇐⇐⇐
λλλλ====⇐⇐⇐⇐
λλλλ====⇐⇐⇐⇐
====⇐⇐⇐⇐====∀∀∀∀

Lambda calculus I 21

Fixed Point Theorem

(i) For every there is an such that

)(XFXXF =∃∀

ΛΛΛΛ∈XΛΛΛΛ∈F

XFX =−|λλλλ

(ii) There is a fixed point combinator

Y

such that

))(.))((..(xxfxxxfxf λλλλλλλλλλλλ≡

YFYFFF =∀)(

Lambda calculus I 22

Proof. (i) Define and)(. xxFxW λλλλ≡ WWX =

FXWWFWxxFxWWX ≡=≡≡)())(.(λλλλ

(ii) By the proof of (i)

Then

Lambda calculus I 23

A term C[f,x] possibly containing the displayed
variables is called a context.

Context lemma.
Given a context C[f,x], we have

],[XFCFXXF =∀∃

Where C[F,X] is the result of the substitution

C[f,x][f:=F][x:=X]

Lambda calculus I 24

Proof.

]).,[.(
]),[.(

],[.
],[],[

xfCfxYF
FxfCfxF

xFCxF
xFCFxXFCFXX

λλλλ====⇐⇐⇐⇐
λλλλ====⇐⇐⇐⇐
λλλλ====⇐⇐⇐⇐
====⇐⇐⇐⇐====∀∀∀∀

Lambda calculus I 21

Fixed Point Theorem

(i) For every there is an such that

)(XFXXF =∃∀

ΛΛΛΛ∈XΛΛΛΛ∈F

XFX =−|λλλλ

(ii) There is a fixed point combinator

Y

such that

))(.))((..(xxfxxxfxf λλλλλλλλλλλλ≡

YFYFFF =∀)(

Lambda calculus I 22

Proof. (i) Define and)(. xxFxW λλλλ≡ WWX =

FXWWFWxxFxWWX ≡=≡≡)())(.(λλλλ

(ii) By the proof of (i)

Then

Lambda calculus I 23

A term C[f,x] possibly containing the displayed
variables is called a context.

Context lemma.
Given a context C[f,x], we have

],[XFCFXXF =∀∃

Where C[F,X] is the result of the substitution

C[f,x][f:=F][x:=X]

Lambda calculus I 24

Proof.

]).,[.(
]),[.(

],[.
],[],[

xfCfxYF
FxfCfxF

xFCxF
xFCFxXFCFXX

λλλλ====⇐⇐⇐⇐
λλλλ====⇐⇐⇐⇐
λλλλ====⇐⇐⇐⇐
====⇐⇐⇐⇐====∀∀∀∀

Lambda calculus I 25

Definition
Let be the set of natural numbers and

We define

N .Nn ∈

))(()()(MFFMFMMF n1n0 ≡≡ +

Definition The Church numerals

...,,...,,, n210 cccc
are defined by

)(. xffxc n
n λλλλ≡

Lambda calculus I 26

Lemma (Rosser)

If we define

yxxyA
yzxxyzA

ypqxpxypqA

.
)(.

)(.

exp

*

λλλλ
λλλλ
λλλλ

≡
≡
≡+

We have for every Nmn ∈,

)(exp

**

mnmn

mnmn

mnmn

cccA
cccA
cccA

=
=
= ++

except for m = 0.

Lambda calculus I 27

Definition
Put *KfalseKtrue ≡≡

If a term B is either true or false, we call it Boolean and
for terms P, Q define

if B then P else Q

as BPQ

indeed

QPQKfalsePQPKPQtruePQ =≡=≡ *

Lambda calculus I 28

Definition (ordered pairs)

For terms M,N write

zMNzNM .],[λλλλ=

and call it the ordered pair of M and N.

Indeed

NfalseNMMtrueNM ==],[],[

Lambda calculus I 25

Definition
Let be the set of natural numbers and

We define

N .Nn ∈

))(()()(MFFMFMMF n1n0 ≡≡ +

Definition The Church numerals

...,,...,,, n210 cccc
are defined by

)(. xffxc n
n λλλλ≡

Lambda calculus I 26

Lemma (Rosser)

If we define

yxxyA
yzxxyzA

ypqxpxypqA

.
)(.

)(.

exp

*

λλλλ
λλλλ
λλλλ

≡
≡
≡+

We have for every Nmn ∈,

)(exp

**

mnmn

mnmn

mnmn

cccA
cccA
cccA

=
=
= ++

except for m = 0.

Lambda calculus I 27

Definition
Put *KfalseKtrue ≡≡

If a term B is either true or false, we call it Boolean and
for terms P, Q define

if B then P else Q

as BPQ

indeed

QPQKfalsePQPKPQtruePQ =≡=≡ *

Lambda calculus I 28

Definition (ordered pairs)

For terms M,N write

zMNzNM .],[λλλλ=

and call it the ordered pair of M and N.

Indeed

NfalseNMMtrueNM ==],[],[

Lambda calculus I 25

Definition
Let be the set of natural numbers and

We define

N .Nn ∈

))(()()(MFFMFMMF n1n0 ≡≡ +

Definition The Church numerals

...,,...,,, n210 cccc
are defined by

)(. xffxc n
n λλλλ≡

Lambda calculus I 26

Lemma (Rosser)

If we define

yxxyA
yzxxyzA

ypqxpxypqA

.
)(.

)(.

exp

*

λλλλ
λλλλ
λλλλ

≡
≡
≡+

We have for every Nmn ∈,

)(exp

**

mnmn

mnmn

mnmn

cccA
cccA
cccA

=
=
= ++

except for m = 0.

Lambda calculus I 27

Definition
Put *KfalseKtrue ≡≡

If a term B is either true or false, we call it Boolean and
for terms P, Q define

if B then P else Q

as BPQ

indeed

QPQKfalsePQPKPQtruePQ =≡=≡ *

Lambda calculus I 28

Definition (ordered pairs)

For terms M,N write

zMNzNM .],[λλλλ=

and call it the ordered pair of M and N.

Indeed

NfalseNMMtrueNM ==],[],[

Lambda calculus I 25

Definition
Let be the set of natural numbers and

We define

N .Nn ∈

))(()()(MFFMFMMF n1n0 ≡≡ +

Definition The Church numerals

...,,...,,, n210 cccc
are defined by

)(. xffxc n
n λλλλ≡

Lambda calculus I 26

Lemma (Rosser)

If we define

yxxyA
yzxxyzA

ypqxpxypqA

.
)(.

)(.

exp

*

λλλλ
λλλλ
λλλλ

≡
≡
≡+

We have for every Nmn ∈,

)(exp

**

mnmn

mnmn

mnmn

cccA
cccA
cccA

=
=
= ++

except for m = 0.

Lambda calculus I 27

Definition
Put *KfalseKtrue ≡≡

If a term B is either true or false, we call it Boolean and
for terms P, Q define

if B then P else Q

as BPQ

indeed

QPQKfalsePQPKPQtruePQ =≡=≡ *

Lambda calculus I 28

Definition (ordered pairs)

For terms M,N write

zMNzNM .],[λλλλ=

and call it the ordered pair of M and N.

Indeed

NfalseNMMtrueNM ==],[],[

Lambda calculus I 29

     ],[, nfalse1nI0 ≡+≡

Definition (numerals)

For natural number n define

Lambda calculus I 30

Lemma (successor, predecessor, test for zero)

There are combinators zeroPS ,, −+

such that for all Nn ∈

one has

       
    false1nzerotrue0zero

n1nP1nnS
=+=

=++= −+

Lambda calculus I 31

xtruexzero
falsexxP

xfalsexS

.
.

],.[

λλλλ
λλλλ

λλλλ

≡
≡−
≡+

Proof. Put

Lambda calculus I 32

Definition
A function of p arguments is called
λ-definable if there is a combinator F such that

NNf p →:

In this case, we say that f is λ-defined by F.

     )...(, p1p1 nnfnnF =K

Lambda calculus I 29

     ],[, nfalse1nI0 ≡+≡

Definition (numerals)

For natural number n define

Lambda calculus I 30

Lemma (successor, predecessor, test for zero)

There are combinators zeroPS ,, −+

such that for all Nn ∈

one has

       
    false1nzerotrue0zero

n1nP1nnS
=+=

=++= −+

Lambda calculus I 31

xtruexzero
falsexxP

xfalsexS

.
.

],.[

λλλλ
λλλλ

λλλλ

≡
≡−
≡+

Proof. Put

Lambda calculus I 32

Definition
A function of p arguments is called
λ-definable if there is a combinator F such that

NNf p →:

In this case, we say that f is λ-defined by F.

     )...(, p1p1 nnfnnF =K

Lambda calculus I 29

     ],[, nfalse1nI0 ≡+≡

Definition (numerals)

For natural number n define

Lambda calculus I 30

Lemma (successor, predecessor, test for zero)

There are combinators zeroPS ,, −+

such that for all Nn ∈

one has

       
    false1nzerotrue0zero

n1nP1nnS
=+=

=++= −+

Lambda calculus I 31

xtruexzero
falsexxP

xfalsexS

.
.

],.[

λλλλ
λλλλ

λλλλ

≡
≡−
≡+

Proof. Put

Lambda calculus I 32

Definition
A function of p arguments is called
λ-definable if there is a combinator F such that

NNf p →:

In this case, we say that f is λ-defined by F.

     )...(, p1p1 nnfnnF =K

Lambda calculus I 29

     ],[, nfalse1nI0 ≡+≡

Definition (numerals)

For natural number n define

Lambda calculus I 30

Lemma (successor, predecessor, test for zero)

There are combinators zeroPS ,, −+

such that for all Nn ∈

one has

       
    false1nzerotrue0zero

n1nP1nnS
=+=

=++= −+

Lambda calculus I 31

xtruexzero
falsexxP

xfalsexS

.
.

],.[

λλλλ
λλλλ

λλλλ

≡
≡−
≡+

Proof. Put

Lambda calculus I 32

Definition
A function of p arguments is called
λ-definable if there is a combinator F such that

NNf p →:

In this case, we say that f is λ-defined by F.

     )...(, p1p1 nnfnnF =K

Lambda calculus I 33

Theorem. All recursive functions are λ-definable.

Idea. It can be shown that all basic functions of the class of all
recursive functions are λ-definable, that the class of all λ-
definable functions is closed under composition, primitive
recursion and minimalization.

Lambda calculus I 34

a) Basic functions

0nZ1nnS
ni1xxxU in1

i
n

=+=

≤≤=
+)()(

),...,(

Put

 0xZxfalsexSxxxU in1
i
n .],.[...., λλλλλλλλλλλλ ≡≡≡ + .

Lambda calculus I 35

b) Operations.
b1) Composition. Let be functions λ-defined
by respectively. Then the function

m1 hhg ,,, K

m1 HHG ,,, K

))(,),(()(nhnhgnf m1
r

K
rr ====

is λ-defined by

).()(. xHxHGxF m1
r

K
rrλλλλ≡≡≡≡

Lambda calculus I 36

b2) primitive recursion

Let f be defined by

),),,((),(),(),(nknkfhn1kfngn0f rrrrr ====++++====

Let g, h be λ-defined by G, H respectively. An
intuitive algorithm to compute consists of
the following steps:

� test whether k = 0

� if yes, then return

� if no, then compute

),(nkf r

)(ng r

),),,((n1kn1kfh rr −−−−−−−−

Lambda calculus I 33

Theorem. All recursive functions are λ-definable.

Idea. It can be shown that all basic functions of the class of all
recursive functions are λ-definable, that the class of all λ-
definable functions is closed under composition, primitive
recursion and minimalization.

Lambda calculus I 34

a) Basic functions

0nZ1nnS
ni1xxxU in1

i
n

=+=

≤≤=
+)()(

),...,(

Put

 0xZxfalsexSxxxU in1
i
n .],.[...., λλλλλλλλλλλλ ≡≡≡ + .

Lambda calculus I 35

b) Operations.
b1) Composition. Let be functions λ-defined
by respectively. Then the function

m1 hhg ,,, K

m1 HHG ,,, K

))(,),(()(nhnhgnf m1
r

K
rr ====

is λ-defined by

).()(. xHxHGxF m1
r

K
rrλλλλ≡≡≡≡

Lambda calculus I 36

b2) primitive recursion

Let f be defined by

),),,((),(),(),(nknkfhn1kfngn0f rrrrr ====++++====

Let g, h be λ-defined by G, H respectively. An
intuitive algorithm to compute consists of
the following steps:

� test whether k = 0

� if yes, then return

� if no, then compute

),(nkf r

)(ng r

),),,((n1kn1kfh rr −−−−−−−−

Lambda calculus I 33

Theorem. All recursive functions are λ-definable.

Idea. It can be shown that all basic functions of the class of all
recursive functions are λ-definable, that the class of all λ-
definable functions is closed under composition, primitive
recursion and minimalization.

Lambda calculus I 34

a) Basic functions

0nZ1nnS
ni1xxxU in1

i
n

=+=

≤≤=
+)()(

),...,(

Put

 0xZxfalsexSxxxU in1
i
n .],.[...., λλλλλλλλλλλλ ≡≡≡ + .

Lambda calculus I 35

b) Operations.
b1) Composition. Let be functions λ-defined
by respectively. Then the function

m1 hhg ,,, K

m1 HHG ,,, K

))(,),(()(nhnhgnf m1
r

K
rr ====

is λ-defined by

).()(. xHxHGxF m1
r

K
rrλλλλ≡≡≡≡

Lambda calculus I 36

b2) primitive recursion

Let f be defined by

),),,((),(),(),(nknkfhn1kfngn0f rrrrr ====++++====

Let g, h be λ-defined by G, H respectively. An
intuitive algorithm to compute consists of
the following steps:

� test whether k = 0

� if yes, then return

� if no, then compute

),(nkf r

)(ng r

),),,((n1kn1kfh rr −−−−−−−−

Lambda calculus I 33

Theorem. All recursive functions are λ-definable.

Idea. It can be shown that all basic functions of the class of all
recursive functions are λ-definable, that the class of all λ-
definable functions is closed under composition, primitive
recursion and minimalization.

Lambda calculus I 34

a) Basic functions

0nZ1nnS
ni1xxxU in1

i
n

=+=

≤≤=
+)()(

),...,(

Put

 0xZxfalsexSxxxU in1
i
n .],.[...., λλλλλλλλλλλλ ≡≡≡ + .

Lambda calculus I 35

b) Operations.
b1) Composition. Let be functions λ-defined
by respectively. Then the function

m1 hhg ,,, K

m1 HHG ,,, K

))(,),(()(nhnhgnf m1
r

K
rr ====

is λ-defined by

).()(. xHxHGxF m1
r

K
rrλλλλ≡≡≡≡

Lambda calculus I 36

b2) primitive recursion

Let f be defined by

),),,((),(),(),(nknkfhn1kfngn0f rrrrr ====++++====

Let g, h be λ-defined by G, H respectively. An
intuitive algorithm to compute consists of
the following steps:

� test whether k = 0

� if yes, then return

� if no, then compute

),(nkf r

)(ng r

),),,((n1kn1kfh rr −−−−−−−−

Lambda calculus I 37

Thus we need a combinator F such that

),,(
))()(() Zero(

yxFD
yxPyxPFHelseyGthenxifyFx

r

rrrr

≡≡≡≡
==== −−−−−−−−

Now such an combinator F can be found by the
Context lemma applied to).,,(yxFD r

Lambda calculus I 38

)())((ySxHelseythenyxGzeroifyxH += rrr

Suppose that g is λ-defined by G, by the Context
lemma there is a term H such that

]),([)(0mngmnf == rr
&& µµµµ 0mngmng =∃∀),(, rr

with

b3) (regular) minimalization

Lambda calculus I 39

Set  .. 0xHxF rrλλλλ= Then F λ-defines f, indeed

    0nHnF rr =

 
  

 
  

 
  




=





=





=

2nH
2

1nH
1

1nH
0

v

r

r

    00nG =r
if

else

if

else

if

else

    01nG =r

    02nG =r

...=

Lambda calculus I 40

The Double Fixed Point Theorem

)(BXYYAXYXYXBA ==∃∃∀∀

Lambda calculus I 37

Thus we need a combinator F such that

),,(
))()(() Zero(

yxFD
yxPyxPFHelseyGthenxifyFx

r

rrrr

≡≡≡≡
==== −−−−−−−−

Now such an combinator F can be found by the
Context lemma applied to).,,(yxFD r

Lambda calculus I 38

)())((ySxHelseythenyxGzeroifyxH += rrr

Suppose that g is λ-defined by G, by the Context
lemma there is a term H such that

]),([)(0mngmnf == rr
&& µµµµ 0mngmng =∃∀),(, rr

with

b3) (regular) minimalization

Lambda calculus I 39

Set  .. 0xHxF rrλλλλ= Then F λ-defines f, indeed

    0nHnF rr =

 
  

 
  

 
  




=





=





=

2nH
2

1nH
1

1nH
0

v

r

r

    00nG =r
if

else

if

else

if

else

    01nG =r

    02nG =r

...=

Lambda calculus I 40

The Double Fixed Point Theorem

)(BXYYAXYXYXBA ==∃∃∀∀

Lambda calculus I 37

Thus we need a combinator F such that

),,(
))()(() Zero(

yxFD
yxPyxPFHelseyGthenxifyFx

r

rrrr

≡≡≡≡
==== −−−−−−−−

Now such an combinator F can be found by the
Context lemma applied to).,,(yxFD r

Lambda calculus I 38

)())((ySxHelseythenyxGzeroifyxH += rrr

Suppose that g is λ-defined by G, by the Context
lemma there is a term H such that

]),([)(0mngmnf == rr
&& µµµµ 0mngmng =∃∀),(, rr

with

b3) (regular) minimalization

Lambda calculus I 39

Set  .. 0xHxF rrλλλλ= Then F λ-defines f, indeed

    0nHnF rr =

 
  

 
  

 
  




=





=





=

2nH
2

1nH
1

1nH
0

v

r

r

    00nG =r
if

else

if

else

if

else

    01nG =r

    02nG =r

...=

Lambda calculus I 40

The Double Fixed Point Theorem

)(BXYYAXYXYXBA ==∃∃∀∀

Lambda calculus I 37

Thus we need a combinator F such that

),,(
))()(() Zero(

yxFD
yxPyxPFHelseyGthenxifyFx

r

rrrr

≡≡≡≡
==== −−−−−−−−

Now such an combinator F can be found by the
Context lemma applied to).,,(yxFD r

Lambda calculus I 38

)())((ySxHelseythenyxGzeroifyxH += rrr

Suppose that g is λ-defined by G, by the Context
lemma there is a term H such that

]),([)(0mngmnf == rr
&& µµµµ 0mngmng =∃∀),(, rr

with

b3) (regular) minimalization

Lambda calculus I 39

Set  .. 0xHxF rrλλλλ= Then F λ-defines f, indeed

    0nHnF rr =

 
  

 
  

 
  




=





=





=

2nH
2

1nH
1

1nH
0

v

r

r

    00nG =r
if

else

if

else

if

else

    01nG =r

    02nG =r

...=

Lambda calculus I 40

The Double Fixed Point Theorem

)(BXYYAXYXYXBA ==∃∃∀∀

Lambda calculus I 41

By the simple Fixed Point Theorem there exists a
Z such that

ZFZ =

)])((),)((.[falsextruexBfalsextruexAxF λλλλ≡

Proof.
Put

Lambda calculus I 42

.BXYY =
and similarly

AXYfalseZtrueZAtrueFZtrueZX ≡===))((

Then

falseZYtrueZX ≡≡ ,

Take

Lambda calculus I 43

],,[],,[xFFCxFxFFCxF 21222111 ==

Corollary.

Given contexts there
exist

such that

21ixgfCC ii ,,],,[=≡

21 FF ,

Lambda calculus I 44

Definition (coding λ-terms)

Let be a recursive coding of
ordered pairs of natural numbers. We put

NN 2 →∗∗ :,

(i)
')()()(n1n0 vvvv == +

and similarly we define .)(nc

Lambda calculus I 41

By the simple Fixed Point Theorem there exists a
Z such that

ZFZ =

)])((),)((.[falsextruexBfalsextruexAxF λλλλ≡

Proof.
Put

Lambda calculus I 42

.BXYY =
and similarly

AXYfalseZtrueZAtrueFZtrueZX ≡===))((

Then

falseZYtrueZX ≡≡ ,

Take

Lambda calculus I 43

],,[],,[xFFCxFxFFCxF 21222111 ==

Corollary.

Given contexts there
exist

such that

21ixgfCC ii ,,],,[=≡

21 FF ,

Lambda calculus I 44

Definition (coding λ-terms)

Let be a recursive coding of
ordered pairs of natural numbers. We put

NN 2 →∗∗ :,

(i)
')()()(n1n0 vvvv == +

and similarly we define .)(nc

Lambda calculus I 41

By the simple Fixed Point Theorem there exists a
Z such that

ZFZ =

)])((),)((.[falsextruexBfalsextruexAxF λλλλ≡

Proof.
Put

Lambda calculus I 42

.BXYY =
and similarly

AXYfalseZtrueZAtrueFZtrueZX ≡===))((

Then

falseZYtrueZX ≡≡ ,

Take

Lambda calculus I 43

],,[],,[xFFCxFxFFCxF 21222111 ==

Corollary.

Given contexts there
exist

such that

21ixgfCC ii ,,],,[=≡

21 FF ,

Lambda calculus I 44

Definition (coding λ-terms)

Let be a recursive coding of
ordered pairs of natural numbers. We put

NN 2 →∗∗ :,

(i)
')()()(n1n0 vvvv == +

and similarly we define .)(nc

Lambda calculus I 41

By the simple Fixed Point Theorem there exists a
Z such that

ZFZ =

)])((),)((.[falsextruexBfalsextruexAxF λλλλ≡

Proof.
Put

Lambda calculus I 42

.BXYY =
and similarly

AXYfalseZtrueZAtrueFZtrueZX ≡===))((

Then

falseZYtrueZX ≡≡ ,

Take

Lambda calculus I 43

],,[],,[xFFCxFxFFCxF 21222111 ==

Corollary.

Given contexts there
exist

such that

21ixgfCC ii ,,],,[=≡

21 FF ,

Lambda calculus I 44

Definition (coding λ-terms)

Let be a recursive coding of
ordered pairs of natural numbers. We put

NN 2 →∗∗ :,

(i)
')()()(n1n0 vvvv == +

and similarly we define .)(nc

Lambda calculus I 45

   MM = #

We write

Mx3Mx ,,).(=λλλλNM2MN ,,)(=

n0v n ,)(= n1c n ,)(=# #

(ii)

#

Lambda calculus I 46

Theorem (Kleene)

There is an �interpreter� combinator E for
closed λ-terms without constants such that for
every closed term M without constants, we have

  .MME =

Lambda calculus I 47

Proof (P. de Bruin)

Construct such that for an arbitrary F1E

   
     
   MFEzMxFE

NFEMFEMNFE
xFxFE

zx11

111

1

]:[.(.
))((

==
=

=

λλλλλλλλ

where
   





=
=/

== xnz
xnnF

nF zx]:[
if #

if #

Note that can be written in the form]:[zxF =

  .zFxG
Lambda calculus I 48

By induction on M it follows that

 
       ]:,...,:][:,...,:[mm11nn11

1

cFccFcxFxxFxM
MFE

=====
=

where
)(}...,{ MFVxx n1 = }...,{ m1 cc are the constants in M.

  .MMIE1 =
Now take

.. IEIxExE 11 =≡ λλλλ

Hence for closed M without constants, we have

Lambda calculus I 45

   MM = #

We write

Mx3Mx ,,).(=λλλλNM2MN ,,)(=

n0v n ,)(= n1c n ,)(=# #

(ii)

#

Lambda calculus I 46

Theorem (Kleene)

There is an �interpreter� combinator E for
closed λ-terms without constants such that for
every closed term M without constants, we have

  .MME =

Lambda calculus I 47

Proof (P. de Bruin)

Construct such that for an arbitrary F1E

   
     
   MFEzMxFE

NFEMFEMNFE
xFxFE

zx11

111

1

]:[.(.
))((

==
=

=

λλλλλλλλ

where
   





=
=/

== xnz
xnnF

nF zx]:[
if #

if #

Note that can be written in the form]:[zxF =

  .zFxG
Lambda calculus I 48

By induction on M it follows that

 
       ]:,...,:][:,...,:[mm11nn11

1

cFccFcxFxxFxM
MFE

=====
=

where
)(}...,{ MFVxx n1 = }...,{ m1 cc are the constants in M.

  .MMIE1 =
Now take

.. IEIxExE 11 =≡ λλλλ

Hence for closed M without constants, we have

Lambda calculus I 45

   MM = #

We write

Mx3Mx ,,).(=λλλλNM2MN ,,)(=

n0v n ,)(= n1c n ,)(=# #

(ii)

#

Lambda calculus I 46

Theorem (Kleene)

There is an �interpreter� combinator E for
closed λ-terms without constants such that for
every closed term M without constants, we have

  .MME =

Lambda calculus I 47

Proof (P. de Bruin)

Construct such that for an arbitrary F1E

   
     
   MFEzMxFE

NFEMFEMNFE
xFxFE

zx11

111

1

]:[.(.
))((

==
=

=

λλλλλλλλ

where
   





=
=/

== xnz
xnnF

nF zx]:[
if #

if #

Note that can be written in the form]:[zxF =

  .zFxG
Lambda calculus I 48

By induction on M it follows that

 
       ]:,...,:][:,...,:[mm11nn11

1

cFccFcxFxxFxM
MFE

=====
=

where
)(}...,{ MFVxx n1 = }...,{ m1 cc are the constants in M.

  .MMIE1 =
Now take

.. IEIxExE 11 =≡ λλλλ

Hence for closed M without constants, we have

Lambda calculus I 45

   MM = #

We write

Mx3Mx ,,).(=λλλλNM2MN ,,)(=

n0v n ,)(= n1c n ,)(=# #

(ii)

#

Lambda calculus I 46

Theorem (Kleene)

There is an �interpreter� combinator E for
closed λ-terms without constants such that for
every closed term M without constants, we have

  .MME =

Lambda calculus I 47

Proof (P. de Bruin)

Construct such that for an arbitrary F1E

   
     
   MFEzMxFE

NFEMFEMNFE
xFxFE

zx11

111

1

]:[.(.
))((

==
=

=

λλλλλλλλ

where
   





=
=/

== xnz
xnnF

nF zx]:[
if #

if #

Note that can be written in the form]:[zxF =

  .zFxG
Lambda calculus I 48

By induction on M it follows that

 
       ]:,...,:][:,...,:[mm11nn11

1

cFccFcxFxxFxM
MFE

=====
=

where
)(}...,{ MFVxx n1 = }...,{ m1 cc are the constants in M.

  .MMIE1 =
Now take

.. IEIxExE 11 =≡ λλλλ

Hence for closed M without constants, we have

Lambda calculus I 49

Second Fixed Point Theorem

  XXFXF =∃∀

Lambda calculus I 50

Proof.
By the recursiveness of #, there are recursive
functions AP and Num such that

AP(#M, #N) = # MN Num (n) = #  n

Lambda calculus I 51

    MMNum =

in particular, we have

Let AP and Num be λ-defined by closed terms
AP and Num .

Then

         nnNumMNNMAP ==

Lambda calculus I 52

If we put

 WWXxNumAPxFxW ≡≡))((.λλλλ

then

     
    XFWWF

WNumWAPFWWX
==

=≡))((

Lambda calculus I 49

Second Fixed Point Theorem

  XXFXF =∃∀

Lambda calculus I 50

Proof.
By the recursiveness of #, there are recursive
functions AP and Num such that

AP(#M, #N) = # MN Num (n) = #  n

Lambda calculus I 51

    MMNum =

in particular, we have

Let AP and Num be λ-defined by closed terms
AP and Num .

Then

         nnNumMNNMAP ==

Lambda calculus I 52

If we put

 WWXxNumAPxFxW ≡≡))((.λλλλ

then

     
    XFWWF

WNumWAPFWWX
==

=≡))((

Lambda calculus I 49

Second Fixed Point Theorem

  XXFXF =∃∀

Lambda calculus I 50

Proof.
By the recursiveness of #, there are recursive
functions AP and Num such that

AP(#M, #N) = # MN Num (n) = #  n

Lambda calculus I 51

    MMNum =

in particular, we have

Let AP and Num be λ-defined by closed terms
AP and Num .

Then

         nnNumMNNMAP ==

Lambda calculus I 52

If we put

 WWXxNumAPxFxW ≡≡))((.λλλλ

then

     
    XFWWF

WNumWAPFWWX
==

=≡))((

Lambda calculus I 49

Second Fixed Point Theorem

  XXFXF =∃∀

Lambda calculus I 50

Proof.
By the recursiveness of #, there are recursive
functions AP and Num such that

AP(#M, #N) = # MN Num (n) = #  n

Lambda calculus I 51

    MMNum =

in particular, we have

Let AP and Num be λ-defined by closed terms
AP and Num .

Then

         nnNumMNNMAP ==

Lambda calculus I 52

If we put

 WWXxNumAPxFxW ≡≡))((.λλλλ

then

     
    XFWWF

WNumWAPFWWX
==

=≡))((

Lambda calculus I 53

The following result due to Scott is an
application of the Second Fixed Point
Theorem, which is useful in proving
undecidability results. Its flavor resembles
the well-known Rice�s Theorem on
recursively enumerable sets.

Lambda calculus I 54

Theorem (Scott)
Let be a set of terms such that

(i) A is nontrivial, i.e. A 0 and A

(ii) A is closed under = that is

Then A is not recursive, more precisely, the set

#A =

is not recursive.

ΛΛΛΛ⊆A

=/ ΛΛΛΛ=/

ANNMAM ∈⇒=∈ ,

}|{ ΛΛΛΛ∈MM#

Lambda calculus I 55

Proof

by contradiction. Suppose that A is recursive. It
follows that there is a closed λ-term F such that

   0MFAM =⇔∈    1MFAM =⇔∉

Take Let., AMAM 10 ∉∈

01 MelseMthenFxZeroifGx)(=

Lambda calculus I 56

By the second Fixed Point Theorem, there is a
term M such that

  MMG =
thus

  AMGMAM ∉=⇔∈

a contradiction.

then

  AMMGAM 1 ∉=⇔∈

  AMMGAM 0 ∈=⇔∉

Lambda calculus I 53

The following result due to Scott is an
application of the Second Fixed Point
Theorem, which is useful in proving
undecidability results. Its flavor resembles
the well-known Rice�s Theorem on
recursively enumerable sets.

Lambda calculus I 54

Theorem (Scott)
Let be a set of terms such that

(i) A is nontrivial, i.e. A 0 and A

(ii) A is closed under = that is

Then A is not recursive, more precisely, the set

#A =

is not recursive.

ΛΛΛΛ⊆A

=/ ΛΛΛΛ=/

ANNMAM ∈⇒=∈ ,

}|{ ΛΛΛΛ∈MM#

Lambda calculus I 55

Proof

by contradiction. Suppose that A is recursive. It
follows that there is a closed λ-term F such that

   0MFAM =⇔∈    1MFAM =⇔∉

Take Let., AMAM 10 ∉∈

01 MelseMthenFxZeroifGx)(=

Lambda calculus I 56

By the second Fixed Point Theorem, there is a
term M such that

  MMG =
thus

  AMGMAM ∉=⇔∈

a contradiction.

then

  AMMGAM 1 ∉=⇔∈

  AMMGAM 0 ∈=⇔∉

Lambda calculus I 53

The following result due to Scott is an
application of the Second Fixed Point
Theorem, which is useful in proving
undecidability results. Its flavor resembles
the well-known Rice�s Theorem on
recursively enumerable sets.

Lambda calculus I 54

Theorem (Scott)
Let be a set of terms such that

(i) A is nontrivial, i.e. A 0 and A

(ii) A is closed under = that is

Then A is not recursive, more precisely, the set

#A =

is not recursive.

ΛΛΛΛ⊆A

=/ ΛΛΛΛ=/

ANNMAM ∈⇒=∈ ,

}|{ ΛΛΛΛ∈MM#

Lambda calculus I 55

Proof

by contradiction. Suppose that A is recursive. It
follows that there is a closed λ-term F such that

   0MFAM =⇔∈    1MFAM =⇔∉

Take Let., AMAM 10 ∉∈

01 MelseMthenFxZeroifGx)(=

Lambda calculus I 56

By the second Fixed Point Theorem, there is a
term M such that

  MMG =
thus

  AMGMAM ∉=⇔∈

a contradiction.

then

  AMMGAM 1 ∉=⇔∈

  AMMGAM 0 ∈=⇔∉

Lambda calculus I 53

The following result due to Scott is an
application of the Second Fixed Point
Theorem, which is useful in proving
undecidability results. Its flavor resembles
the well-known Rice�s Theorem on
recursively enumerable sets.

Lambda calculus I 54

Theorem (Scott)
Let be a set of terms such that

(i) A is nontrivial, i.e. A 0 and A

(ii) A is closed under = that is

Then A is not recursive, more precisely, the set

#A =

is not recursive.

ΛΛΛΛ⊆A

=/ ΛΛΛΛ=/

ANNMAM ∈⇒=∈ ,

}|{ ΛΛΛΛ∈MM#

Lambda calculus I 55

Proof

by contradiction. Suppose that A is recursive. It
follows that there is a closed λ-term F such that

   0MFAM =⇔∈    1MFAM =⇔∉

Take Let., AMAM 10 ∉∈

01 MelseMthenFxZeroifGx)(=

Lambda calculus I 56

By the second Fixed Point Theorem, there is a
term M such that

  MMG =
thus

  AMGMAM ∉=⇔∈

a contradiction.

then

  AMMGAM 1 ∉=⇔∈

  AMMGAM 0 ∈=⇔∉

Lambda calculus I 57

Definition
(i) We say that a term M is in normal form if M has no
part (redex) of the form

QPx).(λλλλ

(ii) We say that a term M has a normal form if there is a
term N in normal form such that M = N.

Lambda calculus I 58

If M is in normal form, no rule is applicable to M.

Example
I is in normal form, IK has a normal form.

Both types of numerals are in normal form etc.

Lambda calculus I 59

ΩΩΩΩbut the contractum remains .

).)(.(xxxxxx λλ

Note that the term

).)(.(xxxxxx λλλλλλλλΩΩΩΩ ≡

has no normal form. The β-rule is applicable to

the redex

Lambda calculus I 60

Theorem (Church, Scott)

The set
}|{ form normal aMMNF ====

is not recursive.

This result was first proved by Church (1936) by a
different method. Historically it was the first example
of noncomputable property.

Lambda calculus I 57

Definition
(i) We say that a term M is in normal form if M has no
part (redex) of the form

QPx).(λλλλ

(ii) We say that a term M has a normal form if there is a
term N in normal form such that M = N.

Lambda calculus I 58

If M is in normal form, no rule is applicable to M.

Example
I is in normal form, IK has a normal form.

Both types of numerals are in normal form etc.

Lambda calculus I 59

ΩΩΩΩbut the contractum remains .

).)(.(xxxxxx λλ

Note that the term

).)(.(xxxxxx λλλλλλλλΩΩΩΩ ≡

has no normal form. The β-rule is applicable to

the redex

Lambda calculus I 60

Theorem (Church, Scott)

The set
}|{ form normal aMMNF ====

is not recursive.

This result was first proved by Church (1936) by a
different method. Historically it was the first example
of noncomputable property.

Lambda calculus I 57

Definition
(i) We say that a term M is in normal form if M has no
part (redex) of the form

QPx).(λλλλ

(ii) We say that a term M has a normal form if there is a
term N in normal form such that M = N.

Lambda calculus I 58

If M is in normal form, no rule is applicable to M.

Example
I is in normal form, IK has a normal form.

Both types of numerals are in normal form etc.

Lambda calculus I 59

ΩΩΩΩbut the contractum remains .

).)(.(xxxxxx λλ

Note that the term

).)(.(xxxxxx λλλλλλλλΩΩΩΩ ≡

has no normal form. The β-rule is applicable to

the redex

Lambda calculus I 60

Theorem (Church, Scott)

The set
}|{ form normal aMMNF ====

is not recursive.

This result was first proved by Church (1936) by a
different method. Historically it was the first example
of noncomputable property.

Lambda calculus I 57

Definition
(i) We say that a term M is in normal form if M has no
part (redex) of the form

QPx).(λλλλ

(ii) We say that a term M has a normal form if there is a
term N in normal form such that M = N.

Lambda calculus I 58

If M is in normal form, no rule is applicable to M.

Example
I is in normal form, IK has a normal form.

Both types of numerals are in normal form etc.

Lambda calculus I 59

ΩΩΩΩbut the contractum remains .

).)(.(xxxxxx λλ

Note that the term

).)(.(xxxxxx λλλλλλλλΩΩΩΩ ≡

has no normal form. The β-rule is applicable to

the redex

Lambda calculus I 60

Theorem (Church, Scott)

The set
}|{ form normal aMMNF ====

is not recursive.

This result was first proved by Church (1936) by a
different method. Historically it was the first example
of noncomputable property.

Lambda calculus I 61

Proof.
NF is closed under equality. We have shown that it is
nonempty. We have noted that the term

).)(.(xxxxxx λλλλλλλλΩΩΩΩ ≡

has no normal form. Thus NF and hence it is
nontrivial. The rest follows from the Church, Scott
theorem.

ΛΛΛΛ=/

Lambda calculus I 62

The semantics of λ-calculus

� Semantics of a language L gives a �meaning� to the
expressions in L. This can be given essentially in two
ways.

� By providing a way in which expression of L are used.
This gives so called operational semantics of L.

� By translating the expressions of L into expressions of
another language that is already known. In this way we
obtain a so called denotational semantics of L.

Lambda calculus I 63

Operational semantics: reductions and strategies

There is a certain asymetry in the basic rule (β).

1331xx +=+).(λλλλ

The above equality an be interpreted as �3+1 is the result
of computing �, but not vice versa.

This computational aspect will be expressed by writing

31xx).(+λλλλ

1331xx +>>−+).(λλλλ

which reads � reduces to �.31xx).(+λλλλ 13+

Lambda calculus I 64

Definition

A binary relation R on Λ is called

(i) compatible if it is compatible with the two operations of
the λ-calculus

).().(NxRMxNRM
NZRMZNRM
ZNRZMNRM

λλλλλλλλ⇒
⇒
⇒

(ii) a reduction on Λ if it is a compatible reflexive and
transitive relation.

(iii) a congruence on Λ if it is a compatible
equivalence relation.

Lambda calculus I 61

Proof.
NF is closed under equality. We have shown that it is
nonempty. We have noted that the term

).)(.(xxxxxx λλλλλλλλΩΩΩΩ ≡

has no normal form. Thus NF and hence it is
nontrivial. The rest follows from the Church, Scott
theorem.

ΛΛΛΛ=/

Lambda calculus I 62

The semantics of λ-calculus

� Semantics of a language L gives a �meaning� to the
expressions in L. This can be given essentially in two
ways.

� By providing a way in which expression of L are used.
This gives so called operational semantics of L.

� By translating the expressions of L into expressions of
another language that is already known. In this way we
obtain a so called denotational semantics of L.

Lambda calculus I 63

Operational semantics: reductions and strategies

There is a certain asymetry in the basic rule (β).

1331xx +=+).(λλλλ

The above equality an be interpreted as �3+1 is the result
of computing �, but not vice versa.

This computational aspect will be expressed by writing

31xx).(+λλλλ

1331xx +>>−+).(λλλλ

which reads � reduces to �.31xx).(+λλλλ 13+

Lambda calculus I 64

Definition

A binary relation R on Λ is called

(i) compatible if it is compatible with the two operations of
the λ-calculus

).().(NxRMxNRM
NZRMZNRM
ZNRZMNRM

λλλλλλλλ⇒
⇒
⇒

(ii) a reduction on Λ if it is a compatible reflexive and
transitive relation.

(iii) a congruence on Λ if it is a compatible
equivalence relation.

Lambda calculus I 61

Proof.
NF is closed under equality. We have shown that it is
nonempty. We have noted that the term

).)(.(xxxxxx λλλλλλλλΩΩΩΩ ≡

has no normal form. Thus NF and hence it is
nontrivial. The rest follows from the Church, Scott
theorem.

ΛΛΛΛ=/

Lambda calculus I 62

The semantics of λ-calculus

� Semantics of a language L gives a �meaning� to the
expressions in L. This can be given essentially in two
ways.

� By providing a way in which expression of L are used.
This gives so called operational semantics of L.

� By translating the expressions of L into expressions of
another language that is already known. In this way we
obtain a so called denotational semantics of L.

Lambda calculus I 63

Operational semantics: reductions and strategies

There is a certain asymetry in the basic rule (β).

1331xx +=+).(λλλλ

The above equality an be interpreted as �3+1 is the result
of computing �, but not vice versa.

This computational aspect will be expressed by writing

31xx).(+λλλλ

1331xx +>>−+).(λλλλ

which reads � reduces to �.31xx).(+λλλλ 13+

Lambda calculus I 64

Definition

A binary relation R on Λ is called

(i) compatible if it is compatible with the two operations of
the λ-calculus

).().(NxRMxNRM
NZRMZNRM
ZNRZMNRM

λλλλλλλλ⇒
⇒
⇒

(ii) a reduction on Λ if it is a compatible reflexive and
transitive relation.

(iii) a congruence on Λ if it is a compatible
equivalence relation.

Lambda calculus I 61

Proof.
NF is closed under equality. We have shown that it is
nonempty. We have noted that the term

).)(.(xxxxxx λλλλλλλλΩΩΩΩ ≡

has no normal form. Thus NF and hence it is
nontrivial. The rest follows from the Church, Scott
theorem.

ΛΛΛΛ=/

Lambda calculus I 62

The semantics of λ-calculus

� Semantics of a language L gives a �meaning� to the
expressions in L. This can be given essentially in two
ways.

� By providing a way in which expression of L are used.
This gives so called operational semantics of L.

� By translating the expressions of L into expressions of
another language that is already known. In this way we
obtain a so called denotational semantics of L.

Lambda calculus I 63

Operational semantics: reductions and strategies

There is a certain asymetry in the basic rule (β).

1331xx +=+).(λλλλ

The above equality an be interpreted as �3+1 is the result
of computing �, but not vice versa.

This computational aspect will be expressed by writing

31xx).(+λλλλ

1331xx +>>−+).(λλλλ

which reads � reduces to �.31xx).(+λλλλ 13+

Lambda calculus I 64

Definition

A binary relation R on Λ is called

(i) compatible if it is compatible with the two operations of
the λ-calculus

).().(NxRMxNRM
NZRMZNRM
ZNRZMNRM

λλλλλλλλ⇒
⇒
⇒

(ii) a reduction on Λ if it is a compatible reflexive and
transitive relation.

(iii) a congruence on Λ if it is a compatible
equivalence relation.

Lambda calculus I 65

Definition

The binary relations and on Λ are
defined as follows

ββββββββ →>→ , ββββ=

(i) (1)]:[).(NxMNMx =→ββββλλλλ

(2)

).().(NxMxNM
NZMZNM
ZNZMNM

λλλλλλλλ ββββββββ

ββββββββ

ββββββββ

→⇒→

→⇒→

→⇒→

Lambda calculus I 66

MM ββββ→>(ii) (1)

(2) NMNM ββββββββ →>⇒→

(3) LMLNNM ββββββββββββ →>⇒→>→> ,

(iii) (1) NMNM ββββββββ =⇒→>

(2) MNNM ββββββββ ====⇒⇒⇒⇒====

(3) LMLNNM ββββββββββββ =⇒== ,

Lambda calculus I 67

These relations are pronounced as follows

NM ββββ→ reads �M β-reduces to N in one step�

reads � M β-reduces to N �

reads �M is β-convertible to N�

By definition we have

ββββ→ is compatible
is a reduction

ββββ= is a congruence relation

NM ββββ→>→>→>→>

NM ββββ====

ββββ→>→>→>→>

Lambda calculus I 68

Note that is the reflexive transitive closure ofββββ→>

and ββββ= is the equivalence relation generated by .ββββ→

Proposition
NMNM =−⇔= |λλλλββββ

Proof.)(⇒ By induction on the generation of .ββββ=
)(⇐ By induction on the length of proof.

ββββ→→→→

Lambda calculus I 65

Definition

The binary relations and on Λ are
defined as follows

ββββββββ →>→ , ββββ=

(i) (1)]:[).(NxMNMx =→ββββλλλλ

(2)

).().(NxMxNM
NZMZNM
ZNZMNM

λλλλλλλλ ββββββββ

ββββββββ

ββββββββ

→⇒→

→⇒→

→⇒→

Lambda calculus I 66

MM ββββ→>(ii) (1)

(2) NMNM ββββββββ →>⇒→

(3) LMLNNM ββββββββββββ →>⇒→>→> ,

(iii) (1) NMNM ββββββββ =⇒→>

(2) MNNM ββββββββ ====⇒⇒⇒⇒====

(3) LMLNNM ββββββββββββ =⇒== ,

Lambda calculus I 67

These relations are pronounced as follows

NM ββββ→ reads �M β-reduces to N in one step�

reads � M β-reduces to N �

reads �M is β-convertible to N�

By definition we have

ββββ→ is compatible
is a reduction

ββββ= is a congruence relation

NM ββββ→>→>→>→>

NM ββββ====

ββββ→>→>→>→>

Lambda calculus I 68

Note that is the reflexive transitive closure ofββββ→>

and ββββ= is the equivalence relation generated by .ββββ→

Proposition
NMNM =−⇔= |λλλλββββ

Proof.)(⇒ By induction on the generation of .ββββ=
)(⇐ By induction on the length of proof.

ββββ→→→→

Lambda calculus I 65

Definition

The binary relations and on Λ are
defined as follows

ββββββββ →>→ , ββββ=

(i) (1)]:[).(NxMNMx =→ββββλλλλ

(2)

).().(NxMxNM
NZMZNM
ZNZMNM

λλλλλλλλ ββββββββ

ββββββββ

ββββββββ

→⇒→

→⇒→

→⇒→

Lambda calculus I 66

MM ββββ→>(ii) (1)

(2) NMNM ββββββββ →>⇒→

(3) LMLNNM ββββββββββββ →>⇒→>→> ,

(iii) (1) NMNM ββββββββ =⇒→>

(2) MNNM ββββββββ ====⇒⇒⇒⇒====

(3) LMLNNM ββββββββββββ =⇒== ,

Lambda calculus I 67

These relations are pronounced as follows

NM ββββ→ reads �M β-reduces to N in one step�

reads � M β-reduces to N �

reads �M is β-convertible to N�

By definition we have

ββββ→ is compatible
is a reduction

ββββ= is a congruence relation

NM ββββ→>→>→>→>

NM ββββ====

ββββ→>→>→>→>

Lambda calculus I 68

Note that is the reflexive transitive closure ofββββ→>

and ββββ= is the equivalence relation generated by .ββββ→

Proposition
NMNM =−⇔= |λλλλββββ

Proof.)(⇒ By induction on the generation of .ββββ=
)(⇐ By induction on the length of proof.

ββββ→→→→

Lambda calculus I 65

Definition

The binary relations and on Λ are
defined as follows

ββββββββ →>→ , ββββ=

(i) (1)]:[).(NxMNMx =→ββββλλλλ

(2)

).().(NxMxNM
NZMZNM
ZNZMNM

λλλλλλλλ ββββββββ

ββββββββ

ββββββββ

→⇒→

→⇒→

→⇒→

Lambda calculus I 66

MM ββββ→>(ii) (1)

(2) NMNM ββββββββ →>⇒→

(3) LMLNNM ββββββββββββ →>⇒→>→> ,

(iii) (1) NMNM ββββββββ =⇒→>

(2) MNNM ββββββββ ====⇒⇒⇒⇒====

(3) LMLNNM ββββββββββββ =⇒== ,

Lambda calculus I 67

These relations are pronounced as follows

NM ββββ→ reads �M β-reduces to N in one step�

reads � M β-reduces to N �

reads �M is β-convertible to N�

By definition we have

ββββ→ is compatible
is a reduction

ββββ= is a congruence relation

NM ββββ→>→>→>→>

NM ββββ====

ββββ→>→>→>→>

Lambda calculus I 68

Note that is the reflexive transitive closure ofββββ→>

and ββββ= is the equivalence relation generated by .ββββ→

Proposition
NMNM =−⇔= |λλλλββββ

Proof.)(⇒ By induction on the generation of .ββββ=
)(⇐ By induction on the length of proof.

ββββ→→→→

Lambda calculus I 69

Lemma.
Let M be a β-normal form. Then

MNNM ≡⇒→>ββββ

Proof.
This is true if is The rest follows from
transitivity.

ββββ→> .ββββ→

Lambda calculus I 70

The reduction is useful for an analysis of convertibility. The
Church-Rosser Theorem states that if two terms are convertible,
then they reduce to the same term.

In many cases it is possible to prove that two terms are not
convertible by showing that they do not reduce to a common
term.

Lambda calculus I 71

Church-Rosser Theorem
If there are such that 21 MMM ,,

21 MM

M

ββββ ββββ

Lambda calculus I 72

21 MM

M

ββββ ββββ
Then

Nββββ ββββ

for some λ-term N .

Lambda calculus I 69

Lemma.
Let M be a β-normal form. Then

MNNM ≡⇒→>ββββ

Proof.
This is true if is The rest follows from
transitivity.

ββββ→> .ββββ→

Lambda calculus I 70

The reduction is useful for an analysis of convertibility. The
Church-Rosser Theorem states that if two terms are convertible,
then they reduce to the same term.

In many cases it is possible to prove that two terms are not
convertible by showing that they do not reduce to a common
term.

Lambda calculus I 71

Church-Rosser Theorem
If there are such that 21 MMM ,,

21 MM

M

ββββ ββββ

Lambda calculus I 72

21 MM

M

ββββ ββββ
Then

Nββββ ββββ

for some λ-term N .

Lambda calculus I 69

Lemma.
Let M be a β-normal form. Then

MNNM ≡⇒→>ββββ

Proof.
This is true if is The rest follows from
transitivity.

ββββ→> .ββββ→

Lambda calculus I 70

The reduction is useful for an analysis of convertibility. The
Church-Rosser Theorem states that if two terms are convertible,
then they reduce to the same term.

In many cases it is possible to prove that two terms are not
convertible by showing that they do not reduce to a common
term.

Lambda calculus I 71

Church-Rosser Theorem
If there are such that 21 MMM ,,

21 MM

M

ββββ ββββ

Lambda calculus I 72

21 MM

M

ββββ ββββ
Then

Nββββ ββββ

for some λ-term N .

Lambda calculus I 69

Lemma.
Let M be a β-normal form. Then

MNNM ≡⇒→>ββββ

Proof.
This is true if is The rest follows from
transitivity.

ββββ→> .ββββ→

Lambda calculus I 70

The reduction is useful for an analysis of convertibility. The
Church-Rosser Theorem states that if two terms are convertible,
then they reduce to the same term.

In many cases it is possible to prove that two terms are not
convertible by showing that they do not reduce to a common
term.

Lambda calculus I 71

Church-Rosser Theorem
If there are such that 21 MMM ,,

21 MM

M

ββββ ββββ

Lambda calculus I 72

21 MM

M

ββββ ββββ
Then

Nββββ ββββ

for some λ-term N .

Lambda calculus I 73

Corollary.

If then there is a λ-term N such that
and

21 MM ββββ= NM1 ββββ→>
.NM 2 ββββ→>

Proof.

By induction on the generation of .ββββ=

a) because Take21 MM ββββ= .21 MM ββββ→> .2MN ≡

b) because Then by the
induction hypothesis and have a common
reduct Put

1M
.1N .1NN ≡

21 MM ββββ= .12 MM ββββ====
2M

Lambda calculus I 74

c) because By the
Induction hypothesis there are such that

21 MM ββββ= ., 21 MLLM ββββββββ ==
21 NN ,

21

21

NN

MLM

Lambda calculus I 75

21

21

NN

MLM

It follows from the Church-Rosser Theorem that there is
a common reduct N of ., 21 NN

N

N is a common reduct of ., 21 MM

Lambda calculus I 76

Corollary.
(i) If N is a β-normal form of M then

(ii) Every λ-term has at most one β-normal form.

.NM ββββ→>

Proof. (i) Let and N is in β-normal form. By the
Corollary of the Church-Rosser Theorem M and N have a
common reduct L. But this is equal to N.

NM ββββ=

(ii) Suppose that are two β-normal forms of M.
Then Hence have a common
reduct L. But then since

are in β-normal form.

21 NN ,
.MNN 21 ββββββββ ==

21 NLN ≡≡
21 NN ,

21 NN ,

Lambda calculus I 73

Corollary.

If then there is a λ-term N such that
and

21 MM ββββ= NM1 ββββ→>
.NM 2 ββββ→>

Proof.

By induction on the generation of .ββββ=

a) because Take21 MM ββββ= .21 MM ββββ→> .2MN ≡

b) because Then by the
induction hypothesis and have a common
reduct Put

1M
.1N .1NN ≡

21 MM ββββ= .12 MM ββββ====
2M

Lambda calculus I 74

c) because By the
Induction hypothesis there are such that

21 MM ββββ= ., 21 MLLM ββββββββ ==
21 NN ,

21

21

NN

MLM

Lambda calculus I 75

21

21

NN

MLM

It follows from the Church-Rosser Theorem that there is
a common reduct N of ., 21 NN

N

N is a common reduct of ., 21 MM

Lambda calculus I 76

Corollary.
(i) If N is a β-normal form of M then

(ii) Every λ-term has at most one β-normal form.

.NM ββββ→>

Proof. (i) Let and N is in β-normal form. By the
Corollary of the Church-Rosser Theorem M and N have a
common reduct L. But this is equal to N.

NM ββββ=

(ii) Suppose that are two β-normal forms of M.
Then Hence have a common
reduct L. But then since

are in β-normal form.

21 NN ,
.MNN 21 ββββββββ ==

21 NLN ≡≡
21 NN ,

21 NN ,

Lambda calculus I 73

Corollary.

If then there is a λ-term N such that
and

21 MM ββββ= NM1 ββββ→>
.NM 2 ββββ→>

Proof.

By induction on the generation of .ββββ=

a) because Take21 MM ββββ= .21 MM ββββ→> .2MN ≡

b) because Then by the
induction hypothesis and have a common
reduct Put

1M
.1N .1NN ≡

21 MM ββββ= .12 MM ββββ====
2M

Lambda calculus I 74

c) because By the
Induction hypothesis there are such that

21 MM ββββ= ., 21 MLLM ββββββββ ==
21 NN ,

21

21

NN

MLM

Lambda calculus I 75

21

21

NN

MLM

It follows from the Church-Rosser Theorem that there is
a common reduct N of ., 21 NN

N

N is a common reduct of ., 21 MM

Lambda calculus I 76

Corollary.
(i) If N is a β-normal form of M then

(ii) Every λ-term has at most one β-normal form.

.NM ββββ→>

Proof. (i) Let and N is in β-normal form. By the
Corollary of the Church-Rosser Theorem M and N have a
common reduct L. But this is equal to N.

NM ββββ=

(ii) Suppose that are two β-normal forms of M.
Then Hence have a common
reduct L. But then since

are in β-normal form.

21 NN ,
.MNN 21 ββββββββ ==

21 NLN ≡≡
21 NN ,

21 NN ,

Lambda calculus I 73

Corollary.

If then there is a λ-term N such that
and

21 MM ββββ= NM1 ββββ→>
.NM 2 ββββ→>

Proof.

By induction on the generation of .ββββ=

a) because Take21 MM ββββ= .21 MM ββββ→> .2MN ≡

b) because Then by the
induction hypothesis and have a common
reduct Put

1M
.1N .1NN ≡

21 MM ββββ= .12 MM ββββ====
2M

Lambda calculus I 74

c) because By the
Induction hypothesis there are such that

21 MM ββββ= ., 21 MLLM ββββββββ ==
21 NN ,

21

21

NN

MLM

Lambda calculus I 75

21

21

NN

MLM

It follows from the Church-Rosser Theorem that there is
a common reduct N of ., 21 NN

N

N is a common reduct of ., 21 MM

Lambda calculus I 76

Corollary.
(i) If N is a β-normal form of M then

(ii) Every λ-term has at most one β-normal form.

.NM ββββ→>

Proof. (i) Let and N is in β-normal form. By the
Corollary of the Church-Rosser Theorem M and N have a
common reduct L. But this is equal to N.

NM ββββ=

(ii) Suppose that are two β-normal forms of M.
Then Hence have a common
reduct L. But then since

are in β-normal form.

21 NN ,
.MNN 21 ββββββββ ==

21 NLN ≡≡
21 NN ,

21 NN ,

Lambda calculus I 77

Definition.
We say that a λ-calculus T is consistent if there are two
terms of it such that Otherwise T is
inconsistent.

.| NMT =−/

Theorem.
(i) λ-calculus is consistent.

Proof.

Otherwise and by Church
Rosser Theorem it is impossible since true and false are
distinct β-normal forms.

falsetrue =−/|λλλλ falsetrue ββββ=

Lambda calculus I 78

Note that has no β-normal form.
Otherwise for some N in β-normal form.
But reduces to itself and is not in β-normal form.

).)(.(xxxxxx λλλλλλλλΩΩΩΩ ≡
NββββΩΩΩΩ→>

ΩΩΩΩ

Lambda calculus I 79

Recall that the combinator Y finds fixed points

)(YFFYF =
On the other hand, we have

)())))(.))((..(((
))(.))((.((

)))(.))((.((
)))(.))((..((

YFFFxxfxxxfxfF
xxFxxxFxF

xxFxxxFx
FxxfxxxfxfYF

≡

←

→

→≡

λλλλλλλλλλλλ

λλλλλλλλ

λλλλλλλλ

λλλλλλλλλλλλ

ββββ

ββββ

ββββ

Hence we do not have although this
is often desirable.

)(YFFYF ββββ→>→>→>→>

Lambda calculus I 80

Turing introduced another fixed point operator with the
desired property.

Theorem (Turing´s fixed point combinator)

Let with Then for every F, we
have

AA=ΘΘΘΘ).(. xxyyxyA λλλλ=

)(FFF ΘΘΘΘΘΘΘΘ →>

Proof.)()(FFAAFFAAFF ΘΘΘΘΘΘΘΘ ≡→≡

Similarly, one can find solutions for the double and for the
second fixed point theorem that do reduce in an analogous
manner.

Lambda calculus I 77

Definition.
We say that a λ-calculus T is consistent if there are two
terms of it such that Otherwise T is
inconsistent.

.| NMT =−/

Theorem.
(i) λ-calculus is consistent.

Proof.

Otherwise and by Church
Rosser Theorem it is impossible since true and false are
distinct β-normal forms.

falsetrue =−/|λλλλ falsetrue ββββ=

Lambda calculus I 78

Note that has no β-normal form.
Otherwise for some N in β-normal form.
But reduces to itself and is not in β-normal form.

).)(.(xxxxxx λλλλλλλλΩΩΩΩ ≡
NββββΩΩΩΩ→>

ΩΩΩΩ

Lambda calculus I 79

Recall that the combinator Y finds fixed points

)(YFFYF =
On the other hand, we have

)())))(.))((..(((
))(.))((.((

)))(.))((.((
)))(.))((..((

YFFFxxfxxxfxfF
xxFxxxFxF

xxFxxxFx
FxxfxxxfxfYF

≡

←

→

→≡

λλλλλλλλλλλλ

λλλλλλλλ

λλλλλλλλ

λλλλλλλλλλλλ

ββββ

ββββ

ββββ

Hence we do not have although this
is often desirable.

)(YFFYF ββββ→>→>→>→>

Lambda calculus I 80

Turing introduced another fixed point operator with the
desired property.

Theorem (Turing´s fixed point combinator)

Let with Then for every F, we
have

AA=ΘΘΘΘ).(. xxyyxyA λλλλ=

)(FFF ΘΘΘΘΘΘΘΘ →>

Proof.)()(FFAAFFAAFF ΘΘΘΘΘΘΘΘ ≡→≡

Similarly, one can find solutions for the double and for the
second fixed point theorem that do reduce in an analogous
manner.

Lambda calculus I 77

Definition.
We say that a λ-calculus T is consistent if there are two
terms of it such that Otherwise T is
inconsistent.

.| NMT =−/

Theorem.
(i) λ-calculus is consistent.

Proof.

Otherwise and by Church
Rosser Theorem it is impossible since true and false are
distinct β-normal forms.

falsetrue =−/|λλλλ falsetrue ββββ=

Lambda calculus I 78

Note that has no β-normal form.
Otherwise for some N in β-normal form.
But reduces to itself and is not in β-normal form.

).)(.(xxxxxx λλλλλλλλΩΩΩΩ ≡
NββββΩΩΩΩ→>

ΩΩΩΩ

Lambda calculus I 79

Recall that the combinator Y finds fixed points

)(YFFYF =
On the other hand, we have

)())))(.))((..(((
))(.))((.((

)))(.))((.((
)))(.))((..((

YFFFxxfxxxfxfF
xxFxxxFxF

xxFxxxFx
FxxfxxxfxfYF

≡

←

→

→≡

λλλλλλλλλλλλ

λλλλλλλλ

λλλλλλλλ

λλλλλλλλλλλλ

ββββ

ββββ

ββββ

Hence we do not have although this
is often desirable.

)(YFFYF ββββ→>→>→>→>

Lambda calculus I 80

Turing introduced another fixed point operator with the
desired property.

Theorem (Turing´s fixed point combinator)

Let with Then for every F, we
have

AA=ΘΘΘΘ).(. xxyyxyA λλλλ=

)(FFF ΘΘΘΘΘΘΘΘ →>

Proof.)()(FFAAFFAAFF ΘΘΘΘΘΘΘΘ ≡→≡

Similarly, one can find solutions for the double and for the
second fixed point theorem that do reduce in an analogous
manner.

Lambda calculus I 77

Definition.
We say that a λ-calculus T is consistent if there are two
terms of it such that Otherwise T is
inconsistent.

.| NMT =−/

Theorem.
(i) λ-calculus is consistent.

Proof.

Otherwise and by Church
Rosser Theorem it is impossible since true and false are
distinct β-normal forms.

falsetrue =−/|λλλλ falsetrue ββββ=

Lambda calculus I 78

Note that has no β-normal form.
Otherwise for some N in β-normal form.
But reduces to itself and is not in β-normal form.

).)(.(xxxxxx λλλλλλλλΩΩΩΩ ≡
NββββΩΩΩΩ→>

ΩΩΩΩ

Lambda calculus I 79

Recall that the combinator Y finds fixed points

)(YFFYF =
On the other hand, we have

)())))(.))((..(((
))(.))((.((

)))(.))((.((
)))(.))((..((

YFFFxxfxxxfxfF
xxFxxxFxF

xxFxxxFx
FxxfxxxfxfYF

≡

←

→

→≡

λλλλλλλλλλλλ

λλλλλλλλ

λλλλλλλλ

λλλλλλλλλλλλ

ββββ

ββββ

ββββ

Hence we do not have although this
is often desirable.

)(YFFYF ββββ→>→>→>→>

Lambda calculus I 80

Turing introduced another fixed point operator with the
desired property.

Theorem (Turing´s fixed point combinator)

Let with Then for every F, we
have

AA=ΘΘΘΘ).(. xxyyxyA λλλλ=

)(FFF ΘΘΘΘΘΘΘΘ →>

Proof.)()(FFAAFFAAFF ΘΘΘΘΘΘΘΘ ≡→≡

Similarly, one can find solutions for the double and for the
second fixed point theorem that do reduce in an analogous
manner.

Lambda calculus I 81

Strategies
In order to find the β-normal form of a term M (if it exists),
the various redexes can be reduced in different orders. In
spite of this, the β-normal form is unique. However not
every sequence of reductions leads to the (existing) β-
normal form.

Example

, with a term B without a β-normal form has a
normal form I but A has an infinite reduction path by
reducing within B e.g.

BKA I≡≡≡≡

.IΩΩΩΩ≡≡≡≡ KA

Lambda calculus I 82

A reduction strategy chooses one redex among the various
possible redexes which can be reduced in the current step
and thereby it determines how to reduce a term.

It turns out that there is a strategy that always normalizes
terms that do have a β-normal form.

Lambda calculus I 83

Definition. Leftmost strategy, Lazy strategy.

(i) The main symbol of a redex is the first λ.

(ii) Let be two redexes that occur in a term
M. We say that is to the left of if the main
symbol of is to the left of that of .

(iii) We write if N results from M by
contracting the leftmost redex in M. The reflexive
transitive closure of is denoted by

NMx).(λλλλ

21 RR ,
1R

2R
1R 2R

NM l→→→→

l→→→→ .l→>→>→>→>

Lambda calculus I 84

The strategy that always contracts the leftmost redex is
caled the leftmost strategy or the normal strategy and
recently the lazy strategy. Computing in accord to the lazy
strategy is called lazy evaluation.

The following theorem, due to Curry, states that if a term
has a normal form then that normal form can be found by
the lazy strategy.

Theorem. (Curry)
If M has a normal form N, then .NM l→>→>→>→>

Lambda calculus I 81

Strategies
In order to find the β-normal form of a term M (if it exists),
the various redexes can be reduced in different orders. In
spite of this, the β-normal form is unique. However not
every sequence of reductions leads to the (existing) β-
normal form.

Example

, with a term B without a β-normal form has a
normal form I but A has an infinite reduction path by
reducing within B e.g.

BKA I≡≡≡≡

.IΩΩΩΩ≡≡≡≡ KA

Lambda calculus I 82

A reduction strategy chooses one redex among the various
possible redexes which can be reduced in the current step
and thereby it determines how to reduce a term.

It turns out that there is a strategy that always normalizes
terms that do have a β-normal form.

Lambda calculus I 83

Definition. Leftmost strategy, Lazy strategy.

(i) The main symbol of a redex is the first λ.

(ii) Let be two redexes that occur in a term
M. We say that is to the left of if the main
symbol of is to the left of that of .

(iii) We write if N results from M by
contracting the leftmost redex in M. The reflexive
transitive closure of is denoted by

NMx).(λλλλ

21 RR ,
1R

2R
1R 2R

NM l→→→→

l→→→→ .l→>→>→>→>

Lambda calculus I 84

The strategy that always contracts the leftmost redex is
caled the leftmost strategy or the normal strategy and
recently the lazy strategy. Computing in accord to the lazy
strategy is called lazy evaluation.

The following theorem, due to Curry, states that if a term
has a normal form then that normal form can be found by
the lazy strategy.

Theorem. (Curry)
If M has a normal form N, then .NM l→>→>→>→>

Lambda calculus I 81

Strategies
In order to find the β-normal form of a term M (if it exists),
the various redexes can be reduced in different orders. In
spite of this, the β-normal form is unique. However not
every sequence of reductions leads to the (existing) β-
normal form.

Example

, with a term B without a β-normal form has a
normal form I but A has an infinite reduction path by
reducing within B e.g.

BKA I≡≡≡≡

.IΩΩΩΩ≡≡≡≡ KA

Lambda calculus I 82

A reduction strategy chooses one redex among the various
possible redexes which can be reduced in the current step
and thereby it determines how to reduce a term.

It turns out that there is a strategy that always normalizes
terms that do have a β-normal form.

Lambda calculus I 83

Definition. Leftmost strategy, Lazy strategy.

(i) The main symbol of a redex is the first λ.

(ii) Let be two redexes that occur in a term
M. We say that is to the left of if the main
symbol of is to the left of that of .

(iii) We write if N results from M by
contracting the leftmost redex in M. The reflexive
transitive closure of is denoted by

NMx).(λλλλ

21 RR ,
1R

2R
1R 2R

NM l→→→→

l→→→→ .l→>→>→>→>

Lambda calculus I 84

The strategy that always contracts the leftmost redex is
caled the leftmost strategy or the normal strategy and
recently the lazy strategy. Computing in accord to the lazy
strategy is called lazy evaluation.

The following theorem, due to Curry, states that if a term
has a normal form then that normal form can be found by
the lazy strategy.

Theorem. (Curry)
If M has a normal form N, then .NM l→>→>→>→>

Lambda calculus I 81

Strategies
In order to find the β-normal form of a term M (if it exists),
the various redexes can be reduced in different orders. In
spite of this, the β-normal form is unique. However not
every sequence of reductions leads to the (existing) β-
normal form.

Example

, with a term B without a β-normal form has a
normal form I but A has an infinite reduction path by
reducing within B e.g.

BKA I≡≡≡≡

.IΩΩΩΩ≡≡≡≡ KA

Lambda calculus I 82

A reduction strategy chooses one redex among the various
possible redexes which can be reduced in the current step
and thereby it determines how to reduce a term.

It turns out that there is a strategy that always normalizes
terms that do have a β-normal form.

Lambda calculus I 83

Definition. Leftmost strategy, Lazy strategy.

(i) The main symbol of a redex is the first λ.

(ii) Let be two redexes that occur in a term
M. We say that is to the left of if the main
symbol of is to the left of that of .

(iii) We write if N results from M by
contracting the leftmost redex in M. The reflexive
transitive closure of is denoted by

NMx).(λλλλ

21 RR ,
1R

2R
1R 2R

NM l→→→→

l→→→→ .l→>→>→>→>

Lambda calculus I 84

The strategy that always contracts the leftmost redex is
caled the leftmost strategy or the normal strategy and
recently the lazy strategy. Computing in accord to the lazy
strategy is called lazy evaluation.

The following theorem, due to Curry, states that if a term
has a normal form then that normal form can be found by
the lazy strategy.

Theorem. (Curry)
If M has a normal form N, then .NM l→>→>→>→>

Lambda calculus I 85

This reduction strategy is called lazy strategy because in an
expression like

ABbaCab]),[.(λλλλ

it substitutes the subterms A, B directly into C[a,b] instead
of evaluating them to normal forms.

Eager strategy performs a vice versa, it reduces first the
subterms A, B to normal forms before substituting them into
C[a,b] .

Lambda calculus I 86

For the lambda calculus it is not possible to have an eager
evaluation mechanism. This is due to the possibility of so-
called nonstrict functions like

].[0xλλλλ
The strict functions are defined as follows: F is strict
if for arbitrary ΛΛΛΛ∈∈∈∈n21 MMM ,,, K

⊥⊥⊥⊥====n21 MMFM K

whenever for one of the holds. ⊥⊥⊥⊥====≤≤≤≤≤≤≤≤ ii Mni1M ,,

Note that the above defined function is nonstrict.

Lambda calculus I 87

Nonstrict functions enhance the expressive power
of the lambda calculus, but complicate the
implementation of the language. That`s why the lambda
calculus is is sometimes called a lazy language.
An almost eager evaluation is implemented in functional
languages ML,SML and others, the lazy evaluation
is implemented in Haskell.

Lambda calculus I 88

Denotational semantics: set-theoretical models

Denotational semantics gives the meaning of a λ-term M
by translating it to an expression denoting a set This
set is an element of a mathematical structure in which
application and abstraction are well-defined operations
and the map preserves these operations. In this way
we obtain a so-called denotational semantics.

.M

.

Lambda calculus I 85

This reduction strategy is called lazy strategy because in an
expression like

ABbaCab]),[.(λλλλ

it substitutes the subterms A, B directly into C[a,b] instead
of evaluating them to normal forms.

Eager strategy performs a vice versa, it reduces first the
subterms A, B to normal forms before substituting them into
C[a,b] .

Lambda calculus I 86

For the lambda calculus it is not possible to have an eager
evaluation mechanism. This is due to the possibility of so-
called nonstrict functions like

].[0xλλλλ
The strict functions are defined as follows: F is strict
if for arbitrary ΛΛΛΛ∈∈∈∈n21 MMM ,,, K

⊥⊥⊥⊥====n21 MMFM K

whenever for one of the holds. ⊥⊥⊥⊥====≤≤≤≤≤≤≤≤ ii Mni1M ,,

Note that the above defined function is nonstrict.

Lambda calculus I 87

Nonstrict functions enhance the expressive power
of the lambda calculus, but complicate the
implementation of the language. That`s why the lambda
calculus is is sometimes called a lazy language.
An almost eager evaluation is implemented in functional
languages ML,SML and others, the lazy evaluation
is implemented in Haskell.

Lambda calculus I 88

Denotational semantics: set-theoretical models

Denotational semantics gives the meaning of a λ-term M
by translating it to an expression denoting a set This
set is an element of a mathematical structure in which
application and abstraction are well-defined operations
and the map preserves these operations. In this way
we obtain a so-called denotational semantics.

.M

.

Lambda calculus I 85

This reduction strategy is called lazy strategy because in an
expression like

ABbaCab]),[.(λλλλ

it substitutes the subterms A, B directly into C[a,b] instead
of evaluating them to normal forms.

Eager strategy performs a vice versa, it reduces first the
subterms A, B to normal forms before substituting them into
C[a,b] .

Lambda calculus I 86

For the lambda calculus it is not possible to have an eager
evaluation mechanism. This is due to the possibility of so-
called nonstrict functions like

].[0xλλλλ
The strict functions are defined as follows: F is strict
if for arbitrary ΛΛΛΛ∈∈∈∈n21 MMM ,,, K

⊥⊥⊥⊥====n21 MMFM K

whenever for one of the holds. ⊥⊥⊥⊥====≤≤≤≤≤≤≤≤ ii Mni1M ,,

Note that the above defined function is nonstrict.

Lambda calculus I 87

Nonstrict functions enhance the expressive power
of the lambda calculus, but complicate the
implementation of the language. That`s why the lambda
calculus is is sometimes called a lazy language.
An almost eager evaluation is implemented in functional
languages ML,SML and others, the lazy evaluation
is implemented in Haskell.

Lambda calculus I 88

Denotational semantics: set-theoretical models

Denotational semantics gives the meaning of a λ-term M
by translating it to an expression denoting a set This
set is an element of a mathematical structure in which
application and abstraction are well-defined operations
and the map preserves these operations. In this way
we obtain a so-called denotational semantics.

.M

.

Lambda calculus I 85

This reduction strategy is called lazy strategy because in an
expression like

ABbaCab]),[.(λλλλ

it substitutes the subterms A, B directly into C[a,b] instead
of evaluating them to normal forms.

Eager strategy performs a vice versa, it reduces first the
subterms A, B to normal forms before substituting them into
C[a,b] .

Lambda calculus I 86

For the lambda calculus it is not possible to have an eager
evaluation mechanism. This is due to the possibility of so-
called nonstrict functions like

].[0xλλλλ
The strict functions are defined as follows: F is strict
if for arbitrary ΛΛΛΛ∈∈∈∈n21 MMM ,,, K

⊥⊥⊥⊥====n21 MMFM K

whenever for one of the holds. ⊥⊥⊥⊥====≤≤≤≤≤≤≤≤ ii Mni1M ,,

Note that the above defined function is nonstrict.

Lambda calculus I 87

Nonstrict functions enhance the expressive power
of the lambda calculus, but complicate the
implementation of the language. That`s why the lambda
calculus is is sometimes called a lazy language.
An almost eager evaluation is implemented in functional
languages ML,SML and others, the lazy evaluation
is implemented in Haskell.

Lambda calculus I 88

Denotational semantics: set-theoretical models

Denotational semantics gives the meaning of a λ-term M
by translating it to an expression denoting a set This
set is an element of a mathematical structure in which
application and abstraction are well-defined operations
and the map preserves these operations. In this way
we obtain a so-called denotational semantics.

.M

.

Lambda calculus I 89

Constructing a model for the lambda calculus one would like
to have a space D such that D is isomorphic to the space
But this is impossible for cardinality reasons. In 1969 Scott
solved this problem by restricting to the continuous
functions on D provided with a proper topology.

.
DD

DD

Scott worked with complete lattices with an induced
topology and constructed a D such that It
turned out that a model of the lambda calculus is obtained
if is a retract of D.

.DDD ≅≅≅≅

DD

Lambda calculus I 90

Definition.
A complete lattice is a partially ordered set such
that for each the supremum exists.

Each D has a largest element and the least
element and every

),(≤≤≤≤==== DD
DX ⊆⊆⊆⊆ DX ∈∈∈∈sup

DTtop sup====
0bottom ////====⊥⊥⊥⊥ sup

)}.(|sup{inf xyXxyX ≤≤≤≤∈∈∈∈∀∀∀∀====

DX ⊆⊆⊆⊆ 0X ////====////
].[, zyandzxXzXyx ≤≤≤≤≤≤≤≤∈∈∈∈∃∃∃∃∈∈∈∈∀∀∀∀

DX ⊆⊆⊆⊆ has an infimum

A subset is directed if and

Lambda calculus I 91

Let range over complete lattices....,, 'DD

Definition.
A mapping is continuous if for all directed

one has

': DDf →→→→

DX ⊆⊆⊆⊆

}.|)(sup{)(sup)(sup XxxfXfXf ∈∈∈∈========

Lambda calculus I 92

Note that each continuous function is monotoneous.

).()(
)}(),(sup{}),(sup{)(

},sup{

yfxf
yfxfyxfyf

yxyyx

≤≤≤≤⇒⇒⇒⇒
========⇒⇒⇒⇒

====⇒⇒⇒⇒≤≤≤≤

Lambda calculus I 89

Constructing a model for the lambda calculus one would like
to have a space D such that D is isomorphic to the space
But this is impossible for cardinality reasons. In 1969 Scott
solved this problem by restricting to the continuous
functions on D provided with a proper topology.

.
DD

DD

Scott worked with complete lattices with an induced
topology and constructed a D such that It
turned out that a model of the lambda calculus is obtained
if is a retract of D.

.DDD ≅≅≅≅

DD

Lambda calculus I 90

Definition.
A complete lattice is a partially ordered set such
that for each the supremum exists.

Each D has a largest element and the least
element and every

),(≤≤≤≤==== DD
DX ⊆⊆⊆⊆ DX ∈∈∈∈sup

DTtop sup====
0bottom ////====⊥⊥⊥⊥ sup

)}.(|sup{inf xyXxyX ≤≤≤≤∈∈∈∈∀∀∀∀====

DX ⊆⊆⊆⊆ 0X ////====////
].[, zyandzxXzXyx ≤≤≤≤≤≤≤≤∈∈∈∈∃∃∃∃∈∈∈∈∀∀∀∀

DX ⊆⊆⊆⊆ has an infimum

A subset is directed if and

Lambda calculus I 91

Let range over complete lattices....,, 'DD

Definition.
A mapping is continuous if for all directed

one has

': DDf →→→→

DX ⊆⊆⊆⊆

}.|)(sup{)(sup)(sup XxxfXfXf ∈∈∈∈========

Lambda calculus I 92

Note that each continuous function is monotoneous.

).()(
)}(),(sup{}),(sup{)(

},sup{

yfxf
yfxfyxfyf

yxyyx

≤≤≤≤⇒⇒⇒⇒
========⇒⇒⇒⇒

====⇒⇒⇒⇒≤≤≤≤

Lambda calculus I 89

Constructing a model for the lambda calculus one would like
to have a space D such that D is isomorphic to the space
But this is impossible for cardinality reasons. In 1969 Scott
solved this problem by restricting to the continuous
functions on D provided with a proper topology.

.
DD

DD

Scott worked with complete lattices with an induced
topology and constructed a D such that It
turned out that a model of the lambda calculus is obtained
if is a retract of D.

.DDD ≅≅≅≅

DD

Lambda calculus I 90

Definition.
A complete lattice is a partially ordered set such
that for each the supremum exists.

Each D has a largest element and the least
element and every

),(≤≤≤≤==== DD
DX ⊆⊆⊆⊆ DX ∈∈∈∈sup

DTtop sup====
0bottom ////====⊥⊥⊥⊥ sup

)}.(|sup{inf xyXxyX ≤≤≤≤∈∈∈∈∀∀∀∀====

DX ⊆⊆⊆⊆ 0X ////====////
].[, zyandzxXzXyx ≤≤≤≤≤≤≤≤∈∈∈∈∃∃∃∃∈∈∈∈∀∀∀∀

DX ⊆⊆⊆⊆ has an infimum

A subset is directed if and

Lambda calculus I 91

Let range over complete lattices....,, 'DD

Definition.
A mapping is continuous if for all directed

one has

': DDf →→→→

DX ⊆⊆⊆⊆

}.|)(sup{)(sup)(sup XxxfXfXf ∈∈∈∈========

Lambda calculus I 92

Note that each continuous function is monotoneous.

).()(
)}(),(sup{}),(sup{)(

},sup{

yfxf
yfxfyxfyf

yxyyx

≤≤≤≤⇒⇒⇒⇒
========⇒⇒⇒⇒

====⇒⇒⇒⇒≤≤≤≤

Lambda calculus I 89

Constructing a model for the lambda calculus one would like
to have a space D such that D is isomorphic to the space
But this is impossible for cardinality reasons. In 1969 Scott
solved this problem by restricting to the continuous
functions on D provided with a proper topology.

.
DD

DD

Scott worked with complete lattices with an induced
topology and constructed a D such that It
turned out that a model of the lambda calculus is obtained
if is a retract of D.

.DDD ≅≅≅≅

DD

Lambda calculus I 90

Definition.
A complete lattice is a partially ordered set such
that for each the supremum exists.

Each D has a largest element and the least
element and every

),(≤≤≤≤==== DD
DX ⊆⊆⊆⊆ DX ∈∈∈∈sup

DTtop sup====
0bottom ////====⊥⊥⊥⊥ sup

)}.(|sup{inf xyXxyX ≤≤≤≤∈∈∈∈∀∀∀∀====

DX ⊆⊆⊆⊆ 0X ////====////
].[, zyandzxXzXyx ≤≤≤≤≤≤≤≤∈∈∈∈∃∃∃∃∈∈∈∈∀∀∀∀

DX ⊆⊆⊆⊆ has an infimum

A subset is directed if and

Lambda calculus I 91

Let range over complete lattices....,, 'DD

Definition.
A mapping is continuous if for all directed

one has

': DDf →→→→

DX ⊆⊆⊆⊆

}.|)(sup{)(sup)(sup XxxfXfXf ∈∈∈∈========

Lambda calculus I 92

Note that each continuous function is monotoneous.

).()(
)}(),(sup{}),(sup{)(

},sup{

yfxf
yfxfyxfyf

yxyyx

≤≤≤≤⇒⇒⇒⇒
========⇒⇒⇒⇒

====⇒⇒⇒⇒≤≤≤≤

Lambda calculus I 93

Definition. (product and lattice of continuous maps)

Let).,'('),,('≤≤≤≤====≤≤≤≤==== DDDD

(i) is the Cartesian product of
D,D� ordered by

}'',|)',{(' DdDdddDD ∈∈∈∈∈∈∈∈====××××

'.´')',()',(21212211 ddanddddddd ≤≤≤≤≤≤≤≤⇔⇔⇔⇔≤≤≤≤

(ii) is a function
space partially ordered by

}|':{]'[continuousisfDDfDD →→→→====→→→→

)).(')((dgdfdgf ≤≤≤≤∀∀∀∀⇔⇔⇔⇔≤≤≤≤

Lambda calculus I 94

Lemma.
(i) is a complete lattice and for arbitrary

we have

'DD××××

'DDX ××××⊆⊆⊆⊆

),)sup(,)(sup(sup 10 XXX ====

where
})',(|''{)(
})',(''|{)(

XddDdDdX
XddDdDdX

1

0

∈∈∈∈∈∈∈∈∃∃∃∃∈∈∈∈====
∈∈∈∈∈∈∈∈∃∃∃∃∈∈∈∈====

(ii) is a complete lattice if we apply pointwise
convergence to continuous functions.

]'[DD →→→→

Namely, if is a collection of con-
tinuous maps and we define

IiDDfi ∈∈∈∈→→→→ ,':

))((sup)(xfxf i
i

====

Lambda calculus I 95

then f is continuous and it is the supremum of the
collection in].'[DD →→→→

Proof.
(i) Easy.
(ii) Let be directed thenDX ⊆⊆⊆⊆

).(sup
)(supsup
)(supsup

)(supsup)(sup

xf
xf

fofcontinuityxf
XfXf

Xx

iiXx

iiXxi

ii

∈∈∈∈

∈∈∈∈

∈∈∈∈

====
====
====
====

Thus f is continuous and iniff sup====].'[DD →→→→

Lambda calculus I 96

If denotes the λ-abstraction in set theory, we havesλλλλ

))((sup.)(.sup xfxxfx ii
s

i
s

i λλλλ====λλλλ

Hence commutes with .sλλλλsup

Fixed Point Theorem.

Let Then f has a least fixed point defined by].[DDf →→→→∈∈∈∈

).(sup)(⊥⊥⊥⊥==== n
n ffFix

Lambda calculus I 93

Definition. (product and lattice of continuous maps)

Let).,'('),,('≤≤≤≤====≤≤≤≤==== DDDD

(i) is the Cartesian product of
D,D� ordered by

}'',|)',{(' DdDdddDD ∈∈∈∈∈∈∈∈====××××

'.´')',()',(21212211 ddanddddddd ≤≤≤≤≤≤≤≤⇔⇔⇔⇔≤≤≤≤

(ii) is a function
space partially ordered by

}|':{]'[continuousisfDDfDD →→→→====→→→→

)).(')((dgdfdgf ≤≤≤≤∀∀∀∀⇔⇔⇔⇔≤≤≤≤

Lambda calculus I 94

Lemma.
(i) is a complete lattice and for arbitrary

we have

'DD××××

'DDX ××××⊆⊆⊆⊆

),)sup(,)(sup(sup 10 XXX ====

where
})',(|''{)(
})',(''|{)(

XddDdDdX
XddDdDdX

1

0

∈∈∈∈∈∈∈∈∃∃∃∃∈∈∈∈====
∈∈∈∈∈∈∈∈∃∃∃∃∈∈∈∈====

(ii) is a complete lattice if we apply pointwise
convergence to continuous functions.

]'[DD →→→→

Namely, if is a collection of con-
tinuous maps and we define

IiDDfi ∈∈∈∈→→→→ ,':

))((sup)(xfxf i
i

====

Lambda calculus I 95

then f is continuous and it is the supremum of the
collection in].'[DD →→→→

Proof.
(i) Easy.
(ii) Let be directed thenDX ⊆⊆⊆⊆

).(sup
)(supsup
)(supsup

)(supsup)(sup

xf
xf

fofcontinuityxf
XfXf

Xx

iiXx

iiXxi

ii

∈∈∈∈

∈∈∈∈

∈∈∈∈

====
====
====
====

Thus f is continuous and iniff sup====].'[DD →→→→

Lambda calculus I 96

If denotes the λ-abstraction in set theory, we havesλλλλ

))((sup.)(.sup xfxxfx ii
s

i
s

i λλλλ====λλλλ

Hence commutes with .sλλλλsup

Fixed Point Theorem.

Let Then f has a least fixed point defined by].[DDf →→→→∈∈∈∈

).(sup)(⊥⊥⊥⊥==== n
n ffFix

Lambda calculus I 93

Definition. (product and lattice of continuous maps)

Let).,'('),,('≤≤≤≤====≤≤≤≤==== DDDD

(i) is the Cartesian product of
D,D� ordered by

}'',|)',{(' DdDdddDD ∈∈∈∈∈∈∈∈====××××

'.´')',()',(21212211 ddanddddddd ≤≤≤≤≤≤≤≤⇔⇔⇔⇔≤≤≤≤

(ii) is a function
space partially ordered by

}|':{]'[continuousisfDDfDD →→→→====→→→→

)).(')((dgdfdgf ≤≤≤≤∀∀∀∀⇔⇔⇔⇔≤≤≤≤

Lambda calculus I 94

Lemma.
(i) is a complete lattice and for arbitrary

we have

'DD××××

'DDX ××××⊆⊆⊆⊆

),)sup(,)(sup(sup 10 XXX ====

where
})',(|''{)(
})',(''|{)(

XddDdDdX
XddDdDdX

1

0

∈∈∈∈∈∈∈∈∃∃∃∃∈∈∈∈====
∈∈∈∈∈∈∈∈∃∃∃∃∈∈∈∈====

(ii) is a complete lattice if we apply pointwise
convergence to continuous functions.

]'[DD →→→→

Namely, if is a collection of con-
tinuous maps and we define

IiDDfi ∈∈∈∈→→→→ ,':

))((sup)(xfxf i
i

====

Lambda calculus I 95

then f is continuous and it is the supremum of the
collection in].'[DD →→→→

Proof.
(i) Easy.
(ii) Let be directed thenDX ⊆⊆⊆⊆

).(sup
)(supsup
)(supsup

)(supsup)(sup

xf
xf

fofcontinuityxf
XfXf

Xx

iiXx

iiXxi

ii

∈∈∈∈

∈∈∈∈

∈∈∈∈

====
====
====
====

Thus f is continuous and iniff sup====].'[DD →→→→

Lambda calculus I 96

If denotes the λ-abstraction in set theory, we havesλλλλ

))((sup.)(.sup xfxxfx ii
s

i
s

i λλλλ====λλλλ

Hence commutes with .sλλλλsup

Fixed Point Theorem.

Let Then f has a least fixed point defined by].[DDf →→→→∈∈∈∈

).(sup)(⊥⊥⊥⊥==== n
n ffFix

Lambda calculus I 93

Definition. (product and lattice of continuous maps)

Let).,'('),,('≤≤≤≤====≤≤≤≤==== DDDD

(i) is the Cartesian product of
D,D� ordered by

}'',|)',{(' DdDdddDD ∈∈∈∈∈∈∈∈====××××

'.´')',()',(21212211 ddanddddddd ≤≤≤≤≤≤≤≤⇔⇔⇔⇔≤≤≤≤

(ii) is a function
space partially ordered by

}|':{]'[continuousisfDDfDD →→→→====→→→→

)).(')((dgdfdgf ≤≤≤≤∀∀∀∀⇔⇔⇔⇔≤≤≤≤

Lambda calculus I 94

Lemma.
(i) is a complete lattice and for arbitrary

we have

'DD××××

'DDX ××××⊆⊆⊆⊆

),)sup(,)(sup(sup 10 XXX ====

where
})',(|''{)(
})',(''|{)(

XddDdDdX
XddDdDdX

1

0

∈∈∈∈∈∈∈∈∃∃∃∃∈∈∈∈====
∈∈∈∈∈∈∈∈∃∃∃∃∈∈∈∈====

(ii) is a complete lattice if we apply pointwise
convergence to continuous functions.

]'[DD →→→→

Namely, if is a collection of con-
tinuous maps and we define

IiDDfi ∈∈∈∈→→→→ ,':

))((sup)(xfxf i
i

====

Lambda calculus I 95

then f is continuous and it is the supremum of the
collection in].'[DD →→→→

Proof.
(i) Easy.
(ii) Let be directed thenDX ⊆⊆⊆⊆

).(sup
)(supsup
)(supsup

)(supsup)(sup

xf
xf

fofcontinuityxf
XfXf

Xx

iiXx

iiXxi

ii

∈∈∈∈

∈∈∈∈

∈∈∈∈

====
====
====
====

Thus f is continuous and iniff sup====].'[DD →→→→

Lambda calculus I 96

If denotes the λ-abstraction in set theory, we havesλλλλ

))((sup.)(.sup xfxxfx ii
s

i
s

i λλλλ====λλλλ

Hence commutes with .sλλλλsup

Fixed Point Theorem.

Let Then f has a least fixed point defined by].[DDf →→→→∈∈∈∈

).(sup)(⊥⊥⊥⊥==== n
n ffFix

Lambda calculus I 97

Note that the set is directed and

hence by monotonicity, we get

}|)({ Nnf n ∈∈∈∈⊥⊥⊥⊥

),(⊥⊥⊥⊥≤≤≤≤⊥⊥⊥⊥ f
...)()(≤≤≤≤⊥⊥⊥⊥≤≤≤≤⊥⊥⊥⊥≤≤≤≤⊥⊥⊥⊥ 2ff

Therefore

(((()))).)(sup))((sup))((fFixffffFixf 1n
n

n
n ====⊥⊥⊥⊥====⊥⊥⊥⊥==== ++++

If x is another fixed point of f then f(x)=x and

thus by monotonicity

Hence

,x≤≤≤≤⊥⊥⊥⊥

.)()(xxff nn ====≤≤≤≤⊥⊥⊥⊥

.)(xfFix ≤≤≤≤

Lambda calculus I 98

Lemma on separate continuity.

Let Then f is continuous iff f is
continuous in each of its variables separately i.e.

and are continuous for all

'.'': DDDf →→→→××××

)´,(. 0
s xxfxλλλλ),(. '' xxfx 0

sλλλλ .´, 00 xx

Proof. as usual.

Let be directed. Then

⇒⇒⇒⇒

⇐⇐⇐⇐ 'DDX ××××⊆⊆⊆⊆

).',(sup

)',(supsup

))sup(,(sup
))sup(,)(sup()(sup

)',(

)(')(

)(

xxf

xxf

Xxf
XXfXf

Xxx

XxXx

1Xx

10

10

0

∈∈∈∈

∈∈∈∈∈∈∈∈

∈∈∈∈

====

====

====
====

The last equality follows from the fact that X is directed.
Hence f is continuous.

Lambda calculus I 99

We are going to define the lattice versions of operations of
application and abstraction and we will show that these
operations are continuous.

Definition.
Put
(i) by
(ii) for define abstraction as follows

')]'([: DDDDAp →→→→××××→→→→).(),(xfxfAp ====
]")'[(DDDf →→→→××××∈∈∈∈

).,(. yxfysλλλλ

Lambda calculus I 100

Theorem.
(i) Ap is continuous.

(ii) and depends continuously on x.

Proof.

]"'[),(. DDyxfys →→→→∈∈∈∈λλλλ

We shall use the lemma on separate continuity.
(i) is continuous since
To prove the other continuity, let
put then for any directed
family , we have

fxfxxfApx ss ====λλλλ====λλλλ)(.),(.].'[DDf →→→→∈∈∈∈

).(.),(. 0
s

0
s xffxfApfH λλλλ====λλλλ====

Iifi ∈∈∈∈,

].'[DDf →→→→∈∈∈∈

)(sup
))((sup
))((sup)(sup

ii

0ii

0iiii

fH
xf
xffH

====
====
====

by pointwise convergence

Lambda calculus I 97

Note that the set is directed and

hence by monotonicity, we get

}|)({ Nnf n ∈∈∈∈⊥⊥⊥⊥

),(⊥⊥⊥⊥≤≤≤≤⊥⊥⊥⊥ f
...)()(≤≤≤≤⊥⊥⊥⊥≤≤≤≤⊥⊥⊥⊥≤≤≤≤⊥⊥⊥⊥ 2ff

Therefore

(((()))).)(sup))((sup))((fFixffffFixf 1n
n

n
n ====⊥⊥⊥⊥====⊥⊥⊥⊥==== ++++

If x is another fixed point of f then f(x)=x and

thus by monotonicity

Hence

,x≤≤≤≤⊥⊥⊥⊥

.)()(xxff nn ====≤≤≤≤⊥⊥⊥⊥

.)(xfFix ≤≤≤≤

Lambda calculus I 98

Lemma on separate continuity.

Let Then f is continuous iff f is
continuous in each of its variables separately i.e.

and are continuous for all

'.'': DDDf →→→→××××

)´,(. 0
s xxfxλλλλ),(. '' xxfx 0

sλλλλ .´, 00 xx

Proof. as usual.

Let be directed. Then

⇒⇒⇒⇒

⇐⇐⇐⇐ 'DDX ××××⊆⊆⊆⊆

).',(sup

)',(supsup

))sup(,(sup
))sup(,)(sup()(sup

)',(

)(')(

)(

xxf

xxf

Xxf
XXfXf

Xxx

XxXx

1Xx

10

10

0

∈∈∈∈

∈∈∈∈∈∈∈∈

∈∈∈∈

====

====

====
====

The last equality follows from the fact that X is directed.
Hence f is continuous.

Lambda calculus I 99

We are going to define the lattice versions of operations of
application and abstraction and we will show that these
operations are continuous.

Definition.
Put
(i) by
(ii) for define abstraction as follows

')]'([: DDDDAp →→→→××××→→→→).(),(xfxfAp ====
]")'[(DDDf →→→→××××∈∈∈∈

).,(. yxfysλλλλ

Lambda calculus I 100

Theorem.
(i) Ap is continuous.

(ii) and depends continuously on x.

Proof.

]"'[),(. DDyxfys →→→→∈∈∈∈λλλλ

We shall use the lemma on separate continuity.
(i) is continuous since
To prove the other continuity, let
put then for any directed
family , we have

fxfxxfApx ss ====λλλλ====λλλλ)(.),(.].'[DDf →→→→∈∈∈∈

).(.),(. 0
s

0
s xffxfApfH λλλλ====λλλλ====

Iifi ∈∈∈∈,

].'[DDf →→→→∈∈∈∈

)(sup
))((sup
))((sup)(sup

ii

0ii

0iiii

fH
xf
xffH

====
====
====

by pointwise convergence

Lambda calculus I 97

Note that the set is directed and

hence by monotonicity, we get

}|)({ Nnf n ∈∈∈∈⊥⊥⊥⊥

),(⊥⊥⊥⊥≤≤≤≤⊥⊥⊥⊥ f
...)()(≤≤≤≤⊥⊥⊥⊥≤≤≤≤⊥⊥⊥⊥≤≤≤≤⊥⊥⊥⊥ 2ff

Therefore

(((()))).)(sup))((sup))((fFixffffFixf 1n
n

n
n ====⊥⊥⊥⊥====⊥⊥⊥⊥==== ++++

If x is another fixed point of f then f(x)=x and

thus by monotonicity

Hence

,x≤≤≤≤⊥⊥⊥⊥

.)()(xxff nn ====≤≤≤≤⊥⊥⊥⊥

.)(xfFix ≤≤≤≤

Lambda calculus I 98

Lemma on separate continuity.

Let Then f is continuous iff f is
continuous in each of its variables separately i.e.

and are continuous for all

'.'': DDDf →→→→××××

)´,(. 0
s xxfxλλλλ),(. '' xxfx 0

sλλλλ .´, 00 xx

Proof. as usual.

Let be directed. Then

⇒⇒⇒⇒

⇐⇐⇐⇐ 'DDX ××××⊆⊆⊆⊆

).',(sup

)',(supsup

))sup(,(sup
))sup(,)(sup()(sup

)',(

)(')(

)(

xxf

xxf

Xxf
XXfXf

Xxx

XxXx

1Xx

10

10

0

∈∈∈∈

∈∈∈∈∈∈∈∈

∈∈∈∈

====

====

====
====

The last equality follows from the fact that X is directed.
Hence f is continuous.

Lambda calculus I 99

We are going to define the lattice versions of operations of
application and abstraction and we will show that these
operations are continuous.

Definition.
Put
(i) by
(ii) for define abstraction as follows

')]'([: DDDDAp →→→→××××→→→→).(),(xfxfAp ====
]")'[(DDDf →→→→××××∈∈∈∈

).,(. yxfysλλλλ

Lambda calculus I 100

Theorem.
(i) Ap is continuous.

(ii) and depends continuously on x.

Proof.

]"'[),(. DDyxfys →→→→∈∈∈∈λλλλ

We shall use the lemma on separate continuity.
(i) is continuous since
To prove the other continuity, let
put then for any directed
family , we have

fxfxxfApx ss ====λλλλ====λλλλ)(.),(.].'[DDf →→→→∈∈∈∈

).(.),(. 0
s

0
s xffxfApfH λλλλ====λλλλ====

Iifi ∈∈∈∈,

].'[DDf →→→→∈∈∈∈

)(sup
))((sup
))((sup)(sup

ii

0ii

0iiii

fH
xf
xffH

====
====
====

by pointwise convergence

Lambda calculus I 97

Note that the set is directed and

hence by monotonicity, we get

}|)({ Nnf n ∈∈∈∈⊥⊥⊥⊥

),(⊥⊥⊥⊥≤≤≤≤⊥⊥⊥⊥ f
...)()(≤≤≤≤⊥⊥⊥⊥≤≤≤≤⊥⊥⊥⊥≤≤≤≤⊥⊥⊥⊥ 2ff

Therefore

(((()))).)(sup))((sup))((fFixffffFixf 1n
n

n
n ====⊥⊥⊥⊥====⊥⊥⊥⊥==== ++++

If x is another fixed point of f then f(x)=x and

thus by monotonicity

Hence

,x≤≤≤≤⊥⊥⊥⊥

.)()(xxff nn ====≤≤≤≤⊥⊥⊥⊥

.)(xfFix ≤≤≤≤

Lambda calculus I 98

Lemma on separate continuity.

Let Then f is continuous iff f is
continuous in each of its variables separately i.e.

and are continuous for all

'.'': DDDf →→→→××××

)´,(. 0
s xxfxλλλλ),(. '' xxfx 0

sλλλλ .´, 00 xx

Proof. as usual.

Let be directed. Then

⇒⇒⇒⇒

⇐⇐⇐⇐ 'DDX ××××⊆⊆⊆⊆

).',(sup

)',(supsup

))sup(,(sup
))sup(,)(sup()(sup

)',(

)(')(

)(

xxf

xxf

Xxf
XXfXf

Xxx

XxXx

1Xx

10

10

0

∈∈∈∈

∈∈∈∈∈∈∈∈

∈∈∈∈

====

====

====
====

The last equality follows from the fact that X is directed.
Hence f is continuous.

Lambda calculus I 99

We are going to define the lattice versions of operations of
application and abstraction and we will show that these
operations are continuous.

Definition.
Put
(i) by
(ii) for define abstraction as follows

')]'([: DDDDAp →→→→××××→→→→).(),(xfxfAp ====
]")'[(DDDf →→→→××××∈∈∈∈

).,(. yxfysλλλλ

Lambda calculus I 100

Theorem.
(i) Ap is continuous.

(ii) and depends continuously on x.

Proof.

]"'[),(. DDyxfys →→→→∈∈∈∈λλλλ

We shall use the lemma on separate continuity.
(i) is continuous since
To prove the other continuity, let
put then for any directed
family , we have

fxfxxfApx ss ====λλλλ====λλλλ)(.),(.].'[DDf →→→→∈∈∈∈

).(.),(. 0
s

0
s xffxfApfH λλλλ====λλλλ====

Iifi ∈∈∈∈,

].'[DDf →→→→∈∈∈∈

)(sup
))((sup
))((sup)(sup

ii

0ii

0iiii

fH
xf
xffH

====
====
====

by pointwise convergence

Lambda calculus I 101

Hence Ap is continuous.

(ii) It follows from the separate continuity that

Moreover, for a directed we have

]"'[),(. DDyxfys →→→→∈∈∈∈λλλλ

DX ⊆⊆⊆⊆

),(.sup
),(sup.),(sup.

yxfy
yxfyyXfy

s
x

x
ss

λλλλ====

λλλλ====λλλλ

by continuity of f and the commutativity of supremum
and set abstraction.

Lambda calculus I 102

Definition.
(i) We say that D is a retract of D� and write

if there are continuous mappings F, G

such that and

(ii) We say that D is reflexive if

,'DD <<<<

':,': DDGDDF →→→→→→→→ .DidGF ====o

.][DDD <<<<→→→→

Remark. If using maps F, G, then F is
�onto� and G is �one-to-one�. We may identify D

with its image Then F �retracts� the
larger space D� to the subspace D.

'DD <<<<

'.)(DDG ⊆⊆⊆⊆

Lambda calculus I 103

We shall show that every reflexive complete lattice
determines a model of the lambda calculus.

Definition.
Let D be reflexive due to mappings F, G. Hence

)(][:

)(][:

][

2DDDG

1DDDDF

DDD

→→→→→→→→

⊆⊆⊆⊆→→→→→→→→

<<<<→→→→

(i) Thus for we have In this
way elements of D become functions on D and we
may write for application

Dx ∈∈∈∈].[)(DDxF →→→→∈∈∈∈

).())((. DyxFyFx ∈∈∈∈====

Lambda calculus I 104

(ii) On the other hand, every function continuous on D
becomes via G an element of D.Thus for continuous f,
we may write (abstraction)).()()(. DfGxfxG ∈∈∈∈====λλλλ

Definition.
A valuation in D is a map ρ which to every term
variable x adds a value ρ(x) in D.

Lambda calculus I 101

Hence Ap is continuous.

(ii) It follows from the separate continuity that

Moreover, for a directed we have

]"'[),(. DDyxfys →→→→∈∈∈∈λλλλ

DX ⊆⊆⊆⊆

),(.sup
),(sup.),(sup.

yxfy
yxfyyXfy

s
x

x
ss

λλλλ====

λλλλ====λλλλ

by continuity of f and the commutativity of supremum
and set abstraction.

Lambda calculus I 102

Definition.
(i) We say that D is a retract of D� and write

if there are continuous mappings F, G

such that and

(ii) We say that D is reflexive if

,'DD <<<<

':,': DDGDDF →→→→→→→→ .DidGF ====o

.][DDD <<<<→→→→

Remark. If using maps F, G, then F is
�onto� and G is �one-to-one�. We may identify D

with its image Then F �retracts� the
larger space D� to the subspace D.

'DD <<<<

'.)(DDG ⊆⊆⊆⊆

Lambda calculus I 103

We shall show that every reflexive complete lattice
determines a model of the lambda calculus.

Definition.
Let D be reflexive due to mappings F, G. Hence

)(][:

)(][:

][

2DDDG

1DDDDF

DDD

→→→→→→→→

⊆⊆⊆⊆→→→→→→→→

<<<<→→→→

(i) Thus for we have In this
way elements of D become functions on D and we
may write for application

Dx ∈∈∈∈].[)(DDxF →→→→∈∈∈∈

).())((. DyxFyFx ∈∈∈∈====

Lambda calculus I 104

(ii) On the other hand, every function continuous on D
becomes via G an element of D.Thus for continuous f,
we may write (abstraction)).()()(. DfGxfxG ∈∈∈∈====λλλλ

Definition.
A valuation in D is a map ρ which to every term
variable x adds a value ρ(x) in D.

Lambda calculus I 101

Hence Ap is continuous.

(ii) It follows from the separate continuity that

Moreover, for a directed we have

]"'[),(. DDyxfys →→→→∈∈∈∈λλλλ

DX ⊆⊆⊆⊆

),(.sup
),(sup.),(sup.

yxfy
yxfyyXfy

s
x

x
ss

λλλλ====

λλλλ====λλλλ

by continuity of f and the commutativity of supremum
and set abstraction.

Lambda calculus I 102

Definition.
(i) We say that D is a retract of D� and write

if there are continuous mappings F, G

such that and

(ii) We say that D is reflexive if

,'DD <<<<

':,': DDGDDF →→→→→→→→ .DidGF ====o

.][DDD <<<<→→→→

Remark. If using maps F, G, then F is
�onto� and G is �one-to-one�. We may identify D

with its image Then F �retracts� the
larger space D� to the subspace D.

'DD <<<<

'.)(DDG ⊆⊆⊆⊆

Lambda calculus I 103

We shall show that every reflexive complete lattice
determines a model of the lambda calculus.

Definition.
Let D be reflexive due to mappings F, G. Hence

)(][:

)(][:

][

2DDDG

1DDDDF

DDD

→→→→→→→→

⊆⊆⊆⊆→→→→→→→→

<<<<→→→→

(i) Thus for we have In this
way elements of D become functions on D and we
may write for application

Dx ∈∈∈∈].[)(DDxF →→→→∈∈∈∈

).())((. DyxFyFx ∈∈∈∈====

Lambda calculus I 104

(ii) On the other hand, every function continuous on D
becomes via G an element of D.Thus for continuous f,
we may write (abstraction)).()()(. DfGxfxG ∈∈∈∈====λλλλ

Definition.
A valuation in D is a map ρ which to every term
variable x adds a value ρ(x) in D.

Lambda calculus I 101

Hence Ap is continuous.

(ii) It follows from the separate continuity that

Moreover, for a directed we have

]"'[),(. DDyxfys →→→→∈∈∈∈λλλλ

DX ⊆⊆⊆⊆

),(.sup
),(sup.),(sup.

yxfy
yxfyyXfy

s
x

x
ss

λλλλ====

λλλλ====λλλλ

by continuity of f and the commutativity of supremum
and set abstraction.

Lambda calculus I 102

Definition.
(i) We say that D is a retract of D� and write

if there are continuous mappings F, G

such that and

(ii) We say that D is reflexive if

,'DD <<<<

':,': DDGDDF →→→→→→→→ .DidGF ====o

.][DDD <<<<→→→→

Remark. If using maps F, G, then F is
�onto� and G is �one-to-one�. We may identify D

with its image Then F �retracts� the
larger space D� to the subspace D.

'DD <<<<

'.)(DDG ⊆⊆⊆⊆

Lambda calculus I 103

We shall show that every reflexive complete lattice
determines a model of the lambda calculus.

Definition.
Let D be reflexive due to mappings F, G. Hence

)(][:

)(][:

][

2DDDG

1DDDDF

DDD

→→→→→→→→

⊆⊆⊆⊆→→→→→→→→

<<<<→→→→

(i) Thus for we have In this
way elements of D become functions on D and we
may write for application

Dx ∈∈∈∈].[)(DDxF →→→→∈∈∈∈

).())((. DyxFyFx ∈∈∈∈====

Lambda calculus I 104

(ii) On the other hand, every function continuous on D
becomes via G an element of D.Thus for continuous f,
we may write (abstraction)).()()(. DfGxfxG ∈∈∈∈====λλλλ

Definition.
A valuation in D is a map ρ which to every term
variable x adds a value ρ(x) in D.

Lambda calculus I 105

Definition.
Let D be reflexive via F, G. Let ρ be a valuation in D
and M be a λ-term. The denotation of M in D
under valuation ρ is defined by induction on M as
follows:

D

dx
GD

DDD

D

PdPx

QFPPQ

xx

):(
..

.

)(

====ρρρρρρρρ

ρρρρρρρρρρρρ

ρρρρ

λλλλ====λλλλ

====

ρρρρ====

where ρ(x:=d) is the valuation ρ� with





≡≡≡≡

≡≡≡≡////ρρρρ
====ρρρρ

xyifd

xyify
y

)(
)('

ρρρρ
M

Lambda calculus I 106

The definition is correct. By induction on P one can show
the continuity of ..

):(

D

dx
G Pd

====ρρρρ
λλλλ

Definition.
We say that M=N is true in D and write D|= M=N if for
all valuations ρ, we have .DD NM

ρρρρρρρρ
====

Intuitively, the denotation is M interpreted in D where
every lambda calculus application is interpreted as and
every abstraction λ as For instance

DM
ρρρρ

F.
.Gλλλλ

).(.)(.. yxxyddxyx GGD ρρρρλλλλ====ρρρρλλλλ====λλλλ
ρρρρ

Lambda calculus I 107

Notation.
If D is reflexive and ρ is a valuation, it is obvious that the
denotation depends only on the values of ρ on DM

ρρρρ).(MFV

DD MMMFVMFV
'

)(|')(|
ρρρρρρρρ

====⇒⇒⇒⇒ρρρρ====ρρρρ

Where | denotes the function restriction. In particular for com-
binators, does not depend on ρ and may be written
If D is clear from the context, we write or

DM
ρρρρ .DM

ρρρρ
M .M

Lambda calculus I 108

Theorem.
If D is a reflexive complete lattice by means of mappings
F and G, then D is a sound model for the lambda
calculus. In other words, we have

.|| NMDNM ========⇒⇒⇒⇒====−−−−λλλλ

Proof.

By induction of the proof of M=N. The only two
interesting cases are the axiom (β) and the rule (ξ).

Lambda calculus I 105

Definition.
Let D be reflexive via F, G. Let ρ be a valuation in D
and M be a λ-term. The denotation of M in D
under valuation ρ is defined by induction on M as
follows:

D

dx
GD

DDD

D

PdPx

QFPPQ

xx

):(
..

.

)(

====ρρρρρρρρ

ρρρρρρρρρρρρ

ρρρρ

λλλλ====λλλλ

====

ρρρρ====

where ρ(x:=d) is the valuation ρ� with





≡≡≡≡

≡≡≡≡////ρρρρ
====ρρρρ

xyifd

xyify
y

)(
)('

ρρρρ
M

Lambda calculus I 106

The definition is correct. By induction on P one can show
the continuity of ..

):(

D

dx
G Pd

====ρρρρ
λλλλ

Definition.
We say that M=N is true in D and write D|= M=N if for
all valuations ρ, we have .DD NM

ρρρρρρρρ
====

Intuitively, the denotation is M interpreted in D where
every lambda calculus application is interpreted as and
every abstraction λ as For instance

DM
ρρρρ

F.
.Gλλλλ

).(.)(.. yxxyddxyx GGD ρρρρλλλλ====ρρρρλλλλ====λλλλ
ρρρρ

Lambda calculus I 107

Notation.
If D is reflexive and ρ is a valuation, it is obvious that the
denotation depends only on the values of ρ on DM

ρρρρ).(MFV

DD MMMFVMFV
'

)(|')(|
ρρρρρρρρ

====⇒⇒⇒⇒ρρρρ====ρρρρ

Where | denotes the function restriction. In particular for com-
binators, does not depend on ρ and may be written
If D is clear from the context, we write or

DM
ρρρρ .DM

ρρρρ
M .M

Lambda calculus I 108

Theorem.
If D is a reflexive complete lattice by means of mappings
F and G, then D is a sound model for the lambda
calculus. In other words, we have

.|| NMDNM ========⇒⇒⇒⇒====−−−−λλλλ

Proof.

By induction of the proof of M=N. The only two
interesting cases are the axiom (β) and the rule (ξ).

Lambda calculus I 105

Definition.
Let D be reflexive via F, G. Let ρ be a valuation in D
and M be a λ-term. The denotation of M in D
under valuation ρ is defined by induction on M as
follows:

D

dx
GD

DDD

D

PdPx

QFPPQ

xx

):(
..

.

)(

====ρρρρρρρρ

ρρρρρρρρρρρρ

ρρρρ

λλλλ====λλλλ

====

ρρρρ====

where ρ(x:=d) is the valuation ρ� with





≡≡≡≡

≡≡≡≡////ρρρρ
====ρρρρ

xyifd

xyify
y

)(
)('

ρρρρ
M

Lambda calculus I 106

The definition is correct. By induction on P one can show
the continuity of ..

):(

D

dx
G Pd

====ρρρρ
λλλλ

Definition.
We say that M=N is true in D and write D|= M=N if for
all valuations ρ, we have .DD NM

ρρρρρρρρ
====

Intuitively, the denotation is M interpreted in D where
every lambda calculus application is interpreted as and
every abstraction λ as For instance

DM
ρρρρ

F.
.Gλλλλ

).(.)(.. yxxyddxyx GGD ρρρρλλλλ====ρρρρλλλλ====λλλλ
ρρρρ

Lambda calculus I 107

Notation.
If D is reflexive and ρ is a valuation, it is obvious that the
denotation depends only on the values of ρ on DM

ρρρρ).(MFV

DD MMMFVMFV
'

)(|')(|
ρρρρρρρρ

====⇒⇒⇒⇒ρρρρ====ρρρρ

Where | denotes the function restriction. In particular for com-
binators, does not depend on ρ and may be written
If D is clear from the context, we write or

DM
ρρρρ .DM

ρρρρ
M .M

Lambda calculus I 108

Theorem.
If D is a reflexive complete lattice by means of mappings
F and G, then D is a sound model for the lambda
calculus. In other words, we have

.|| NMDNM ========⇒⇒⇒⇒====−−−−λλλλ

Proof.

By induction of the proof of M=N. The only two
interesting cases are the axiom (β) and the rule (ξ).

Lambda calculus I 105

Definition.
Let D be reflexive via F, G. Let ρ be a valuation in D
and M be a λ-term. The denotation of M in D
under valuation ρ is defined by induction on M as
follows:

D

dx
GD

DDD

D

PdPx

QFPPQ

xx

):(
..

.

)(

====ρρρρρρρρ

ρρρρρρρρρρρρ

ρρρρ

λλλλ====λλλλ

====

ρρρρ====

where ρ(x:=d) is the valuation ρ� with





≡≡≡≡

≡≡≡≡////ρρρρ
====ρρρρ

xyifd

xyify
y

)(
)('

ρρρρ
M

Lambda calculus I 106

The definition is correct. By induction on P one can show
the continuity of ..

):(

D

dx
G Pd

====ρρρρ
λλλλ

Definition.
We say that M=N is true in D and write D|= M=N if for
all valuations ρ, we have .DD NM

ρρρρρρρρ
====

Intuitively, the denotation is M interpreted in D where
every lambda calculus application is interpreted as and
every abstraction λ as For instance

DM
ρρρρ

F.
.Gλλλλ

).(.)(.. yxxyddxyx GGD ρρρρλλλλ====ρρρρλλλλ====λλλλ
ρρρρ

Lambda calculus I 107

Notation.
If D is reflexive and ρ is a valuation, it is obvious that the
denotation depends only on the values of ρ on DM

ρρρρ).(MFV

DD MMMFVMFV
'

)(|')(|
ρρρρρρρρ

====⇒⇒⇒⇒ρρρρ====ρρρρ

Where | denotes the function restriction. In particular for com-
binators, does not depend on ρ and may be written
If D is clear from the context, we write or

DM
ρρρρ .DM

ρρρρ
M .M

Lambda calculus I 108

Theorem.
If D is a reflexive complete lattice by means of mappings
F and G, then D is a sound model for the lambda
calculus. In other words, we have

.|| NMDNM ========⇒⇒⇒⇒====−−−−λλλλ

Proof.

By induction of the proof of M=N. The only two
interesting cases are the axiom (β) and the rule (ξ).

Lambda calculus I 109

(β) is the scheme For an arbitrary
valuation ρ, we have

].:[).(NxMNMx ========λλλλ

ρρρρ====ρρρρρρρρ
λλλλ====λλλλ NMdNMx Fdx

G)..().(
):(

)))(.((
):(ρρρρ====ρρρρ

λλλλ==== NMdGF
dx

s

}{))(.(
):(Ddx

s idGFNMd ====λλλλ====
ρρρρ====ρρρρ

o

):(ρρρρ====ρρρρ
====

Nx
M

We need

Lemma.
ρρρρ====ρρρρρρρρ

========
Nx

MNxM
:(

]:[

Lambda calculus I 110

Proof by induction on the structure of M. Write

):(],:[
ρρρρ

∗∗∗∗∗∗∗∗ ====ρρρρ====ρρρρ====≡≡≡≡ NxNxPP

Then
∗∗∗∗ρρρρρρρρρρρρ

∗∗∗∗ ======== xNx

∗∗∗∗ρρρρρρρρ

∗∗∗∗ ====ρρρρ==== yyy)(

IHPQQP

QPPQ

F

F

∗∗∗∗∗∗∗∗∗∗∗∗ ρρρρρρρρρρρρ

ρρρρ

∗∗∗∗

ρρρρ

∗∗∗∗

ρρρρ

∗∗∗∗

========

====

)(.

.)(

∗∗∗∗====ρρρρ====ρρρρ

∗∗∗∗

ρρρρ

∗∗∗∗ λλλλ====λλλλ====λλλλ
)):(():(

..).(
dy

G

dy

G PdPdPy

):(
..

dy
G PdPy

====ρρρρρρρρ ∗∗∗∗∗∗∗∗ λλλλ====λλλλ

It suffices to note that).:()):((dydy ====ρρρρ========ρρρρ ∗∗∗∗∗∗∗∗

Lambda calculus I 111

We have proved and the proof of
the axiom (β) is complete.

ρρρρρρρρ
========λλλλ NxMNMx :[).(

The rule ξ: We have to show... NxMxNM λλλλ====λλλλ⇒⇒⇒⇒====

...|| NxMxDNMD λλλλ====λλλλ====⇒⇒⇒⇒========
Indeed

NxMxD

allforNxMx

allforNdMd

allforNdMd

dallforNM

allforNM
NMD

dx
G

dx
G

dx
s

dx
s

dxdx

..|

..

..

..

,

|

):():(

):():(

):():(

λλλλ====λλλλ====⇒⇒⇒⇒

ρρρρλλλλ====λλλλ⇒⇒⇒⇒

ρρρρλλλλ====λλλλ⇒⇒⇒⇒

ρρρρλλλλ====λλλλ⇒⇒⇒⇒

ρρρρ====⇒⇒⇒⇒

ρρρρ====⇒⇒⇒⇒

========

ρρρρρρρρ

====ρρρρ====ρρρρ

====ρρρρ====ρρρρ

====ρρρρ====ρρρρ

ρρρρρρρρ

Lambda calculus I 112

It remains to show that reflexive complete lattices do exist. We
will give an example of a reflexive complete lattice called
The method is due to Engeler and it is a code-free variant of the
graph model Pω due to Plotkin and Scott.

.AD

Definition.

(i) Let A be a set, by induction on defineNn ∈∈∈∈

},|),{(finite and ββββ⊆⊆⊆⊆ββββ∈∈∈∈ββββ∪∪∪∪====
====

++++ nnn1n

0

BBbbBB
AB

U
n

nBB ====

}|{)(BxxBPDA ⊆⊆⊆⊆========

Lambda calculus I 109

(β) is the scheme For an arbitrary
valuation ρ, we have

].:[).(NxMNMx ========λλλλ

ρρρρ====ρρρρρρρρ
λλλλ====λλλλ NMdNMx Fdx

G)..().(
):(

)))(.((
):(ρρρρ====ρρρρ

λλλλ==== NMdGF
dx

s

}{))(.(
):(Ddx

s idGFNMd ====λλλλ====
ρρρρ====ρρρρ

o

):(ρρρρ====ρρρρ
====

Nx
M

We need

Lemma.
ρρρρ====ρρρρρρρρ

========
Nx

MNxM
:(

]:[

Lambda calculus I 110

Proof by induction on the structure of M. Write

):(],:[
ρρρρ

∗∗∗∗∗∗∗∗ ====ρρρρ====ρρρρ====≡≡≡≡ NxNxPP

Then
∗∗∗∗ρρρρρρρρρρρρ

∗∗∗∗ ======== xNx

∗∗∗∗ρρρρρρρρ

∗∗∗∗ ====ρρρρ==== yyy)(

IHPQQP

QPPQ

F

F

∗∗∗∗∗∗∗∗∗∗∗∗ ρρρρρρρρρρρρ

ρρρρ

∗∗∗∗

ρρρρ

∗∗∗∗

ρρρρ

∗∗∗∗

========

====

)(.

.)(

∗∗∗∗====ρρρρ====ρρρρ

∗∗∗∗

ρρρρ

∗∗∗∗ λλλλ====λλλλ====λλλλ
)):(():(

..).(
dy

G

dy

G PdPdPy

):(
..

dy
G PdPy

====ρρρρρρρρ ∗∗∗∗∗∗∗∗ λλλλ====λλλλ

It suffices to note that).:()):((dydy ====ρρρρ========ρρρρ ∗∗∗∗∗∗∗∗

Lambda calculus I 111

We have proved and the proof of
the axiom (β) is complete.

ρρρρρρρρ
========λλλλ NxMNMx :[).(

The rule ξ: We have to show... NxMxNM λλλλ====λλλλ⇒⇒⇒⇒====

...|| NxMxDNMD λλλλ====λλλλ====⇒⇒⇒⇒========
Indeed

NxMxD

allforNxMx

allforNdMd

allforNdMd

dallforNM

allforNM
NMD

dx
G

dx
G

dx
s

dx
s

dxdx

..|

..

..

..

,

|

):():(

):():(

):():(

λλλλ====λλλλ====⇒⇒⇒⇒

ρρρρλλλλ====λλλλ⇒⇒⇒⇒

ρρρρλλλλ====λλλλ⇒⇒⇒⇒

ρρρρλλλλ====λλλλ⇒⇒⇒⇒

ρρρρ====⇒⇒⇒⇒

ρρρρ====⇒⇒⇒⇒

========

ρρρρρρρρ

====ρρρρ====ρρρρ

====ρρρρ====ρρρρ

====ρρρρ====ρρρρ

ρρρρρρρρ

Lambda calculus I 112

It remains to show that reflexive complete lattices do exist. We
will give an example of a reflexive complete lattice called
The method is due to Engeler and it is a code-free variant of the
graph model Pω due to Plotkin and Scott.

.AD

Definition.

(i) Let A be a set, by induction on defineNn ∈∈∈∈

},|),{(finite and ββββ⊆⊆⊆⊆ββββ∈∈∈∈ββββ∪∪∪∪====
====

++++ nnn1n

0

BBbbBB
AB

U
n

nBB ====

}|{)(BxxBPDA ⊆⊆⊆⊆========

Lambda calculus I 109

(β) is the scheme For an arbitrary
valuation ρ, we have

].:[).(NxMNMx ========λλλλ

ρρρρ====ρρρρρρρρ
λλλλ====λλλλ NMdNMx Fdx

G)..().(
):(

)))(.((
):(ρρρρ====ρρρρ

λλλλ==== NMdGF
dx

s

}{))(.(
):(Ddx

s idGFNMd ====λλλλ====
ρρρρ====ρρρρ

o

):(ρρρρ====ρρρρ
====

Nx
M

We need

Lemma.
ρρρρ====ρρρρρρρρ

========
Nx

MNxM
:(

]:[

Lambda calculus I 110

Proof by induction on the structure of M. Write

):(],:[
ρρρρ

∗∗∗∗∗∗∗∗ ====ρρρρ====ρρρρ====≡≡≡≡ NxNxPP

Then
∗∗∗∗ρρρρρρρρρρρρ

∗∗∗∗ ======== xNx

∗∗∗∗ρρρρρρρρ

∗∗∗∗ ====ρρρρ==== yyy)(

IHPQQP

QPPQ

F

F

∗∗∗∗∗∗∗∗∗∗∗∗ ρρρρρρρρρρρρ

ρρρρ

∗∗∗∗

ρρρρ

∗∗∗∗

ρρρρ

∗∗∗∗

========

====

)(.

.)(

∗∗∗∗====ρρρρ====ρρρρ

∗∗∗∗

ρρρρ

∗∗∗∗ λλλλ====λλλλ====λλλλ
)):(():(

..).(
dy

G

dy

G PdPdPy

):(
..

dy
G PdPy

====ρρρρρρρρ ∗∗∗∗∗∗∗∗ λλλλ====λλλλ

It suffices to note that).:()):((dydy ====ρρρρ========ρρρρ ∗∗∗∗∗∗∗∗

Lambda calculus I 111

We have proved and the proof of
the axiom (β) is complete.

ρρρρρρρρ
========λλλλ NxMNMx :[).(

The rule ξ: We have to show... NxMxNM λλλλ====λλλλ⇒⇒⇒⇒====

...|| NxMxDNMD λλλλ====λλλλ====⇒⇒⇒⇒========
Indeed

NxMxD

allforNxMx

allforNdMd

allforNdMd

dallforNM

allforNM
NMD

dx
G

dx
G

dx
s

dx
s

dxdx

..|

..

..

..

,

|

):():(

):():(

):():(

λλλλ====λλλλ====⇒⇒⇒⇒

ρρρρλλλλ====λλλλ⇒⇒⇒⇒

ρρρρλλλλ====λλλλ⇒⇒⇒⇒

ρρρρλλλλ====λλλλ⇒⇒⇒⇒

ρρρρ====⇒⇒⇒⇒

ρρρρ====⇒⇒⇒⇒

========

ρρρρρρρρ

====ρρρρ====ρρρρ

====ρρρρ====ρρρρ

====ρρρρ====ρρρρ

ρρρρρρρρ

Lambda calculus I 112

It remains to show that reflexive complete lattices do exist. We
will give an example of a reflexive complete lattice called
The method is due to Engeler and it is a code-free variant of the
graph model Pω due to Plotkin and Scott.

.AD

Definition.

(i) Let A be a set, by induction on defineNn ∈∈∈∈

},|),{(finite and ββββ⊆⊆⊆⊆ββββ∈∈∈∈ββββ∪∪∪∪====
====

++++ nnn1n

0

BBbbBB
AB

U
n

nBB ====

}|{)(BxxBPDA ⊆⊆⊆⊆========

Lambda calculus I 109

(β) is the scheme For an arbitrary
valuation ρ, we have

].:[).(NxMNMx ========λλλλ

ρρρρ====ρρρρρρρρ
λλλλ====λλλλ NMdNMx Fdx

G)..().(
):(

)))(.((
):(ρρρρ====ρρρρ

λλλλ==== NMdGF
dx

s

}{))(.(
):(Ddx

s idGFNMd ====λλλλ====
ρρρρ====ρρρρ

o

):(ρρρρ====ρρρρ
====

Nx
M

We need

Lemma.
ρρρρ====ρρρρρρρρ

========
Nx

MNxM
:(

]:[

Lambda calculus I 110

Proof by induction on the structure of M. Write

):(],:[
ρρρρ

∗∗∗∗∗∗∗∗ ====ρρρρ====ρρρρ====≡≡≡≡ NxNxPP

Then
∗∗∗∗ρρρρρρρρρρρρ

∗∗∗∗ ======== xNx

∗∗∗∗ρρρρρρρρ

∗∗∗∗ ====ρρρρ==== yyy)(

IHPQQP

QPPQ

F

F

∗∗∗∗∗∗∗∗∗∗∗∗ ρρρρρρρρρρρρ

ρρρρ

∗∗∗∗

ρρρρ

∗∗∗∗

ρρρρ

∗∗∗∗

========

====

)(.

.)(

∗∗∗∗====ρρρρ====ρρρρ

∗∗∗∗

ρρρρ

∗∗∗∗ λλλλ====λλλλ====λλλλ
)):(():(

..).(
dy

G

dy

G PdPdPy

):(
..

dy
G PdPy

====ρρρρρρρρ ∗∗∗∗∗∗∗∗ λλλλ====λλλλ

It suffices to note that).:()):((dydy ====ρρρρ========ρρρρ ∗∗∗∗∗∗∗∗

Lambda calculus I 111

We have proved and the proof of
the axiom (β) is complete.

ρρρρρρρρ
========λλλλ NxMNMx :[).(

The rule ξ: We have to show... NxMxNM λλλλ====λλλλ⇒⇒⇒⇒====

...|| NxMxDNMD λλλλ====λλλλ====⇒⇒⇒⇒========
Indeed

NxMxD

allforNxMx

allforNdMd

allforNdMd

dallforNM

allforNM
NMD

dx
G

dx
G

dx
s

dx
s

dxdx

..|

..

..

..

,

|

):():(

):():(

):():(

λλλλ====λλλλ====⇒⇒⇒⇒

ρρρρλλλλ====λλλλ⇒⇒⇒⇒

ρρρρλλλλ====λλλλ⇒⇒⇒⇒

ρρρρλλλλ====λλλλ⇒⇒⇒⇒

ρρρρ====⇒⇒⇒⇒

ρρρρ====⇒⇒⇒⇒

========

ρρρρρρρρ

====ρρρρ====ρρρρ

====ρρρρ====ρρρρ

====ρρρρ====ρρρρ

ρρρρρρρρ

Lambda calculus I 112

It remains to show that reflexive complete lattices do exist. We
will give an example of a reflexive complete lattice called
The method is due to Engeler and it is a code-free variant of the
graph model Pω due to Plotkin and Scott.

.AD

Definition.

(i) Let A be a set, by induction on defineNn ∈∈∈∈

},|),{(finite and ββββ⊆⊆⊆⊆ββββ∈∈∈∈ββββ∪∪∪∪====
====

++++ nnn1n

0

BBbbBB
AB

U
n

nBB ====

}|{)(BxxBPDA ⊆⊆⊆⊆========

Lambda calculus I 113

is considered as a complete lattice ordered by inclusion
The set B is the closure of A under the operation of forming
ordered pairs. It is assumed that A consists of urelements in
order it does not contain pairs

).(⊆⊆⊆⊆

.),(Bb ∈∈∈∈ββββ

AD

(ii) Define

by][: AAA DDDF →→→→→→→→ AAA DDDG →→→→→→→→][:

)}),((|{))((xbybyxF ∈∈∈∈ββββ⊆⊆⊆⊆ββββ∃∃∃∃====

)}.(|),{()(ββββ∈∈∈∈ββββ==== fbbfG

Lambda calculus I 114

We shall show later that F, G are continuos and prove
the reflexivity. Let and be
arbitrary. We have

],[AA DDf →→→→∈∈∈∈ ADy ∈∈∈∈

))})((|),({())((yfbbFyfGF ββββ∈∈∈∈ββββ====o

)}(|{ ββββ∈∈∈∈⊆⊆⊆⊆ββββ∃∃∃∃==== fbyb

U
y

f
⊆⊆⊆⊆ββββ

ββββ====)(

)(yf====

Since is a directed supremum. We haveU
y

y
⊆⊆⊆⊆ββββ

ββββ====

.][AA DDidGF →→→→====o

Lambda calculus I 115

(a) F is continuous: let be directed.ADX ⊆⊆⊆⊆

}),(|{))(())((sup U U XbybyXFyXF ∈∈∈∈ββββ⊆⊆⊆⊆ββββ∃∃∃∃========

U
Xx

xbyb
∈∈∈∈

∈∈∈∈ββββ⊆⊆⊆⊆ββββ∃∃∃∃==== }),(|{

}|))(({sup XxyxF ∈∈∈∈====

(b) continuity of G: let be directed, let][AA DDY →→→→⊆⊆⊆⊆
Yf sup==== U

Yy

yf
∈∈∈∈

ββββ====ββββ).()(

Then U
Yy

ybbfbbfG
∈∈∈∈

ββββ∈∈∈∈ββββ====ββββ∈∈∈∈ββββ====)(|),{()}(|),{()(

U
Yy

ybb
∈∈∈∈

ββββ∈∈∈∈ββββ====)}(|),{(

}|)(sup{ YyyG ∈∈∈∈====

hence

Lambda calculus I 116

Theorem. (Semantic proof of consistency of λ-calculus)

The lambda calculus is consistent: .| falsetrue ====−−−−////λλλλ

Proof.

If then It suffices to take a
valuation ρ of variables in such that

yx ====−−−−λλλλ | .| yxDA ========

AD
).()(yx ρρρρ====////ρρρρ Then a contradiction.yxDA ========////|

Lambda calculus I 113

is considered as a complete lattice ordered by inclusion
The set B is the closure of A under the operation of forming
ordered pairs. It is assumed that A consists of urelements in
order it does not contain pairs

).(⊆⊆⊆⊆

.),(Bb ∈∈∈∈ββββ

AD

(ii) Define

by][: AAA DDDF →→→→→→→→ AAA DDDG →→→→→→→→][:

)}),((|{))((xbybyxF ∈∈∈∈ββββ⊆⊆⊆⊆ββββ∃∃∃∃====

)}.(|),{()(ββββ∈∈∈∈ββββ==== fbbfG

Lambda calculus I 114

We shall show later that F, G are continuos and prove
the reflexivity. Let and be
arbitrary. We have

],[AA DDf →→→→∈∈∈∈ ADy ∈∈∈∈

))})((|),({())((yfbbFyfGF ββββ∈∈∈∈ββββ====o

)}(|{ ββββ∈∈∈∈⊆⊆⊆⊆ββββ∃∃∃∃==== fbyb

U
y

f
⊆⊆⊆⊆ββββ

ββββ====)(

)(yf====

Since is a directed supremum. We haveU
y

y
⊆⊆⊆⊆ββββ

ββββ====

.][AA DDidGF →→→→====o

Lambda calculus I 115

(a) F is continuous: let be directed.ADX ⊆⊆⊆⊆

}),(|{))(())((sup U U XbybyXFyXF ∈∈∈∈ββββ⊆⊆⊆⊆ββββ∃∃∃∃========

U
Xx

xbyb
∈∈∈∈

∈∈∈∈ββββ⊆⊆⊆⊆ββββ∃∃∃∃==== }),(|{

}|))(({sup XxyxF ∈∈∈∈====

(b) continuity of G: let be directed, let][AA DDY →→→→⊆⊆⊆⊆
Yf sup==== U

Yy

yf
∈∈∈∈

ββββ====ββββ).()(

Then U
Yy

ybbfbbfG
∈∈∈∈

ββββ∈∈∈∈ββββ====ββββ∈∈∈∈ββββ====)(|),{()}(|),{()(

U
Yy

ybb
∈∈∈∈

ββββ∈∈∈∈ββββ====)}(|),{(

}|)(sup{ YyyG ∈∈∈∈====

hence

Lambda calculus I 116

Theorem. (Semantic proof of consistency of λ-calculus)

The lambda calculus is consistent: .| falsetrue ====−−−−////λλλλ

Proof.

If then It suffices to take a
valuation ρ of variables in such that

yx ====−−−−λλλλ | .| yxDA ========

AD
).()(yx ρρρρ====////ρρρρ Then a contradiction.yxDA ========////|

Lambda calculus I 113

is considered as a complete lattice ordered by inclusion
The set B is the closure of A under the operation of forming
ordered pairs. It is assumed that A consists of urelements in
order it does not contain pairs

).(⊆⊆⊆⊆

.),(Bb ∈∈∈∈ββββ

AD

(ii) Define

by][: AAA DDDF →→→→→→→→ AAA DDDG →→→→→→→→][:

)}),((|{))((xbybyxF ∈∈∈∈ββββ⊆⊆⊆⊆ββββ∃∃∃∃====

)}.(|),{()(ββββ∈∈∈∈ββββ==== fbbfG

Lambda calculus I 114

We shall show later that F, G are continuos and prove
the reflexivity. Let and be
arbitrary. We have

],[AA DDf →→→→∈∈∈∈ ADy ∈∈∈∈

))})((|),({())((yfbbFyfGF ββββ∈∈∈∈ββββ====o

)}(|{ ββββ∈∈∈∈⊆⊆⊆⊆ββββ∃∃∃∃==== fbyb

U
y

f
⊆⊆⊆⊆ββββ

ββββ====)(

)(yf====

Since is a directed supremum. We haveU
y

y
⊆⊆⊆⊆ββββ

ββββ====

.][AA DDidGF →→→→====o

Lambda calculus I 115

(a) F is continuous: let be directed.ADX ⊆⊆⊆⊆

}),(|{))(())((sup U U XbybyXFyXF ∈∈∈∈ββββ⊆⊆⊆⊆ββββ∃∃∃∃========

U
Xx

xbyb
∈∈∈∈

∈∈∈∈ββββ⊆⊆⊆⊆ββββ∃∃∃∃==== }),(|{

}|))(({sup XxyxF ∈∈∈∈====

(b) continuity of G: let be directed, let][AA DDY →→→→⊆⊆⊆⊆
Yf sup==== U

Yy

yf
∈∈∈∈

ββββ====ββββ).()(

Then U
Yy

ybbfbbfG
∈∈∈∈

ββββ∈∈∈∈ββββ====ββββ∈∈∈∈ββββ====)(|),{()}(|),{()(

U
Yy

ybb
∈∈∈∈

ββββ∈∈∈∈ββββ====)}(|),{(

}|)(sup{ YyyG ∈∈∈∈====

hence

Lambda calculus I 116

Theorem. (Semantic proof of consistency of λ-calculus)

The lambda calculus is consistent: .| falsetrue ====−−−−////λλλλ

Proof.

If then It suffices to take a
valuation ρ of variables in such that

yx ====−−−−λλλλ | .| yxDA ========

AD
).()(yx ρρρρ====////ρρρρ Then a contradiction.yxDA ========////|

Lambda calculus I 113

is considered as a complete lattice ordered by inclusion
The set B is the closure of A under the operation of forming
ordered pairs. It is assumed that A consists of urelements in
order it does not contain pairs

).(⊆⊆⊆⊆

.),(Bb ∈∈∈∈ββββ

AD

(ii) Define

by][: AAA DDDF →→→→→→→→ AAA DDDG →→→→→→→→][:

)}),((|{))((xbybyxF ∈∈∈∈ββββ⊆⊆⊆⊆ββββ∃∃∃∃====

)}.(|),{()(ββββ∈∈∈∈ββββ==== fbbfG

Lambda calculus I 114

We shall show later that F, G are continuos and prove
the reflexivity. Let and be
arbitrary. We have

],[AA DDf →→→→∈∈∈∈ ADy ∈∈∈∈

))})((|),({())((yfbbFyfGF ββββ∈∈∈∈ββββ====o

)}(|{ ββββ∈∈∈∈⊆⊆⊆⊆ββββ∃∃∃∃==== fbyb

U
y

f
⊆⊆⊆⊆ββββ

ββββ====)(

)(yf====

Since is a directed supremum. We haveU
y

y
⊆⊆⊆⊆ββββ

ββββ====

.][AA DDidGF →→→→====o

Lambda calculus I 115

(a) F is continuous: let be directed.ADX ⊆⊆⊆⊆

}),(|{))(())((sup U U XbybyXFyXF ∈∈∈∈ββββ⊆⊆⊆⊆ββββ∃∃∃∃========

U
Xx

xbyb
∈∈∈∈

∈∈∈∈ββββ⊆⊆⊆⊆ββββ∃∃∃∃==== }),(|{

}|))(({sup XxyxF ∈∈∈∈====

(b) continuity of G: let be directed, let][AA DDY →→→→⊆⊆⊆⊆
Yf sup==== U

Yy

yf
∈∈∈∈

ββββ====ββββ).()(

Then U
Yy

ybbfbbfG
∈∈∈∈

ββββ∈∈∈∈ββββ====ββββ∈∈∈∈ββββ====)(|),{()}(|),{()(

U
Yy

ybb
∈∈∈∈

ββββ∈∈∈∈ββββ====)}(|),{(

}|)(sup{ YyyG ∈∈∈∈====

hence

Lambda calculus I 116

Theorem. (Semantic proof of consistency of λ-calculus)

The lambda calculus is consistent: .| falsetrue ====−−−−////λλλλ

Proof.

If then It suffices to take a
valuation ρ of variables in such that

yx ====−−−−λλλλ | .| yxDA ========

AD
).()(yx ρρρρ====////ρρρρ Then a contradiction.yxDA ========////|

Lambda calculus I 117

Extending the language

Some language constructs in functional languages

(i) �Let x = M in E� stands for orMEx).(λλλλ

].:[MxE ==== The latter is usefull if we want to
type expressions, the various expressions may need to
be typed differently.

(ii) �Letrec in E� stands for

Let in E. Here is the
Turings fixed point operator.

Similarly one can define Letrec using the double fixed
point.

],[xfCxf rr ====

]),[.(xfCxff rrλλλλΘΘΘΘ==== ΘΘΘΘ

Lambda calculus I 118

Delta rules
are useful in extending the lambda calculus by �external�
functions. Implementations of functional languages exploit
the standard arithmetics of the processor which is much
more efficient than computations with numerals in the
lambda calculus. Besides the type integer, they use the
standard types boolean and Char.

To represent all this and more, we extend the lambda
calculus by so-called δ-rules. They are very helpful in
theoretical analysis of programs and proofs.

Lambda calculus I 119

Motivation. One of the first versions of a δ-rule was used
by Church (1941). He used the rule to test the equality of
numerals. It is possible to formulate it in a more general
setting.

Example.

Let X be a set of closed terms in normal form. For
we define

XNM ∈∈∈∈,

NMifxxyMN ≡≡≡≡λλλλ→→→→δδδδ .
NMifyxyMN ≡≡≡≡////λλλλ→→→→δδδδ .

Note that this is not one contraction rule, but a rule
scheme. For any two elements of X one contraction
rule.

Lambda calculus I 120

Both assumptions on terms M, N are necessary to keep the
Church-Rosser property working.

Example.

(a) Put
).(

).)(.(
zzN

yyxxM
λλλλ≡≡≡≡

λλλλλλλλ≡≡≡≡

then M is not in normal form, but both terms are without free
variables. We have

xxy

NNyxy

NM

.

)(.

)(

λλλλ

δδδδ

δδδδλλλλ

ββββδδδδ

δδδδ

Lambda calculus I 117

Extending the language

Some language constructs in functional languages

(i) �Let x = M in E� stands for orMEx).(λλλλ

].:[MxE ==== The latter is usefull if we want to
type expressions, the various expressions may need to
be typed differently.

(ii) �Letrec in E� stands for

Let in E. Here is the
Turings fixed point operator.

Similarly one can define Letrec using the double fixed
point.

],[xfCxf rr ====

]),[.(xfCxff rrλλλλΘΘΘΘ==== ΘΘΘΘ

Lambda calculus I 118

Delta rules
are useful in extending the lambda calculus by �external�
functions. Implementations of functional languages exploit
the standard arithmetics of the processor which is much
more efficient than computations with numerals in the
lambda calculus. Besides the type integer, they use the
standard types boolean and Char.

To represent all this and more, we extend the lambda
calculus by so-called δ-rules. They are very helpful in
theoretical analysis of programs and proofs.

Lambda calculus I 119

Motivation. One of the first versions of a δ-rule was used
by Church (1941). He used the rule to test the equality of
numerals. It is possible to formulate it in a more general
setting.

Example.

Let X be a set of closed terms in normal form. For
we define

XNM ∈∈∈∈,

NMifxxyMN ≡≡≡≡λλλλ→→→→δδδδ .
NMifyxyMN ≡≡≡≡////λλλλ→→→→δδδδ .

Note that this is not one contraction rule, but a rule
scheme. For any two elements of X one contraction
rule.

Lambda calculus I 120

Both assumptions on terms M, N are necessary to keep the
Church-Rosser property working.

Example.

(a) Put
).(

).)(.(
zzN

yyxxM
λλλλ≡≡≡≡

λλλλλλλλ≡≡≡≡

then M is not in normal form, but both terms are without free
variables. We have

xxy

NNyxy

NM

.

)(.

)(

λλλλ

δδδδ

δδδδλλλλ

ββββδδδδ

δδδδ

Lambda calculus I 117

Extending the language

Some language constructs in functional languages

(i) �Let x = M in E� stands for orMEx).(λλλλ

].:[MxE ==== The latter is usefull if we want to
type expressions, the various expressions may need to
be typed differently.

(ii) �Letrec in E� stands for

Let in E. Here is the
Turings fixed point operator.

Similarly one can define Letrec using the double fixed
point.

],[xfCxf rr ====

]),[.(xfCxff rrλλλλΘΘΘΘ==== ΘΘΘΘ

Lambda calculus I 118

Delta rules
are useful in extending the lambda calculus by �external�
functions. Implementations of functional languages exploit
the standard arithmetics of the processor which is much
more efficient than computations with numerals in the
lambda calculus. Besides the type integer, they use the
standard types boolean and Char.

To represent all this and more, we extend the lambda
calculus by so-called δ-rules. They are very helpful in
theoretical analysis of programs and proofs.

Lambda calculus I 119

Motivation. One of the first versions of a δ-rule was used
by Church (1941). He used the rule to test the equality of
numerals. It is possible to formulate it in a more general
setting.

Example.

Let X be a set of closed terms in normal form. For
we define

XNM ∈∈∈∈,

NMifxxyMN ≡≡≡≡λλλλ→→→→δδδδ .
NMifyxyMN ≡≡≡≡////λλλλ→→→→δδδδ .

Note that this is not one contraction rule, but a rule
scheme. For any two elements of X one contraction
rule.

Lambda calculus I 120

Both assumptions on terms M, N are necessary to keep the
Church-Rosser property working.

Example.

(a) Put
).(

).)(.(
zzN

yyxxM
λλλλ≡≡≡≡

λλλλλλλλ≡≡≡≡

then M is not in normal form, but both terms are without free
variables. We have

xxy

NNyxy

NM

.

)(.

)(

λλλλ

δδδδ

δδδδλλλλ

ββββδδδδ

δδδδ

Lambda calculus I 117

Extending the language

Some language constructs in functional languages

(i) �Let x = M in E� stands for orMEx).(λλλλ

].:[MxE ==== The latter is usefull if we want to
type expressions, the various expressions may need to
be typed differently.

(ii) �Letrec in E� stands for

Let in E. Here is the
Turings fixed point operator.

Similarly one can define Letrec using the double fixed
point.

],[xfCxf rr ====

]),[.(xfCxff rrλλλλΘΘΘΘ==== ΘΘΘΘ

Lambda calculus I 118

Delta rules
are useful in extending the lambda calculus by �external�
functions. Implementations of functional languages exploit
the standard arithmetics of the processor which is much
more efficient than computations with numerals in the
lambda calculus. Besides the type integer, they use the
standard types boolean and Char.

To represent all this and more, we extend the lambda
calculus by so-called δ-rules. They are very helpful in
theoretical analysis of programs and proofs.

Lambda calculus I 119

Motivation. One of the first versions of a δ-rule was used
by Church (1941). He used the rule to test the equality of
numerals. It is possible to formulate it in a more general
setting.

Example.

Let X be a set of closed terms in normal form. For
we define

XNM ∈∈∈∈,

NMifxxyMN ≡≡≡≡λλλλ→→→→δδδδ .
NMifyxyMN ≡≡≡≡////λλλλ→→→→δδδδ .

Note that this is not one contraction rule, but a rule
scheme. For any two elements of X one contraction
rule.

Lambda calculus I 120

Both assumptions on terms M, N are necessary to keep the
Church-Rosser property working.

Example.

(a) Put
).(

).)(.(
zzN

yyxxM
λλλλ≡≡≡≡

λλλλλλλλ≡≡≡≡

then M is not in normal form, but both terms are without free
variables. We have

xxy

NNyxy

NM

.

)(.

)(

λλλλ

δδδδ

δδδδλλλλ

ββββδδδδ

δδδδ

Lambda calculus I 121

(b) If we put then we have).(),.(xxNwxxM λλλλ≡≡≡≡λλλλ≡≡≡≡

xxy

yxyNxx

zzyxywNxzzx

zzNMw

.

.))).(((

).)(.()))))..(((((

).)().(((

λλλλ

δδδδ

λλλλλλλλδδδδ

ββββββββ

λλλλλλλλλλλλλλλλλλλλδδδδ

δδδδββββ

λλλλδδδδλλλλ

Lambda calculus I 122

Definition.

Let be a set of closed terms in normal forms.
Usually we take constants for the elements of C, hence
Let be an �externally defined� function. In
order to represent f, a so-called δ-rules are added to the
lambda calculus as follows:

(1) A special constant in C is selected and is given a name

(2) New contraction rules are added to those of the lambda
calculus:

ΛΛΛΛ⊆⊆⊆⊆X
.CX ⊆⊆⊆⊆

ΛΛΛΛ→→→→kXf :

).(fδδδδ====δδδδ

XMMMMfMM k1k1k1 ∈∈∈∈→→→→δδδδ ...,),...,(...

Lambda calculus I 123

For a given function f , this is not one contraction rule but in
fact a rule scheme. The resulting extended calculus is called
the λδ-calculus. The corresponding notions of reduction are
denoted So δ-reduction is not an absolute
notion, but it depends on the choice of f.

., βδβδβδβδβδβδβδβδ →>→>→>→>→→→→

Theorem. (Mitschke)

Let f be a function on a set of closed terms in normal
form. Then the resulting notion of reduction
satisfies the Church-Rosser theorem.

βδβδβδβδ→>→>→>→>

Lambda calculus I 124

The notion of normal form generalises to βδ-normal form.
So does the concept of leftmost reduction. The nor-
mal forms can be found by a leftmost reduction.

−−−−βδβδβδβδ

Theorem.

If and N is in normal form, thenNM βδβδβδβδ→>→>→>→> −−−−βδβδβδβδ .NM lβδβδβδβδ→>→>→>→>

Lambda calculus I 121

(b) If we put then we have).(),.(xxNwxxM λλλλ≡≡≡≡λλλλ≡≡≡≡

xxy

yxyNxx

zzyxywNxzzx

zzNMw

.

.))).(((

).)(.()))))..(((((

).)().(((

λλλλ

δδδδ

λλλλλλλλδδδδ

ββββββββ

λλλλλλλλλλλλλλλλλλλλδδδδ

δδδδββββ

λλλλδδδδλλλλ

Lambda calculus I 122

Definition.

Let be a set of closed terms in normal forms.
Usually we take constants for the elements of C, hence
Let be an �externally defined� function. In
order to represent f, a so-called δ-rules are added to the
lambda calculus as follows:

(1) A special constant in C is selected and is given a name

(2) New contraction rules are added to those of the lambda
calculus:

ΛΛΛΛ⊆⊆⊆⊆X
.CX ⊆⊆⊆⊆

ΛΛΛΛ→→→→kXf :

).(fδδδδ====δδδδ

XMMMMfMM k1k1k1 ∈∈∈∈→→→→δδδδ ...,),...,(...

Lambda calculus I 123

For a given function f , this is not one contraction rule but in
fact a rule scheme. The resulting extended calculus is called
the λδ-calculus. The corresponding notions of reduction are
denoted So δ-reduction is not an absolute
notion, but it depends on the choice of f.

., βδβδβδβδβδβδβδβδ →>→>→>→>→→→→

Theorem. (Mitschke)

Let f be a function on a set of closed terms in normal
form. Then the resulting notion of reduction
satisfies the Church-Rosser theorem.

βδβδβδβδ→>→>→>→>

Lambda calculus I 124

The notion of normal form generalises to βδ-normal form.
So does the concept of leftmost reduction. The nor-
mal forms can be found by a leftmost reduction.

−−−−βδβδβδβδ

Theorem.

If and N is in normal form, thenNM βδβδβδβδ→>→>→>→> −−−−βδβδβδβδ .NM lβδβδβδβδ→>→>→>→>

Lambda calculus I 121

(b) If we put then we have).(),.(xxNwxxM λλλλ≡≡≡≡λλλλ≡≡≡≡

xxy

yxyNxx

zzyxywNxzzx

zzNMw

.

.))).(((

).)(.()))))..(((((

).)().(((

λλλλ

δδδδ

λλλλλλλλδδδδ

ββββββββ

λλλλλλλλλλλλλλλλλλλλδδδδ

δδδδββββ

λλλλδδδδλλλλ

Lambda calculus I 122

Definition.

Let be a set of closed terms in normal forms.
Usually we take constants for the elements of C, hence
Let be an �externally defined� function. In
order to represent f, a so-called δ-rules are added to the
lambda calculus as follows:

(1) A special constant in C is selected and is given a name

(2) New contraction rules are added to those of the lambda
calculus:

ΛΛΛΛ⊆⊆⊆⊆X
.CX ⊆⊆⊆⊆

ΛΛΛΛ→→→→kXf :

).(fδδδδ====δδδδ

XMMMMfMM k1k1k1 ∈∈∈∈→→→→δδδδ ...,),...,(...

Lambda calculus I 123

For a given function f , this is not one contraction rule but in
fact a rule scheme. The resulting extended calculus is called
the λδ-calculus. The corresponding notions of reduction are
denoted So δ-reduction is not an absolute
notion, but it depends on the choice of f.

., βδβδβδβδβδβδβδβδ →>→>→>→>→→→→

Theorem. (Mitschke)

Let f be a function on a set of closed terms in normal
form. Then the resulting notion of reduction
satisfies the Church-Rosser theorem.

βδβδβδβδ→>→>→>→>

Lambda calculus I 124

The notion of normal form generalises to βδ-normal form.
So does the concept of leftmost reduction. The nor-
mal forms can be found by a leftmost reduction.

−−−−βδβδβδβδ

Theorem.

If and N is in normal form, thenNM βδβδβδβδ→>→>→>→> −−−−βδβδβδβδ .NM lβδβδβδβδ→>→>→>→>

Lambda calculus I 121

(b) If we put then we have).(),.(xxNwxxM λλλλ≡≡≡≡λλλλ≡≡≡≡

xxy

yxyNxx

zzyxywNxzzx

zzNMw

.

.))).(((

).)(.()))))..(((((

).)().(((

λλλλ

δδδδ

λλλλλλλλδδδδ

ββββββββ

λλλλλλλλλλλλλλλλλλλλδδδδ

δδδδββββ

λλλλδδδδλλλλ

Lambda calculus I 122

Definition.

Let be a set of closed terms in normal forms.
Usually we take constants for the elements of C, hence
Let be an �externally defined� function. In
order to represent f, a so-called δ-rules are added to the
lambda calculus as follows:

(1) A special constant in C is selected and is given a name

(2) New contraction rules are added to those of the lambda
calculus:

ΛΛΛΛ⊆⊆⊆⊆X
.CX ⊆⊆⊆⊆

ΛΛΛΛ→→→→kXf :

).(fδδδδ====δδδδ

XMMMMfMM k1k1k1 ∈∈∈∈→→→→δδδδ ...,),...,(...

Lambda calculus I 123

For a given function f , this is not one contraction rule but in
fact a rule scheme. The resulting extended calculus is called
the λδ-calculus. The corresponding notions of reduction are
denoted So δ-reduction is not an absolute
notion, but it depends on the choice of f.

., βδβδβδβδβδβδβδβδ →>→>→>→>→→→→

Theorem. (Mitschke)

Let f be a function on a set of closed terms in normal
form. Then the resulting notion of reduction
satisfies the Church-Rosser theorem.

βδβδβδβδ→>→>→>→>

Lambda calculus I 124

The notion of normal form generalises to βδ-normal form.
So does the concept of leftmost reduction. The nor-
mal forms can be found by a leftmost reduction.

−−−−βδβδβδβδ

Theorem.

If and N is in normal form, thenNM βδβδβδβδ→>→>→>→> −−−−βδβδβδβδ .NM lβδβδβδβδ→>→>→>→>

Lambda calculus I 125

Example. Set of δ-rules for the booleans.

The following constants are selected in C

)(,,,, elsethenifforiteandnotfalsetrue

And the following δ-rules are introduced

xxytrueite
falsetruefalseand

truetruetrueand
falsetruenot

.true λλλλ≡≡≡≡→→→→
→→→→→→→→

→→→→
→→→→

yxyfalseite
falsefalsefalseand

falsefalsetrueand
truefalsenot

.false λλλλ≡≡≡≡→→→→
→→→→
→→→→

→→→→

Lambda calculus I 126

It follows that

yyxfalseitexyxtrueite →>→>→>→>→>→>→>→>

Now we introduce some operations on the set of integers
}.,,,,-{Z KK 2101====

Example. For each , we choose a constant in C
and give it the name Moreover the following
constants in C are selected

Z∈∈∈∈n
  .n

equalerror,divide,times,minus, plus,

Lambda calculus I 127

Then we introduce the following schemes of δ- rules. For
,Z, ∈∈∈∈nm

     
     
     
    ,equal

,:divide
times

,plus

truemm
0mifnmnm

nmnm
nmnm

→→→→
====////→→→→

∗∗∗∗→→→→
++++→→→→      

   
    .equal

,errordivide

,minus

nmiffalsenm
0m

mnnm

====////→→→→
→→→→

−−−−→→→→

We may add rules like

  errorerrorplus →→→→m

Exercise. Write down a λδ-term F,   .! nnF ++++→>→>→>→>

Lambda calculus I 128

Similar δ-rules can be introduced for the set of reals. Another set
of δ-rules is concerned with characters.

Example. Let Σ be a linearly ordered alphabet. For each
symbol choose a constant Moreover, we choose
two constants in C and state the following δ-rules:

ΣΣΣΣ∈∈∈∈s .´´ Cs ∈∈∈∈
====≤≤≤≤ δδδδδδδδ ,

otherwise.
if
otherwise.

, of ordering theprecedesif

falsess
sstruess

falsess
sstruess

21

2121

21

2121

→→→→δδδδ
====→→→→δδδδ

→→→→δδδδ
ΣΣΣΣΣΣΣΣ→→→→δδδδ

====

====

≤≤≤≤

≤≤≤≤

´´´´
,´´´´

´´´´
,´´´´

Lambda calculus I 125

Example. Set of δ-rules for the booleans.

The following constants are selected in C

)(,,,, elsethenifforiteandnotfalsetrue

And the following δ-rules are introduced

xxytrueite
falsetruefalseand

truetruetrueand
falsetruenot

.true λλλλ≡≡≡≡→→→→
→→→→→→→→

→→→→
→→→→

yxyfalseite
falsefalsefalseand

falsefalsetrueand
truefalsenot

.false λλλλ≡≡≡≡→→→→
→→→→
→→→→

→→→→

Lambda calculus I 126

It follows that

yyxfalseitexyxtrueite →>→>→>→>→>→>→>→>

Now we introduce some operations on the set of integers
}.,,,,-{Z KK 2101====

Example. For each , we choose a constant in C
and give it the name Moreover the following
constants in C are selected

Z∈∈∈∈n
  .n

equalerror,divide,times,minus, plus,

Lambda calculus I 127

Then we introduce the following schemes of δ- rules. For
,Z, ∈∈∈∈nm

     
     
     
    ,equal

,:divide
times

,plus

truemm
0mifnmnm

nmnm
nmnm

→→→→
====////→→→→

∗∗∗∗→→→→
++++→→→→      

   
    .equal

,errordivide

,minus

nmiffalsenm
0m

mnnm

====////→→→→
→→→→

−−−−→→→→

We may add rules like

  errorerrorplus →→→→m

Exercise. Write down a λδ-term F,   .! nnF ++++→>→>→>→>

Lambda calculus I 128

Similar δ-rules can be introduced for the set of reals. Another set
of δ-rules is concerned with characters.

Example. Let Σ be a linearly ordered alphabet. For each
symbol choose a constant Moreover, we choose
two constants in C and state the following δ-rules:

ΣΣΣΣ∈∈∈∈s .´´ Cs ∈∈∈∈
====≤≤≤≤ δδδδδδδδ ,

otherwise.
if
otherwise.

, of ordering theprecedesif

falsess
sstruess

falsess
sstruess

21

2121

21

2121

→→→→δδδδ
====→→→→δδδδ

→→→→δδδδ
ΣΣΣΣΣΣΣΣ→→→→δδδδ

====

====

≤≤≤≤

≤≤≤≤

´´´´
,´´´´

´´´´
,´´´´

Lambda calculus I 125

Example. Set of δ-rules for the booleans.

The following constants are selected in C

)(,,,, elsethenifforiteandnotfalsetrue

And the following δ-rules are introduced

xxytrueite
falsetruefalseand

truetruetrueand
falsetruenot

.true λλλλ≡≡≡≡→→→→
→→→→→→→→

→→→→
→→→→

yxyfalseite
falsefalsefalseand

falsefalsetrueand
truefalsenot

.false λλλλ≡≡≡≡→→→→
→→→→
→→→→

→→→→

Lambda calculus I 126

It follows that

yyxfalseitexyxtrueite →>→>→>→>→>→>→>→>

Now we introduce some operations on the set of integers
}.,,,,-{Z KK 2101====

Example. For each , we choose a constant in C
and give it the name Moreover the following
constants in C are selected

Z∈∈∈∈n
  .n

equalerror,divide,times,minus, plus,

Lambda calculus I 127

Then we introduce the following schemes of δ- rules. For
,Z, ∈∈∈∈nm

     
     
     
    ,equal

,:divide
times

,plus

truemm
0mifnmnm

nmnm
nmnm

→→→→
====////→→→→

∗∗∗∗→→→→
++++→→→→      

   
    .equal

,errordivide

,minus

nmiffalsenm
0m

mnnm

====////→→→→
→→→→

−−−−→→→→

We may add rules like

  errorerrorplus →→→→m

Exercise. Write down a λδ-term F,   .! nnF ++++→>→>→>→>

Lambda calculus I 128

Similar δ-rules can be introduced for the set of reals. Another set
of δ-rules is concerned with characters.

Example. Let Σ be a linearly ordered alphabet. For each
symbol choose a constant Moreover, we choose
two constants in C and state the following δ-rules:

ΣΣΣΣ∈∈∈∈s .´´ Cs ∈∈∈∈
====≤≤≤≤ δδδδδδδδ ,

otherwise.
if
otherwise.

, of ordering theprecedesif

falsess
sstruess

falsess
sstruess

21

2121

21

2121

→→→→δδδδ
====→→→→δδδδ

→→→→δδδδ
ΣΣΣΣΣΣΣΣ→→→→δδδδ

====

====

≤≤≤≤

≤≤≤≤

´´´´
,´´´´

´´´´
,´´´´

Lambda calculus I 125

Example. Set of δ-rules for the booleans.

The following constants are selected in C

)(,,,, elsethenifforiteandnotfalsetrue

And the following δ-rules are introduced

xxytrueite
falsetruefalseand

truetruetrueand
falsetruenot

.true λλλλ≡≡≡≡→→→→
→→→→→→→→

→→→→
→→→→

yxyfalseite
falsefalsefalseand

falsefalsetrueand
truefalsenot

.false λλλλ≡≡≡≡→→→→
→→→→
→→→→

→→→→

Lambda calculus I 126

It follows that

yyxfalseitexyxtrueite →>→>→>→>→>→>→>→>

Now we introduce some operations on the set of integers
}.,,,,-{Z KK 2101====

Example. For each , we choose a constant in C
and give it the name Moreover the following
constants in C are selected

Z∈∈∈∈n
  .n

equalerror,divide,times,minus, plus,

Lambda calculus I 127

Then we introduce the following schemes of δ- rules. For
,Z, ∈∈∈∈nm

     
     
     
    ,equal

,:divide
times

,plus

truemm
0mifnmnm

nmnm
nmnm

→→→→
====////→→→→

∗∗∗∗→→→→
++++→→→→      

   
    .equal

,errordivide

,minus

nmiffalsenm
0m

mnnm

====////→→→→
→→→→

−−−−→→→→

We may add rules like

  errorerrorplus →→→→m

Exercise. Write down a λδ-term F,   .! nnF ++++→>→>→>→>

Lambda calculus I 128

Similar δ-rules can be introduced for the set of reals. Another set
of δ-rules is concerned with characters.

Example. Let Σ be a linearly ordered alphabet. For each
symbol choose a constant Moreover, we choose
two constants in C and state the following δ-rules:

ΣΣΣΣ∈∈∈∈s .´´ Cs ∈∈∈∈
====≤≤≤≤ δδδδδδδδ ,

otherwise.
if
otherwise.

, of ordering theprecedesif

falsess
sstruess

falsess
sstruess

21

2121

21

2121

→→→→δδδδ
====→→→→δδδδ

→→→→δδδδ
ΣΣΣΣΣΣΣΣ→→→→δδδδ

====

====

≤≤≤≤

≤≤≤≤

´´´´
,´´´´

´´´´
,´´´´

Lambda calculus I 129

In the lambda calculus, we have defined domains and the
corresponding δ-rules of operations on the sets of standard
data types

boolean integer Char

By this way, we made a first step to the theory of lambda
calculi with types.

Lambda calculus I 129

In the lambda calculus, we have defined domains and the
corresponding δ-rules of operations on the sets of standard
data types

boolean integer Char

By this way, we made a first step to the theory of lambda
calculi with types.

Lambda calculus I 129

In the lambda calculus, we have defined domains and the
corresponding δ-rules of operations on the sets of standard
data types

boolean integer Char

By this way, we made a first step to the theory of lambda
calculi with types.

Lambda calculus I 129

In the lambda calculus, we have defined domains and the
corresponding δ-rules of operations on the sets of standard
data types

boolean integer Char

By this way, we made a first step to the theory of lambda
calculi with types.

