Lambda calculus

Petr Stépanek
Department of Theoretical Computer Science
and Mathematical Logic
Charles University, Prague

Based on material provided by H. P. Barendregt

Lambda calculus I

Alonzo Church 1932

Haskell B Curry 1935-1981

Dana S. Scott 1969

Lambda calculus I

The functional computational model

A functional program - an expression E

Rule P N P'

Reduction E|P] - E[P']

Output E*

Lambda calculus I

Example

(8-56+2B) - 36+2[B)
- 36 +6)

- 3012
- 36

(8—)U6+20B) - (8-)HU6+6)
~(8-5)012
3002
- 36

Lambda calculus I

Lambda Calculus

Part I
Untyped calculus

Lambda calculus I

Conversion

Application

The data (expression) F considered as an algorithm are
applied to the data A4 considered as input. Notation

(FA)

Lambda calculus I

Abstraction

Let Mijx] be an expression possibly depending on a
variable x, then

Ax.M|x]
denotes the map

X = Mix]

Lambda calculus I

Example

Ax.x+2)3=3+2=5

B) Ax.M[x])N = M[x:= N]

The left-hand side of (B) is called redex and the right-
hand side is called contractum.

Lambda calculus I

Free and bound variables

Abstraction is said to bind the free variables in M.
Substitution [x:=N]is only performed in the free
occurences of x:

(Ay.xy)(Ax.x)[x:= N] = (Ay.Ny)(Ax.x)

Lambda calculus I

Functions of several arguments

can be obtained by iteration of application.
If we have £(x,)

Put
Fe=Ay.f(x,y)

F =)\)C.Fx
then

(Fx)y =Fy = f(x,y)

Lambda calculus I

(1

The equation (1) shows that it is convenient to associate
parentheses to the left for iterated application:

FM M 2...Mh denotes (eo.((FM)M 2)...My)

then (1) becomes

Fxy = f(x,y)

Lambda calculus I

On the other hand it is convenient to use association parentheses
to the right for the iterated abstraction

AX1X 200X f (X1, X2.0.xn) denotes

AxXL(AX2.(coe(AXne f (X1, X 200aX0)).00))

Then we have for F defined above

F =Ny f(x,y)

and (1) becomes

Axy. f(x, y)xy = f(x,)

Lambda calculus I 12

Formal description of lambda calculus

The set of lambda terms A is built up from infinite
sets of constants and variables using application and
abstraction.

C :{C,C',C",...} V= {V,V',V" 9"'}
cO0C=cOA xUV = xUA
M,NOA = (MN)OA

MONxOV = Ax.M)ON

Lambda calculus I

13

Description by abstract syntax

A=C|V|AN|AVA

Example

v (ve) Av(ve)) (' (Av(c)) (Av(ven')

are A terms.

Lambda calculus I

The set FV(M) of free variables of M

FV(x) ={x} FV(MN) = FV(M)O FV(N)
FVO\x.M)=FV(M)-{x}

M isaclosed A-term if FV(M)=0

The set of closed A-terms is denoted Ao.

Lambda calculus I 15

®

Lambda calculus as a theory of equation

The principal axiom scheme

(Ax.M)N = M[x:= N]

forall M,NOA.

Lambda calculus I

The logical axioms and rules

(rule—¢)

M=M
M=N=N=M
M=N,N=L=>M=L
M=M=MZ=M'Z
M=M=7ZM =M’
M=M= Ax.M)=(Ax.M")

Lambda calculus I 17

If M=N is provable from the axioms and rules
we write

AN-M=N

or just say that M and N are B-convertible.

M =N denotesthat M and N are the same term
or can be obtained from each other by renaming bound
variables.

Lambda calculus I

Examples

Ax.p)z=(Ax.y)z (Axx)z=Ay.y)z (Ax.x)z #F (Ax.y)z

An alternative
(@) AxM)=@Ay.M)[x:=y]

Name-free notation

Ax.(Ay.xy) is denoted by

Lambda calculus I

y does not occur in M.

AA2D)

Development of the theory

standard combinators

I =Ax.x K= Axy.x

K. =Axy.y S = Axyz.xz(yz)

We have
IM =M KMN =M
K.MN =N SMNL = ML(NL)

Lambda calculus I 20

Fixed Point Theorem

(i) For every FFUA thereis an X A such that

AM-FX=X
(OF X FX = X)

(1) There is a fixed point combinator
Y= A (Ax. f(xx))(Ax. f(xx))

such that OF F(YF)=YF

Lambda calculus I 21

Proof. (i) Define W =Ax.F(xx) and X =WW

Then

X =WW = (A\x.F(x)W = FOWW) = FX

(i1) By the proof of (1)

Lambda calculus I

22

A term C[fx] possibly containing the displayed
variables is called a context.

Context lemma.

Given a context C[f,x], we have

OF OX FX =C[F, X]

Where C[F,X] is the result of the substitution

Clx1lf=F1x-=X]

Lambda calculus I

23

Proof.

0X FX =C[F,X] O Fx=C[F,x]
O F =Ax.C[F,x]
O F=AKCLfxDF

O F =Y\ f.CLf,x]).

Lambda calculus I

24

Definition
Let N be the set of natural numbers and n [N.
We define

F'(M)=M F"™'(M)=F(F"(M))

Definition The Church numerals
CO,C],CZ,OOO,cn,OOO

are defined by
¢, EMx.f(x)

Lambda calculus I 25

Lemma (Rosser)

If we define
A, =Axypq.xp(ypq)

A, = Axyz.x(yz)
Ay =AY px

We have for every n,m 0N

A.cc, =c,.

AexpCuCr =€, except for m = 0.

Lambda calculus I

26

Definition

Put true = K false =K.,

If aterm B is either true or false, we call it Boolean and
for terms P, Q@ define

if B then P else Q
as BPQ

indeed

truePQ = KPQ = P falsePQ = K.PQ =0

Lambda calculus I 27

Definition (ordered pairs)
For terms M,N write

[M,N]=Az.zMN

and call it the ordered pair of M and N.
Indeed

[M,Nltrue =M [M,N]false = N

Lambda calculus I

28

Definition (numerals)

For natural number 7 define

I_O—‘EI, |_n +]—|E [false,|_n-‘]

Lambda calculus I

29

Lemma (successor, predecessor, test for zero)

There are combinators S*, P, zero

such that forall nON

one has
S'lnl=ln+1] Plnti]=[n]
zer0(0—| =true zero(n +1 —| = false

Lambda calculus I 30

Proof. Put
st = Ax.| false, x]
P~ =M\x.x false

zero = Ax.xtrue

Lambda calculus I

31

Definition

A function f:N? -~ N of p arguments is called
A-definable if there is a combinator F' such that

Flni]..Jno |=[(1, eemp) |

In this case, we say that f is A-defined by F.

Lambda calculus I

32

Theorem. All recursive functions are A-definable.

Idea. It can be shown that all basic functions of the class of all
recursive functions are A-definable, that the class of all A-
definable functions is closed under composition, primitive

recursion and minimalization.

Lambda calculus I 33

a) Basic functions

UL (X)5eeesX,) = X,

S*(m)=n+1

Put

I1<i<n

Z(n)=0

Ul =AX,yee X, X, S* = \x.[false, x]

Lambda calculus I

Z=M\J0]

34

b) Operations.

bl) Composition. Let g,%4,,...,h, be functions A-defined
by G,H,,...,H, respectively. Then the function

m

/()= g(h/(7),...,h, (7))
is A-defined by

F=Ax.G(H X)...(H X).

Lambda calculus I 35

b2) primitive recursion

Let f be defined by
1(0,7) = g(7),

S+ 1,m)=h(f (k,n), k,17)

Let g, i be A-defined by G, H respectively. An
intuitive algorithm to compute f(k,7) consists of

the following steps:
* test whether £ = 0

« if yes, then return g(7)

* if no, then compute h(f (k- 1,7),k—1,7)

Lambda calculus I

36

Thus we need a combinator F such that

Fxy =if (Zero x) then Gy else H(F (P x)y)(P x)y
= D(F,x,7)

Now such an combinator F can be found by the
Context lemma applied to D(F, x,).

Lambda calculus I

37

b3) (regular) minimalization

F(@) =pumlg(@,m)=0] with &Unln g(@,m)=0

Suppose that g is A-defined by G, by the Context
lemma there is a term H such that

Hxy =if (zero(Gxy)) then y else HX(S™y)

Lambda calculus I 38

Set F :)\x.Hx’_O-‘. Then F A-defines f, indeed

Fla)=HTa o]
_ {m
Hla 1]
_ {m
LN

_ {m
Al

if Glalol=[o]

else

" Gla][1]=[0]
else
if Glaf2]=[0]
else

Lambda calculus I 39

The Double Fixed Point Theorem

HAOBUX LY (X = AXY Y = BXY)

Lambda calculus I

40

Proof.

Put

F = Ax.|A(x true)(x false), B(x true)(x false)]

By the simple Fixed Point Theorem there exists a
Z such that

FZ=7

Lambda calculus I

41

Take
X =Ztrue, Y =7 false
Then
X =Ztrue = FZ true = A(Z true)(Z false) = AXY

and similarly

Y = BXY.

Lambda calculus I 42

Corollary.

Given contexts C, =C/|[f,g,xl,i=1,2
CXiSt Ean

such that
le =C,[F,,F2,x] sz = CZ[FI9F2’x]

Lambda calculus I

there

43

Definition (coding A-terms)

Let <D[} :N° - N bearecursive coding of
ordered pairs of natural numbers. We put

(i) VO =5 pD =)

and similarly we define ¢,

Lambda calculus I 44

(1)
wy" = <0,n> wc™ = <],n>

#(MN)=(2,M #N)) #O\x.M) =(3,(#x,4M))

We write

[M]=[#p]

Lambda calculus I

45

Theorem (Kleene)

There is an ,,interpreter® combinator £ for
closed A-terms without constants such that for
every closed term M without constants, we have

E|M]=M.

Lambda calculus I 46

Proof (P.de Bruin)

Construct F, such that for an arbitrary F
E,F|x|=F|x]
E,F[MN = (E,F[M)(E,F[N')
E,FIAM |= Az EF | M]

where F|_n_‘ £ en#t x
B z](n—l

if #n= Xx
Note that Fix;:Z] can be written in the form

G|_x—|zF .

Lambda calculus I 47

By induction on M it follows that
EF[M =
=Mlx, == F(xl—‘,...,xn = F(xn —‘] [c, := F(c,—‘,...,cm = F(cm—[]

where

{X,yenx,} = FV(M) {c,,...c,} are the constants in M.

Hence for closed M without constants, we have
EIM|=M.
Now take
E=A.E,Ix=EI.

Lambda calculus I 48

Second Fixed Point Theorem

OF X F| X |=X

Lambda calculus I

49

Proof.

By the recursiveness of #, there are recursive
functions AP and Num such that

APHM, #N)=#MN Num (n) = #n]

Lambda calculus I

50

Let AP and Num be A-defined by closed terms
AP and Num .

Then
APM|[N]=[MN] Num|n]|=[[n]]

in particular, we have

Num| M |=[[M]

Lambda calculus I 51

If we put

W = Ax.F(APx(Num x)) X=ww]

then

X =w[w = F(AP[W [(Num[W)
=Flw|wl|=F[X]

Lambda calculus I

52

The following result due to Scott is an
application of the Second Fixed Point
Theorem, which is useful in proving
undecidability results. Its flavor resembles
the well-known Rice‘s Theorem on
recursively enumerable sets.

Lambda calculus I

53

Theorem (Scott)
Let AN be a set of terms such that
(i) 4 is nontrivial, i.e. 4 F 0Oand 4 #A

(11) 4 1s closed under = that is

MOAM=N=NDOA

Then A is not recursive, more precisely, the set
#4 ={ #M | M UN}

1s not recursive.

Lambda calculus I

54

Proof

by contradiction. Suppose that A4 is recursive. It
follows that there is a closed A-term F' such that

MUOA - FIM]=[0] MOA - F[M]|=[I]
Take M,0A4,M,04. Let

Gx =1if Zero(Fx)then M ,else M ,

Lambda calculus I 55

then
MOA - GIM|=M,04

MOA - GIM|=Mm,04

By the second Fixed Point Theorem, there is a
term M such that

GIM =M
thus
MOA - M=GM]04

a contradiction.

Lambda calculus I 56

Definition

(1) We say that aterm M is in normal form if M has no
part (redex) of the form

(Ax.P)Q

(i) We say that aterm M has a normal form if there is a
term N in normal form such that M =N.

Lambda calculus I

57

Example
I is in normal form, IK has a normal form.

Both types of numerals are in normal form etc.

If M 1is in normal form, no rule is applicable to M.

Lambda calculus I

58

Note that the term

Q = (Ax.xx)(Ax.xx)

has no normal form. The B-rule is applicable to

the redex

(Ax.xx)(Ax.xx)

but the contractum remains Q .

Lambda calculus I

59

Theorem (Church, Scott)

The set
NF ={ M | M a normal form}

1s not recursive.
This result was first proved by Church (1936) by a

different method. Historically it was the first example
of noncomputable property.

Lambda calculus I

60

Proof.

NF 1is closed under equality. We have shown that it is
nonempty. We have noted that the term

Q = (Ax.xx)(Ax.xx)
has no normal form. Thus NF # A and hence it is

nontrivial. The rest follows from the Church, Scott
theorem.

Lambda calculus I

61

The semantics of A-calculus

* Semantics of a language L gives a ,,meaning* to the
expressions in L. This can be given essentially in two
ways.

* By providing a way in which expression of L are used.
This gives so called operational semantics of L.

* By translating the expressions of L into expressions of
another language that is already known. In this way we
obtain a so called denotational semantics of L.

Lambda calculus I

62

Operational semantics: reductions and strategies

There is a certain asymetry in the basic rule ().

Ax.x+1)3=3+1

The above equality an be interpreted as ,,3+1 is the result
of computing (Ax.x +1)3*, but not vice versa.

This computational aspect will be expressed by writing
Axx+1)3—->>3+1]

which reads ,, (\y.x + 7)3reduces to 3+/7.

Lambda calculus I 63

Definition

A binary relation R on A is called

(1) compatible if it is compatible with the two operations of
the A-calculus

MRN=ZM RZN
M RN = MZRNZ
M R N = (Ax.M) R (Ax.N)

(i1) a reduction on A if it is a compatible reflexive and
transitive relation.

(ii1) a congruence on A if it is a compatible
equivalence relation.

Lambda calculus I 64

Definition

The binary relations —,, —>5 and =
defined as follows

i) (1) Ax.M)N -, M[x:=N]

M oy N=MZ 4 NZ
M—»BN:>()\X.M)—>B()\X.N)

Lambda calculus I

B

on A are

65

i) (1) M >, M

() M~y N=>M -> N
() M ->N,N o> L=>M > L

(i) (1) M >, N=>M=, N
2 M=, N=>N= M

3) M=, N,N=, L=>M =, L

Lambda calculus I

66

These relations are pronounced as follows

M -4y N reads M f-reduces to N in one step™

M >, N reads ,, M p-reduces to N *

M=z N reads ,,M is f-convertible to N

By definition we have

—p is compatible

- >4 is a reduction
=g is a congruence relation

Lambda calculus I

67

Note that ->; is the reflexive transitive closure of -

and =5 s the equivalence relation generated by 8-

Proposition
M=N < A-M=N

Proof. =) By induction on the generation of = -
(0) By induction on the length of proof.

Lambda calculus I

B

68

Lemma.

Let M be a B-normal form. Then

M ->N=>N=M

Proof.

This is true if ->; is -,. The rest follows from
transitivity.

Lambda calculus I

69

The reduction is useful for an analysis of convertibility. The
Church-Rosser Theorem states that if two terms are convertible,
then they reduce to the same term.

In many cases it is possible to prove that two terms are not
convertible by showing that they do not reduce to a common
term.

Lambda calculus I 70

Church-Rosser Theorem

If there are M, M ,, M, such that

M
MR P,

Lambda calculus I

71

M

5w

Then M\ /2
Y

for some A-term N .

Lambda calculus I

72

Corollary.

If M,=; M, thenthereisal-term N suchthat M, ->; N
and M, ~>; N.

Proof.

By induction on the generation of =;.

a) M,=; M, because M, ->, M,. Take N=M,.

b) M, =, M, because M, =, M,. Then by the
induction hypothesis M, and M, have a common
reduct N,. Put N=N,.

Lambda calculus I 73

¢) M, =y M, because M, =, L,L =, M,.By the
Induction hypothesis there are V;» NV, such that

R

Lambda calculus I

74

It follows from the Church-Rosser Theorem that there is
a common reduct Nof N,,N,.

Ml\ \ /MZ
NI/ N2

N
N is a common reduct of M,, M,.

Lambda calculus I 75

Corollary.

(1) If Nisap-normal form of M then M ~>g N.

(11) Every A-term has at most one B-normal form.

Proof. (i) Let M =; N and N is in B-normal form. By the

Corollary of the Church-Rosser Theorem M and N have a
common reduct L. But this is equal to N.

(i) Suppose that N,, N, are two B-normal forms of M.
Then N, =, N, =, M. Hence N,,N, have a common
reduct L. Butthen N, =L = N, since N,,N,

are in B-normal form.

Lambda calculus I 76

Definition.

We say that a A-calculus 7T is consistent if there are two
terms of it such that 7| +M = N. Otherwise T'is
inconsistent.

Theorem.

(i) A-calculus is consistent.

Proof.

A |+ true = false Otherwise frue =, false and by Church
Rosser Theorem it is impossible since frue and false are
distinct B-normal forms.

Lambda calculus I 77

Note that Q = (Ax.xx)(Ax.xx) has no f-normal form.
Otherwise Q — > N for some N in [B-normal form.
But Q reduces to itself and is not in B-normal form.

Lambda calculus I

78

Recall that the combinator ¥ finds fixed points

YF = F(YF)
On the other hand, we have

YF = (N Ax. f(xx))Ax. f (X)) F - g
(Ax.(F(xx))(Ax.F(xx))) - g
F((Ax.F(xx))Ax.F(xx)) g

F(Af.(Ax.f(xx))(Ax. f(xx)))F) = F(YF)

Hence we do not have YF' —>; F(YF) although this
1s often desirable.

Lambda calculus I 79

Turing introduced another fixed point operator with the
desired property.

Theorem (Turing’s fixed point combinator)

Let ®@=44 with A =Axy.y(xxy). Then for every F, we

have
OF ->F(OF)

Proof. ©F = AAF - F(AAF)=F(OF)

Similarly, one can find solutions for the double and for the
second fixed point theorem that do reduce in an analogous
manner.

Lambda calculus I 80

Strategies

In order to find the -normal form of a term M (if it exists),
the various redexes can be reduced in different orders. In
spite of this, the f-normal form is unique. However not
every sequence of reductions leads to the (existing) -
normal form.

Example

A = KIB, with aterm B without a f-normal form has a
normal form I but 4 has an infinite reduction path by
reducing within B e.g. 4= KIQ.

Lambda calculus I 81

A reduction strategy chooses one redex among the various
possible redexes which can be reduced in the current step
and thereby it determines how to reduce a term.

It turns out that there is a strategy that always normalizes
terms that do have a -normal form.

Lambda calculus I

82

Definition. Leftmost strategy, Lazy strategy.

(i) The main symbol of aredex (Ax.M)N is the first A.

(11) Let R,R, be two redexes that occur in aterm
M. We say that R, istotheleftof R, if the main
symbol of R, is to the left of that of R,.

(ii)) We write M -, N if N results from M by
contracting the leftmost redex in M. The reflexive
transitive closure of -, is denoted by _>,.

Lambda calculus I 83

The strategy that always contracts the leftmost redex is
caled the leftmost strategy or the normal strategy and
recently the lazy strategy. Computing in accord to the lazy
strategy is called lazy evaluation.

The following theorem, due to Curry, states that if a term

has a normal form then that normal form can be found by
the lazy strategy.

Theorem. (Curry)
If M has anormal form N, then Az ->, N.

Lambda calculus I

84

This reduction strategy is called lazy strategy because in an
expression like

(Aab.Cla,b])AB

it substitutes the subterms 4, B directly into C[a,b] instead
of evaluating them to normal forms.

Eager strategy performs a vice versa, it reduces first the
subterms A, B to normal forms before substituting them into
Cla,b] .

Lambda calculus I 85

For the lambda calculus it is not possible to have an eager
evaluation mechanism. This is due to the possibility of so-
called nonstrict functions like

Ax.[0]

The strict functions are defined as follows: F'is strict
if for arbitrary M,,M,,...,M, OA

FMM,..M,=0

whenever for one of the M,, I<i<n, M,=0 holds.

Note that the above defined function is nonstrict.

Lambda calculus I

86

Nonstrict functions enhance the expressive power

of the lambda calculus, but complicate the
implementation of the language. That's why the lambda
calculus is is sometimes called a lazy language.

An almost eager evaluation is implemented in functional
languages ML,SML and others, the lazy evaluation

is implemented in Haskell.

Lambda calculus I 87

Denotational semantics: set-theoretical models

Denotational semantics gives the meaning of a A-term M
by translating it to an expression denoting a set ‘M H This
set is an element of a mathematical structure in which
application and abstraction are well-defined operations
and the map | .| preserves these operations. In this way
we obtain a so-called denotational semantics.

Lambda calculus I

88

Constructing a model for the lambda calculus one would like

to have a space D such that D is isomorphic to the space D™ .

But this is impossible for cardinality reasons. In 1969 Scott
solved this problem by restricting p” to the continuous
functions on D provided with a proper topology.

Scott worked with complete lattices with an induced
topology and constructed a D such that p? Oop. It
turned out that a model of the lambda calculus is obtained
if D is a retract of D.

Lambda calculus I

89

Definition.

A complete lattice is a partially ordered set D =(D,<) such
that for each X 0 D the supremum sup X 0D exists.

Each D has a largest element top T =sup D and the least
element bottom O=supd and every
X 0OD hasan infimum inf X =sup{y|Ox0X(y < x)}.

Asubset X OD isdirected if X #0 and
Uy, yOX[EOX[x<zand y<z].

Lambda calculus I 90

Let D,D,.. range over complete lattices.

Definition.

A mapping f:D - D' is continuous if for all directed
XOD one has

f(sup X) =sup f(X) =sup{f(x)|xDX}.

Lambda calculus I

91

Note that each continuous function is monotoneous.

x<y=y=sup{x,y}
= f(¥) = f(sup{x, y}) =sup{ f(x), f ()}
= f(x)s ().

Lambda calculus I

92

Definition. (product and lattice of continuous maps)
Let D=(D,s),D'= (D',S').

(1) DxD'={(d,d")|d0D,d'0D'} 1s the Cartesian product of
D,D’ ordered by

d,,d,"V<(d,,d,") = d, <d,and d,'<'d,".

(i) [D - D'1={f:D - D'| fis continuous } is a function
space partially ordered by

f =g < 0d(f(d)<'g(d)).

Lambda calculus I 93

Lemma.

(1) Dx D' is a complete lattice and for arbitrary
X ODxD' we have

sup X' = (sup(X),,sup(X),),

where (X), ={d0D|'0D' (d,d")0.X}
(X),={d'0D'|H 0D (d,d")0 X}

(1) [D - D'] 1s a complete lattice if we apply pointwise
convergence to continuous functions.

Namely, if £,: D - D',i001 isa collection of con-
tinuous maps and we define

/() =sup (£,(x))

Lambda calculus I 94

then f is continuous and it is the supremum of the
collection in [D - D'].
Proof.
(1) Easy.
(i) Let X 0D be directed then
f(sup X) =sup, f,(sup X)
=sup, sup o, f;(x) continuity of f,
=sup g, sup, f;(x)
=sup gy f(x).
Thus f is continuous and f =sup f; in [D - D'].

Lambda calculus I

95

If X’ denotes the A-abstraction in set theory, we have

sup, N'x. ,(x) = Nx.sup,(/,(x))

Hence sup commutes with A’

Fixed Point Theorem.

Let fU[D - D]. Then f has a least fixed point defined by

Fix(f)=sup, /(D).

Lambda calculus I 96

Note that the set {f”(0)|»ON} 1is directed and

U= 7(0)s hence by monotonicity, we get
O< (D)< f(D)<...

Therefore

f(Fix(f) =sup, £(f"(@)=sup, f"(0) = Fix(f).
If x is another fixed point of f then f{x)=x and O<x,
thus by monotonicity f"(0)< f"(x) = x.

Hence Fix(f)<x.

Lambda calculus I

97

Lemma on separate continuity.

Let f:DxD'- D". Then f is continuous iff f is
continuous in each of its variables separately 1i.e.

Nx.f(x,x")) and Nx'. f(x,,x") are continuous for all XysX e

Proof. = asusual.
O Let xODxD' bedirected. Then
S (sup X) = f(sup(X),,sup(X),)
=SUp oy, S (x,5up(X)))
=Sup oy, SUP o), S (X, x")
=SUp oy S (X, X1).

The last equality follows from the fact that X is directed.

Hence f is continuous.
Lambda calculus I 98

We are going to define the lattice versions of operations of
application and abstraction and we will show that these
operations are continuous.

Definition.

Put

(i) Ap:(ID - D'|xD) -» D' by Ap(f,x)= f(x).

(ii) for S O[(DxD') - D"] define abstraction as follows

Ny.f(x,)).

Lambda calculus I

99

Theorem.
(1) Ap is continuous.
(ii) N’y.f(x,»)0[D' - D"] and depends continuously on x.

Proof.
We shall use the lemma on separate continuity.

(i) Xx.Ap(f,x)=Xx.f(x)=f is continuous sincef O[D - D'].
To prove the other continuity, let fO[D - D'].
put H =X f.Ap(f,x,) =N f.f(x,). then for any directed
family f,,i07 , we have
H(sup; f}) = (sup, /)(x,)
=sup,(f,(x,)) by pointwise convergence
=sup, H(f)

Lambda calculus I 100

Hence Ap 1is continuous.

(11) It follows from the separate continuity that
}\Sy-f(x, y) I:l [Dv N DH]

Moreover, for a directed X [0 D we have

Ny.f(sup X,y)=Ny.sup, f(x,)
: supx As'.)}.f~('x,)})

by continuity of f and the commutativity of supremum
and set abstraction.

Lambda calculus I 101

Definition.

(1) We say that D is a retract of D’ and write

D < D', if there are continuous mappings F, G

suchthat F:D'-> D,G:D - D' and FoG=id,.

(ii) We say that D is reflexive if [D - D]<D.
Remark. If D < D' using maps F, G, then F' is
,sonto“and G 1is,,one-to-one“. We may identify D

with its image G(D) O D'. Then F , retracts‘ the
larger space D ‘to the subspace D.

Lambda calculus I

102

We shall show that every reflexive complete lattice
determines a model of the lambda calculus.

Definition.
Let D be reflexive due to mappings F, G. Hence

[D - D|<D
F:D - [D - D|IOD)

(1) Thus for x O D we have F(x)O[D - D].In this
way elements of D become functions on D and we
may write for application x. 5y = F(x)(y) (U D).

Lambda calculus I 103

(i1) On the other hand, every function continuous on D
becomes via G an element of D.Thus for continuous f,
we may write (abstraction) A% f(x)=G(f)@AD).

Definition.

A valuation in D is a map p which to every term
variable x adds a value p(x) in D.

Lambda calculus I 104

Definition.

Let D be reflexive via F, G. Let p be a valuation in D
and M be a A-term. The denotation HM Hp of M inD
under valuation p is defined by induction on M as

follows: D
¥, =p()

D D D
POl =[P, rlO)
D
p(x:=d)
where p(x:=d) is the valuation p’ with

PO if vy Ex
p'(y) = .
d ify=sx

Lambda calculus I 105

il =¥alp

The definition is correct. By induction on P one can show

the continuity of A°d. HPH oimd)”

Definition.

We say that M=N is true in D and write D|=M=N if for
all valuations p, we have M Hf :HNHf

Intuitively, the denotation |3/ H is M interpreted in D where
every lambda calculus apphcatlon is interpreted as ., and
every abstraction A as A°. For instance

H}\x.xny =A%d.d p(») =N x.x p(»).

Lambda calculus I 106

Notation.
If D isreflexive and p is a valuation, it is obvious that the
denotation |M Hs depends only on the values of p on FV(M).

p| FV(M)=p'| F¥(M)= M| =M

Where | denotes the function restriction. In particular for com-
binators, |M Hfdoes not depend on p and may be written [p/]”.
If D is clear from the context, we write |M| 5 Or M|,

Lambda calculus I 107

Theorem.

If D is areflexive complete lattice by means of mappings
F and G, then D is a sound model for the lambda
calculus. In other words, we have

AM-M=N=D|=M=N.
Proof.

By induction of the proof of M=N. The only two
interesting cases are the axiom () and the rule (&).

Lambda calculus I 108

(B) 1s the scheme (Ax.M)N =M|x:=N]. For an arbitrary
valuation p, we have

(AxM)N| =(\7d|M e

p(x:=d))'F‘

= F(G\Nd M p(md)))(HNHp)
=\dM|, (N {FeG=id,}
= pCxt={,)

We need

Lemma.

M[x:=N]Hp =|M o=V

Lambda calculus I 109

Proof by induction on the structure of M. Write

PP=Plx:=N], p7=p(x:=|N])

Then

B, =M, =[#,
Hy”Hp =p(») =[yp
(PO =[P 01,

=|PloerlQle =|(POY e IH
Py =N =Nd P
Ay.Pl o =A"d|P|

p(y:=d)

p"(y:=d)

It suffices to note that (p(y:=d))"=p"(y:=d).

Lambda calculus I

(P(y:=d)"

110

We have proved |(Ax.M) NHp =|M[x:= NHp and the proof of
the axiom (B) is complete.

Therule§: M =N = Ax.M =Ax.N. We have to show
D|=M =N = D|=Ax.M =Ax.N.
D|=M =N

=[M[, =M, for all p
for all p,d

Indeed

=M., =V

p(x:=d)

=Nd.

Nd.
= p(x:=d)

M

N

o(xi=d) forall p
Nmﬂ:AQWNNm@ for all p
=], = e, orallp
= D|=Ax.M =Ax.N

Lambda calculus I 111

= \d|M

It remains to show that reflexive complete lattices do exist. We
will give an example of a reflexive complete lattice called D ,.

The method is due to Engeler and it is a code-free variant of the
graph model Po due to Plotkin and Scott.

Definition.

(i) Let A4 be a set, by induction on nUN define

B, =4
B ., =B 0{B,p)|pOB, andB 0 B,,B finite}

B=|3,
D, =P(B)={x|x 0B}

Lambda calculus I 112

D, 1is considered as a complete lattice ordered by inclusion (D).
The set B is the closure of 4 under the operation of forming
ordered pairs. It is assumed that 4 consists of urelements in
order it does not contain pairs (B, ») 0 B.

(ii) Define
by F:D, ~[D, D, G:[D,~D,]~D,
F(x)(»)={o|B Oy ((B,b)Ux)}

G()={B,0) b0 f(PB)}.

Lambda calculus I 113

We shall show later that F, G are continuos and prove
the reflexivity. Let fO[D, - D,], and yOD, be
arbitrary. We have
FoG(H»)=FUEB,D) 60BN
={p|BOys0f(B)}
=UJs®
BOy
=f(»)
Since y= UB is a directed supremum. We have

gOy .
FoG —ld[DPDA].

Lambda calculus I

114

(a) Fis continuous: let X 0 D, be directed.

F(sup X)(y)=F(JX)(»)={ B0 y@,0)0 JXx}
= J{ B O y@,b)0x}

x0Xx

=sup {F(x)(y)|xU X}

(b) continuity of G:letY O[D, - D,] be directed, let
f=supY hence f(®)=]y®.

yar

Then G(f)={B,6)|p0 fB)}={B,»)160(J»(B)
= Jt®.5)150 (@) ’

»ay

=sup{G(y)|yUY}

Lambda calculus I

Theorem. (Semantic proof of consistency of A-calculus)

The lambda calculus 1s consistent: A | +true = false.
Proof.

If A|-x=y then D,|=x=y. Itsuffices to take a
valuation p of variables in D, such that

P(x)#p(y). Then D, |¢x=y a contradiction.

Lambda calculus I

116

Extending the language

Some language constructs in functional languages

() ,Let x =M in E“ stands for (Ax-E)M or

Elx:=M]. The latter is usefull if we want to

type expressions, the various expressions may need to
be typed differently.

(i1) ,,Letrecf x =C|f,x] in E* stands for

Let f=O fx.C[f,X]) inE. Here © isthe
Turings fixed point operator.

Similarly one can define Letrec using the double fixed
point.

Lambda calculus I

117

Delta rules

are useful in extending the lambda calculus by ,,external*
functions. Implementations of functional languages exploit
the standard arithmetics of the processor which is much
more efficient than computations with numerals in the
lambda calculus. Besides the type integer, they use the
standard types boolean and Char.

To represent all this and more, we extend the lambda
calculus by so-called é-rules. They are very helpful in
theoretical analysis of programs and proofs.

Lambda calculus I 118

Motivation. One of the first versions of a d-rule was used
by Church (1941). He used the rule to test the equality of
numerals. It is possible to formulate it in a more general
setting.

Example.

Let X be a set of closed terms in normal form. For M, NOX
we define
OMN - Axy.x if M=EN

OMN - Axy.y if M¥N

Note that this is not one contraction rule, but a rule
scheme. For any two elements of X one contraction
rule.

Lambda calculus I 119

Both assumptions on terms M, N are necessary to keep the
Church-Rosser property working.

Example.

(@) Put M =(Ax.x)(Ay.y)
N =(Az.2)
then M is not in normal form, but both terms are without free

variables. We have @M)N

S

Axy.y (ON)N

.

Axy.x

Lambda calculus I 120

(b) If we put M =(Ax.wx), N =(Ax.x) then we have

Aw.(BM)N)(Az.z)

LN

((O(Ax.((Az.2)x)))N) (AwAxy.y)(Az.z)

B N

((3(Ax.x))N) Axy.y

/5

Axy.x

Lambda calculus I

121

Definition.

Let X OA beasetofclosed terms in normal forms.
Usually we take constants for the elements of C, hence X O C.
Let f:X* - A be an,externally defined” function. In
order to represent f, a so-called 6-rules are added to the
lambda calculus as follows:

(1) A special constantin C is selected and is given a name
3 (=8)).

(2) New contraction rules are added to those of the lambda

calculus:

MM, = [(M,ycM,), M, ..M,0X

Lambda calculus I 122

For a given function £, this is not one contraction rule but in
fact a rule scheme. The resulting extended calculus is called
the Ad-calculus. The corresponding notions of reduction are
denoted -5 —>p5 - S0 d-reduction is not an absolute
notion, but it depends on the choice of f.

Theorem. (Mitschke)

Let f be a function on a set of closed terms in normal
form. Then the resulting notion of reduction - >g;
satisfies the Church-Rosser theorem.

Lambda calculus I 123

The notion of normal form generalises to fd6-normal form.
So does the concept of leftmost reduction. The P& -nor-
mal forms can be found by a leftmost reduction.

Theorem.

If M -~>p N and N is in gg-normal form, then M - >4 N.

Lambda calculus I 124

Example. Set of 6-rules for the booleans.
The following constants are selected in C
true, false, not, and, ite (for if then else)

And the following 6-rules are introduced

not true — false not false — true
and true true — true and true false - false
and false - true - false and false false — false
ite true — true = Axy.x ite false — false = Axy.y

Lambda calculus I 125

It follows that

itetruexy -»>x ite falsex y ->y

Now we introduce some operations on the set of integers
7={...-10,1,2,...}.

Example. For each n0Z , we choose a constant in C
and give it the name |_n-| . Moreover the following
constants in C are selected

lus, minus, times, divide, error, equal
b 9 9

Lambda calculus I

126

Then we introduce the following schemes of - rules. For
m,n0Z,

plus |_m-| |_n-| - |_m + n-l, minus |—m—| |_n—| - |—n —m—l,
times |_m-| |_n—| - |_m |:|n-|

divide |_m-| |_n-| - |_m : n-| if m#¥0, divide |_m_| |_0_| - error,
equal |_m-| |_m-| - true, equal |_m-| |_n_| - false if m¥n.

We may add rules like

plus |_m-| error — error

Exercise. Write down a Ad-term F, F' —> |_n!+n-| .

Lambda calculus I 127

Similar d-rules can be introduced for the set of reals. Another set
of d-rules is concerned with characters.

Example. Let £ be a linearly ordered alphabet. For each
symbol s[0% choose a constant "s'[]1C. Moreover, we choose
two constants 8.,8_ in C and state the following 8-rules:

o.'s,""s,”» true if s, precedes s, Z,the ordering of Z,
0.'s,""s,”— false otherwise.
o."s,""s,” - true if s, =s,,

0.'s,"’s,” — false otherwise.

Lambda calculus I 128

In the lambda calculus, we have defined domains and the
corresponding d-rules of operations on the sets of standard
data types

boolean integer Char

By this way, we made a first step to the theory of lambda
calculi with types.

Lambda calculus I 129

