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Lambda Calculus
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Conversion

Application
The data (expression) F considered as an algorithm are 
applied to the data A considered as input. Notation

(FA)
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Abstraction

Let    M[x] be an expression possibly depending on a
variable  x , then

λx.M[x]

denotes the map 

x          M[x]a
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Example
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The left-hand side of (β) is called  redex  and the right-
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x.x)y.Ny)((N]:x.x)[xy.xy)(( λλλλλλλλλλλλλλλλ ==

Free and bound variables
Abstraction is said to bind the free variables in M.
Substitution [x:=N] is only performed in the free 
occurences  of x:

Lambda calculus I 10

Functions of several arguments
can be obtained by iteration of application.

),( yxfIf we have

Put

x

x

FxF
yxfyF

.
),(.

λλλλ
λλλλ

=
=

then
),()( yxfyFyFx x == (1)

Lambda calculus I 11

The  equation (1) shows that it is convenient to associate 
parentheses to the left for iterated application:

n21 MMFM ... denotes ))...)(...(( n21 MMFM

then (1) becomes

),( yxfFxy =

Lambda calculus I 12

On the other hand it is convenient to use association parentheses
to the right for the iterated  abstraction

))...))...(..(...((
)...(....

,.

,

n21n21

n21n21

xxxfxxx
xxxfxxx

λλλλλλλλλλλλ
λλλλ

Then we have for  F defined above

),(. yxfxyF λλλλ=
and (1) becomes

),()),(.( yxfxyyxfxy =λλλλ

denotes
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Formal description of lambda calculus

The set  of lambda terms  Λ is built up from infinite 
sets of constants and variables using application and 
abstraction.

,...}",',{ cccC = ,...}",',{ vvvV =

ΛΛΛΛ∈⇒∈ cCc ΛΛΛΛ∈⇒∈ xVx

ΛΛΛΛΛΛΛΛ ∈⇒∈ )(, MNNM
ΛΛΛΛλλλλΛΛΛΛ ∈⇒∈∈ ).(, MxVxM

Lambda calculus I 14

ΛΛΛΛλλλλΛΛΛΛΛΛΛΛΛΛΛΛ VVC |||=

Example

v )( vc ))(( vcvλλλλ )))(('( vcvv λλλλ )'))((( vvcvλλλλ

Description by abstract syntax

are Λ terms.

Lambda calculus I 15

The set FV(M) of free variables of M

}{)( xxFV = )()()( NFVMFVMNFV ∪=

}{)().( xMFVMxFV −=λλλλ

M is a closed λ-term if

The set of closed λ-terms is denoted      .0ΛΛΛΛ

0MFV =)(

Lambda calculus I 16

Lambda calculus as a theory of equation

The principal axiom scheme

for all

)(ββββ ]:[).( NxMNMx ==λλλλ

., ΛΛΛΛ∈∈∈∈NM
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)( ξξξξ−rule ´).().(´ MxMxMM λλλλλλλλ =⇒=

´´ ZMZMMM =⇒=

ZMMZMM ´´ =⇒=

MNNM =⇒=
MM =

The logical axioms and rules

LMLNNM =⇒== ,

Lambda calculus I 18

If NM =

NM =−|λλλλ

or just say that M and N are β-convertible.

denotes that   M  and N  are the same term 
or can be obtained from each other by renaming bound 
variables. 

NM ≡

we write
is provable from the axioms and rules

Lambda calculus I 19

Examples

zyxzyx ).().( λλλλλλλλ ≡ zyxzxxzyyzxx ).().().().( λλλλλλλλλλλλλλλλ ≡/≡

An alternative

]:)[.().()( yxMyMx == λλλλλλλλαααα y does not occur in M.

Name-free notation

)()..( 21xyyx λλλλλλλλλλλλλλλλ is denoted by

Lambda calculus I 20

Development of the theory
standard combinators

xxyKxxI .. λλλλλλλλ ≡≡

)(..* yzxzxyzSyxyK λλλλ≡≡≡≡λλλλ≡≡≡≡

We have

)(* NLMLSMNLNMNK
MKMNMIM
==
==
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Fixed Point  Theorem

(i) For every there is an             such that  

)( XFXXF =∃∀

ΛΛΛΛ∈XΛΛΛΛ∈F

XFX =−|λλλλ

(ii) There is a fixed point combinator

Y

such that

))(.))((..( xxfxxxfxf λλλλλλλλλλλλ≡

YFYFFF =∀ )(

Lambda calculus I 22

Proof. (i) Define                              and)(. xxFxW λλλλ≡ WWX =

FXWWFWxxFxWWX ≡=≡≡ )())(.(λλλλ

(ii) By the proof of (i)

Then

Lambda calculus I 23

A term  C[f,x] possibly containing the displayed 
variables is called a context.

Context lemma.
Given a context C[f,x], we have

],[ XFCFXXF =∀∃

Where C[F,X] is the result of  the substitution

C[f,x][f:=F][x:=X]

Lambda calculus I 24

Proof.

]).,[.(
]),[.(

],[.
],[],[

xfCfxYF
FxfCfxF

xFCxF
xFCFxXFCFXX

λλλλ====⇐⇐⇐⇐
λλλλ====⇐⇐⇐⇐
λλλλ====⇐⇐⇐⇐
====⇐⇐⇐⇐====∀∀∀∀
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Definition
Let        be the set of natural numbers and              

We define

N .Nn ∈

))(()()( MFFMFMMF n1n0 ≡≡ +

Definition The Church numerals

...,,...,,, n210 cccc
are defined by

)(. xffxc n
n λλλλ≡

Lambda calculus I 26

Lemma (Rosser)

If we define

yxxyA
yzxxyzA

ypqxpxypqA

.
)(.

)(.

exp

*

λλλλ
λλλλ
λλλλ

≡
≡
≡+

We have for every Nmn ∈,

)(exp

**
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Definition
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For  terms M,N write
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     ],[, nfalse1nI0 ≡+≡

Definition (numerals)

For natural number    n define

Lambda calculus I 30

Lemma (successor, predecessor,  test for zero)

There are combinators     zeroPS ,, −+

such that for all Nn ∈

one has

       
    false1nzerotrue0zero

n1nP1nnS
=+=

=++= −+

Lambda calculus I 31

xtruexzero
falsexxP

xfalsexS

.
.

],.[

λλλλ
λλλλ

λλλλ

≡
≡−
≡+

Proof. Put

Lambda calculus I 32

Definition
A function                        of  p arguments  is   called            
λ-definable  if there is a combinator F  such that

NNf p →:

In this case, we say that f   is λ-defined by  F.

     )...( , p1p1 nnfnnF =K
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Theorem. All recursive functions are  λ-definable.

Idea. It can be shown that all basic functions of the class of all 
recursive functions are λ-definable, that the class of  all λ-
definable functions is closed under composition, primitive
recursion and minimalization.

Lambda calculus I 34

a) Basic functions

0nZ1nnS
ni1xxxU in1

i
n

=+=

≤≤=
+ )()(

),...,(

Put

 0xZxfalsexSxxxU in1
i
n .],.[...., λλλλλλλλλλλλ ≡≡≡ + .

Lambda calculus I 35

b) Operations.
b1) Composition. Let                       be functions λ-defined 
by                        respectively. Then the function                     

m1 hhg ,,, K

m1 HHG ,,, K

))(,),(()( nhnhgnf m1
r

K
rr ====

is λ-defined by

).()(. xHxHGxF m1
r

K
rrλλλλ≡≡≡≡

Lambda calculus I 36

b2) primitive recursion

Let  f  be defined by

),),,((),(),(),( nknkfhn1kfngn0f rrrrr ====++++====

Let  g, h be λ-defined by  G, H respectively. An 
intuitive algorithm to compute                     consists of 
the following steps:

� test whether k = 0

� if yes, then return    

� if no, then compute

),( nkf r

)(ng r

),),,(( n1kn1kfh rr −−−−−−−−
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Thus we need a combinator F  such that

),,(
))()(() Zero(

yxFD
yxPyxPFHelseyGthenxifyFx

r

rrrr

≡≡≡≡
==== −−−−−−−−

Now such an combinator F  can be found by the 
Context lemma applied to  ).,,( yxFD r

Lambda calculus I 38

)())(( ySxHelseythenyxGzeroifyxH += rrr

Suppose that  g is λ-defined by  G, by the Context
lemma there is a term  H such that

]),([)( 0mngmnf == rr
&& µµµµ 0mngmng =∃∀ ),(, rr

with

b3) (regular) minimalization

Lambda calculus I 39

Set  .. 0xHxF rrλλλλ= Then F   λ-defines f, indeed

    0nHnF rr =

 
  

 
  

 
  




=





=





=

2nH
2

1nH
1

1nH
0

v

r

r

    00nG =r
if

else

if

else

if

else

    01nG =r

    02nG =r

...=

Lambda calculus I 40

The Double Fixed Point Theorem

)( BXYYAXYXYXBA ==∃∃∀∀
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By the simple Fixed Point Theorem there exists a  
Z  such that

ZFZ =

)])((),)((.[ falsextruexBfalsextruexAxF λλλλ≡

Proof.
Put

Lambda calculus I 42

.BXYY =
and  similarly

AXYfalseZtrueZAtrueFZtrueZX ≡=== ))((

Then

falseZYtrueZX ≡≡ ,

Take

Lambda calculus I 43

],,[],,[ xFFCxFxFFCxF 21222111 ==

Corollary.

Given contexts                                      there 
exist                                       

such that

21ixgfCC ii ,,],,[ =≡

21 FF ,

Lambda calculus I 44

Definition (coding λ-terms)

Let                        be a recursive coding of 
ordered  pairs of natural numbers.  We put

NN 2 →∗∗ :,

(i)
')()()( n1n0 vvvv == +

and similarly we define .)(nc
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   MM = #

We write

Mx3Mx ,,).( =λλλλNM2MN ,,)( =

n0v n ,)( = n1c n ,)( =# #

(ii)

# # ## # #

Lambda calculus I 46

Theorem (Kleene)

There is an  �interpreter� combinator  E for
closed λ-terms without constants such that for
every closed term M without constants, we have

  .MME =

Lambda calculus I 47

Proof (P. de Bruin)

Construct             such that for an arbitrary   F1E

   
     
   MFEzMxFE

NFEMFEMNFE
xFxFE

zx11

111

1

]:[.(.
))((

==
=

=

λλλλλλλλ

where
   





=
=/

== xnz
xnnF

nF zx ]:[
if         #

if #

Note  that                  can be written in the form]:[ zxF =

  .zFxG
Lambda calculus I 48

By induction on  M it follows that

 
       ]:,...,:][:,...,:[ mm11nn11

1

cFccFcxFxxFxM
MFE

=====
=

where
)(}...,{ MFVxx n1 = }...,{ m1 cc are the constants in M.

  .MMIE1 =
Now take
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Second Fixed Point Theorem

  XXFXF =∃∀

Lambda calculus I 50

Proof.
By the recursiveness of  #, there are recursive 
functions   AP and  Num  such that

AP(#M,  #N) = # MN Num (n) = #  n

Lambda calculus I 51

    MMNum =

in particular, we have

Let AP and Num be λ-defined by closed terms    
AP and Num .  

Then

         nnNumMNNMAP ==

Lambda calculus I 52

If we put

 WWXxNumAPxFxW ≡≡ ))((.λλλλ

then

     
    XFWWF

WNumWAPFWWX
==

=≡ ))((
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The following result due to Scott is an 
application of the Second Fixed Point 
Theorem, which is useful in proving 
undecidability results. Its flavor resembles 
the well-known Rice�s Theorem on
recursively enumerable sets.

Lambda calculus I 54

Theorem (Scott)
Let               be a set of terms such that

(i) A is nontrivial, i.e. A    0 and A

(ii) A is  closed under = that is                                         

Then A  is not recursive, more precisely, the set

#A  =

is not recursive.

ΛΛΛΛ⊆A

=/ ΛΛΛΛ=/

ANNMAM ∈⇒=∈ ,

}|{ ΛΛΛΛ∈MM#

Lambda calculus I 55

Proof

by contradiction. Suppose that A is recursive. It 
follows that there is a closed λ-term  F  such that

   0MFAM =⇔∈    1MFAM =⇔∉

Take Let., AMAM 10 ∉∈

01 MelseMthenFxZeroifGx )(=

Lambda calculus I 56

By the second Fixed Point Theorem, there is a 
term  M such that

  MMG =
thus

  AMGMAM ∉=⇔∈

a contradiction.

then

  AMMGAM 1 ∉=⇔∈

  AMMGAM 0 ∈=⇔∉
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Definition
(i)  We say that a term  M  is in normal form if M  has no 
part (redex) of the form

QPx ).(λλλλ

(ii) We say that a term M  has a normal form if there is a
term  N in normal form such that      M = N.

Lambda calculus I 58

If  M is in normal form, no rule is applicable to  M.

Example
I is in normal form,   IK has a normal form.

Both types of numerals are in  normal form etc.

Lambda calculus I 59

ΩΩΩΩbut the contractum remains       .  

).)(.( xxxxxx λλ

Note that the term

).)(.( xxxxxx λλλλλλλλΩΩΩΩ ≡

has no normal form. The β-rule is applicable to

the redex

Lambda calculus I 60

Theorem (Church, Scott)

The set
}|{ form normal aMMNF ====

is not recursive.

This result was first proved by Church (1936) by a 
different method. Historically it was the first example 
of noncomputable property.
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Proof.
NF is closed under equality. We have shown that it is 
nonempty. We have noted that the term

).)(.( xxxxxx λλλλλλλλΩΩΩΩ ≡

has no normal form. Thus  NF           and hence it is 
nontrivial. The rest follows from the Church, Scott 
theorem.

ΛΛΛΛ=/

Lambda calculus I 62

The semantics of λ-calculus

� Semantics of a language  L  gives a �meaning� to the 
expressions in L. This can be given essentially in two 
ways. 

� By providing a way in which expression of L  are used. 
This gives so called operational semantics of L.

� By translating the expressions of L  into expressions of 
another language that is already known. In this way we 
obtain a so called denotational semantics of L.

Lambda calculus I 63

Operational semantics: reductions and strategies

There is a certain asymetry in the basic rule  (β). 

1331xx +=+ ).(λλλλ

The above equality an be interpreted as �3+1 is the result
of computing                 �,  but not vice versa. 

This computational aspect will be expressed by writing

31xx ).( +λλλλ

1331xx +>>−+ ).(λλλλ

which reads �                 reduces to           �.31xx ).( +λλλλ 13+

Lambda calculus I 64

Definition

A binary relation   R on  Λ  is called  

(i) compatible if  it  is  compatible with  the two operations  of  
the λ-calculus

).().( NxRMxNRM
NZRMZNRM
ZNRZMNRM

λλλλλλλλ⇒
⇒
⇒

(ii)  a reduction on Λ if it is a compatible reflexive and 
transitive relation.

(iii)  a congruence on   Λ if it is a compatible 
equivalence relation.
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Definition

The binary relations                         and          on Λ are 
defined as follows

ββββββββ →>→ , ββββ=

(i)  (1) ]:[).( NxMNMx =→ββββλλλλ

(2)

).().( NxMxNM
NZMZNM
ZNZMNM

λλλλλλλλ ββββββββ

ββββββββ

ββββββββ

→⇒→

→⇒→

→⇒→
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MM ββββ→>(ii)  (1)

(2) NMNM ββββββββ →>⇒→

(3) LMLNNM ββββββββββββ →>⇒→>→> ,

(iii)  (1) NMNM ββββββββ =⇒→>

(2) MNNM ββββββββ ====⇒⇒⇒⇒====

(3) LMLNNM ββββββββββββ =⇒== ,

Lambda calculus I 67

These relations are pronounced as follows

NM ββββ→ reads �M β-reduces to N in one step�

reads � M β-reduces to N �

reads �M is β-convertible to N�

By definition we have

ββββ→ is compatible
is a reduction

ββββ= is a congruence relation

NM ββββ→>→>→>→>

NM ββββ====

ββββ→>→>→>→>

Lambda calculus I 68

Note that            is the reflexive transitive closure ofββββ→>

and ββββ= is the equivalence relation generated by .ββββ→

Proposition
NMNM =−⇔= |λλλλββββ

Proof. )(⇒ By induction on the generation of .ββββ=
)(⇐ By induction on the length of proof.

ββββ→→→→
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Lemma.
Let M  be a β-normal form. Then

MNNM ≡⇒→>ββββ

Proof.
This is true if           is            The rest follows from 
transitivity.

ββββ→> .ββββ→

Lambda calculus I 70

The reduction is useful for an analysis of convertibility. The 
Church-Rosser Theorem states that if two terms are convertible, 
then they reduce to the same term.

In many cases it is possible to prove that two terms are not 
convertible by showing that they do not reduce to a common 
term.

Lambda calculus I 71

Church-Rosser Theorem
If there are                     such that 21 MMM ,,

21 MM

M

ββββ ββββ

Lambda calculus I 72

21 MM

M

ββββ ββββ
Then

Nββββ ββββ

for some λ-term  N .



Lambda calculus I 69

Lemma.
Let M  be a β-normal form. Then

MNNM ≡⇒→>ββββ

Proof.
This is true if           is            The rest follows from 
transitivity.

ββββ→> .ββββ→

Lambda calculus I 70

The reduction is useful for an analysis of convertibility. The 
Church-Rosser Theorem states that if two terms are convertible, 
then they reduce to the same term.

In many cases it is possible to prove that two terms are not 
convertible by showing that they do not reduce to a common 
term.

Lambda calculus I 71

Church-Rosser Theorem
If there are                     such that 21 MMM ,,

21 MM

M

ββββ ββββ

Lambda calculus I 72

21 MM

M

ββββ ββββ
Then

Nββββ ββββ

for some λ-term  N .



Lambda calculus I 69

Lemma.
Let M  be a β-normal form. Then

MNNM ≡⇒→>ββββ

Proof.
This is true if           is            The rest follows from 
transitivity.

ββββ→> .ββββ→

Lambda calculus I 70

The reduction is useful for an analysis of convertibility. The 
Church-Rosser Theorem states that if two terms are convertible, 
then they reduce to the same term.

In many cases it is possible to prove that two terms are not 
convertible by showing that they do not reduce to a common 
term.

Lambda calculus I 71

Church-Rosser Theorem
If there are                     such that 21 MMM ,,

21 MM

M

ββββ ββββ

Lambda calculus I 72

21 MM

M

ββββ ββββ
Then

Nββββ ββββ

for some λ-term  N .



Lambda calculus I 69

Lemma.
Let M  be a β-normal form. Then

MNNM ≡⇒→>ββββ

Proof.
This is true if           is            The rest follows from 
transitivity.

ββββ→> .ββββ→

Lambda calculus I 70

The reduction is useful for an analysis of convertibility. The 
Church-Rosser Theorem states that if two terms are convertible, 
then they reduce to the same term.

In many cases it is possible to prove that two terms are not 
convertible by showing that they do not reduce to a common 
term.

Lambda calculus I 71

Church-Rosser Theorem
If there are                     such that 21 MMM ,,

21 MM

M

ββββ ββββ

Lambda calculus I 72

21 MM

M

ββββ ββββ
Then

Nββββ ββββ

for some λ-term  N .



Lambda calculus I 73

Corollary.

If                       then there is a λ-term  N  such that                      
and

21 MM ββββ= NM1 ββββ→>
.NM 2 ββββ→>

Proof.

By induction on the generation of .ββββ=

a)                   because                        Take21 MM ββββ= .21 MM ββββ→> .2MN ≡

b) because                   Then by the 
induction hypothesis         and          have a common 
reduct          Put 

1M
.1N .1NN ≡

21 MM ββββ= .12 MM ββββ====
2M

Lambda calculus I 74

c)                  because                                By the 
Induction hypothesis there are              such that

21 MM ββββ= ., 21 MLLM ββββββββ ==
21 NN ,

21

21

NN

MLM
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21

21

NN

MLM

It follows from the Church-Rosser Theorem that there is 
a common reduct N of ., 21 NN

N

N is a common reduct of ., 21 MM

Lambda calculus I 76

Corollary.
(i)  If N is a β-normal form of M  then

(ii)  Every λ-term has at most one β-normal form. 

.NM ββββ→>

Proof. (i) Let                and N  is in β-normal form. By the 
Corollary of the Church-Rosser Theorem M  and N  have a 
common reduct L. But this is equal to  N.

NM ββββ=

(ii) Suppose that               are two β-normal forms of M. 
Then                           Hence             have a common 
reduct L. But then                      since       

are in β-normal form.

21 NN ,
.MNN 21 ββββββββ ==

21 NLN ≡≡
21 NN ,

21 NN ,
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Definition.
We say that a λ-calculus T is consistent if there are two 
terms of it such that                        Otherwise T is 
inconsistent.

.| NMT =−/

Theorem.
(i) λ-calculus is consistent.

Proof.

Otherwise                           and by Church 
Rosser Theorem it is impossible since true and false are 
distinct    β-normal forms. 

falsetrue =−/|λλλλ falsetrue ββββ=

Lambda calculus I 78

Note that                                has no β-normal form. 
Otherwise                     for some N  in     β-normal form. 
But        reduces to itself and is not in β-normal form. 

).)(.( xxxxxx λλλλλλλλΩΩΩΩ ≡
NββββΩΩΩΩ→>

ΩΩΩΩ

Lambda calculus I 79

Recall that the combinator Y finds fixed points

)(YFFYF =
On the other hand, we have

)())))(.))((..(((
))(.))((.((

)))(.))((.((
)))(.))((..((

YFFFxxfxxxfxfF
xxFxxxFxF

xxFxxxFx
FxxfxxxfxfYF

≡

←

→

→≡

λλλλλλλλλλλλ

λλλλλλλλ

λλλλλλλλ

λλλλλλλλλλλλ

ββββ

ββββ

ββββ

Hence we do not have                                   although this 
is often desirable.

)(YFFYF ββββ→>→>→>→>

Lambda calculus I 80

Turing introduced another fixed point operator with the 
desired property.

Theorem (Turing´s fixed point combinator)

Let                   with                                 Then for every F, we 
have  

AA=ΘΘΘΘ ).(. xxyyxyA λλλλ=

)( FFF ΘΘΘΘΘΘΘΘ →>

Proof. )()( FFAAFFAAFF ΘΘΘΘΘΘΘΘ ≡→≡

Similarly,  one can find solutions for the double and for the 
second fixed point theorem that do reduce in an analogous 
manner.
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Strategies
In order to find the β-normal form of a term  M  (if it exists), 
the various redexes can be reduced in different orders. In 
spite of this, the β-normal form is unique. However not 
every sequence of reductions leads to the (existing) β-
normal form.

Example 

, with a term B  without a β-normal form has a 
normal form I but A  has an infinite reduction path by 
reducing within B  e.g.

BKA I≡≡≡≡

.IΩΩΩΩ≡≡≡≡ KA

Lambda calculus I 82

A  reduction strategy chooses one redex among the various 
possible redexes which can be reduced in the current step 
and thereby it determines how to reduce a term.

It turns out that there is a strategy that always normalizes 
terms that do have a β-normal form.

Lambda calculus I 83

Definition. Leftmost strategy, Lazy strategy.

(i) The main symbol of a redex                   is  the first λ.

(ii) Let             be  two  redexes   that  occur   in a term  
M. We say that          is to the left of  if the main 
symbol of        is to the  left  of  that   of       .

(iii) We write                   if   N  results from M  by 
contracting the leftmost redex in M. The reflexive 
transitive closure of        is denoted by

NMx ).(λλλλ

21 RR ,
1R

2R
1R 2R

NM l→→→→

l→→→→ .l→>→>→>→>

Lambda calculus I 84

The strategy that always contracts the leftmost redex is 
caled the leftmost strategy or the normal strategy and 
recently the lazy strategy. Computing in accord to the lazy 
strategy is called lazy evaluation.

The following theorem, due to Curry, states that if a term 
has a normal form then that normal form can be found by 
the lazy strategy.

Theorem. (Curry)
If M  has a normal form N,  then .NM l→>→>→>→>
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The strategy that always contracts the leftmost redex is 
caled the leftmost strategy or the normal strategy and 
recently the lazy strategy. Computing in accord to the lazy 
strategy is called lazy evaluation.

The following theorem, due to Curry, states that if a term 
has a normal form then that normal form can be found by 
the lazy strategy.

Theorem. (Curry)
If M  has a normal form N,  then .NM l→>→>→>→>
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Strategies
In order to find the β-normal form of a term  M  (if it exists), 
the various redexes can be reduced in different orders. In 
spite of this, the β-normal form is unique. However not 
every sequence of reductions leads to the (existing) β-
normal form.

Example 

, with a term B  without a β-normal form has a 
normal form I but A  has an infinite reduction path by 
reducing within B  e.g.

BKA I≡≡≡≡

.IΩΩΩΩ≡≡≡≡ KA

Lambda calculus I 82

A  reduction strategy chooses one redex among the various 
possible redexes which can be reduced in the current step 
and thereby it determines how to reduce a term.

It turns out that there is a strategy that always normalizes 
terms that do have a β-normal form.
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This reduction strategy is called lazy strategy because in an 
expression like

ABbaCab ]),[.(λλλλ

it substitutes the subterms A, B directly into C[a,b] instead 
of evaluating them to normal forms. 

Eager strategy performs a vice versa, it reduces first the 
subterms A, B to normal forms before substituting them into 
C[a,b] .

Lambda calculus I 86

For the lambda calculus it is not possible to have an eager 
evaluation mechanism. This is due to the possibility of so-
called nonstrict functions like

].[0xλλλλ
The strict functions are defined as follows:   F is strict 
if for arbitrary ΛΛΛΛ∈∈∈∈n21 MMM ,,, K

⊥⊥⊥⊥====n21 MMFM K

whenever for one of the  holds.   ⊥⊥⊥⊥====≤≤≤≤≤≤≤≤ ii Mni1M ,,

Note that the above defined function is nonstrict.

Lambda calculus I 87

Nonstrict functions  enhance the expressive power 
of the lambda calculus, but complicate the 
implementation of the language. That`s why the lambda
calculus is is sometimes called a lazy language.
An almost eager evaluation is implemented in functional
languages ML,SML and others, the lazy evaluation
is implemented in Haskell.

Lambda calculus I 88

Denotational semantics: set-theoretical models

Denotational semantics gives the meaning of a λ-term  M
by translating it to an expression denoting a set         This 
set is an element of a mathematical structure in which 
application and abstraction are well-defined operations 
and the map         preserves these operations. In this way 
we obtain a so-called denotational semantics.

.M

.
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Constructing a model for the lambda calculus one would like
to have a space D  such that D is isomorphic to the space      
But this is impossible for cardinality reasons. In 1969 Scott 
solved this problem by restricting       to the continuous 
functions on  D provided with a proper topology.                         

.
DD

DD

Scott worked with complete lattices with an induced 
topology and constructed a  D  such that                   It 
turned out that a model of the lambda calculus is obtained 
if        is a retract of D.

.DDD ≅≅≅≅

DD

Lambda calculus I 90

Definition.
A complete lattice is a partially ordered set                  such 
that for each             the supremum exists.

Each D has a largest element                      and     the least  
element and every

),( ≤≤≤≤==== DD
DX ⊆⊆⊆⊆ DX ∈∈∈∈sup

DTtop sup====
0bottom ////====⊥⊥⊥⊥ sup

)}.(|sup{inf xyXxyX ≤≤≤≤∈∈∈∈∀∀∀∀====

DX ⊆⊆⊆⊆ 0X ////====////
].[, zyandzxXzXyx ≤≤≤≤≤≤≤≤∈∈∈∈∃∃∃∃∈∈∈∈∀∀∀∀

DX ⊆⊆⊆⊆ has an infimum

A subset                 is directed if               and

Lambda calculus I 91

Let             range over complete lattices....,, 'DD

Definition.
A mapping                       is continuous if for all directed

one has

': DDf →→→→

DX ⊆⊆⊆⊆

}.|)(sup{)(sup)(sup XxxfXfXf ∈∈∈∈========

Lambda calculus I 92

Note that each continuous function is monotoneous.

).()(
)}(),(sup{}),(sup{)(

},sup{

yfxf
yfxfyxfyf

yxyyx

≤≤≤≤⇒⇒⇒⇒
========⇒⇒⇒⇒

====⇒⇒⇒⇒≤≤≤≤
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Definition. (product and lattice of continuous maps)

Let ).,'('),,( '≤≤≤≤====≤≤≤≤==== DDDD

(i)                                                     is the Cartesian product of 
D,D� ordered by

}'',|)',{(' DdDdddDD ∈∈∈∈∈∈∈∈====××××

'.´')',()',( 21212211 ddanddddddd ≤≤≤≤≤≤≤≤⇔⇔⇔⇔≤≤≤≤

(ii)                                                               is a function 
space partially ordered by

}|':{]'[ continuousisfDDfDD →→→→====→→→→

)).(')(( dgdfdgf ≤≤≤≤∀∀∀∀⇔⇔⇔⇔≤≤≤≤

Lambda calculus I 94

Lemma.
(i)              is  a complete lattice and for arbitrary   

we have

'DD××××

'DDX ××××⊆⊆⊆⊆

),)sup(,)(sup(sup 10 XXX ====

where
})',(|''{)(
})',(''|{)(

XddDdDdX
XddDdDdX

1

0

∈∈∈∈∈∈∈∈∃∃∃∃∈∈∈∈====
∈∈∈∈∈∈∈∈∃∃∃∃∈∈∈∈====

(ii)                  is a  complete lattice if we apply pointwise 
convergence to continuous functions.

]'[ DD →→→→

Namely, if                              is a collection of con-
tinuous maps and we define

IiDDfi ∈∈∈∈→→→→ ,':

))((sup)( xfxf i
i

====
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then  f  is continuous and it is the supremum of the 
collection in ].'[ DD →→→→

Proof.
(i) Easy.
(ii) Let be directed thenDX ⊆⊆⊆⊆

).(sup
)(supsup
)(supsup

)(supsup)(sup

xf
xf

fofcontinuityxf
XfXf

Xx

iiXx

iiXxi

ii

∈∈∈∈

∈∈∈∈

∈∈∈∈

====
====
====
====

Thus f is continuous and                     iniff sup==== ].'[ DD →→→→

Lambda calculus I 96

If      denotes the  λ-abstraction in set theory, we havesλλλλ

))((sup.)(.sup xfxxfx ii
s

i
s

i λλλλ====λλλλ

Hence  commutes with    .sλλλλsup

Fixed Point Theorem.

Let Then f has a least fixed point defined by ].[ DDf →→→→∈∈∈∈

).(sup)( ⊥⊥⊥⊥==== n
n ffFix
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Lemma.
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Note that the set                          is directed and
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Lemma on separate continuity.

Let                              Then f  is continuous iff f  is 
continuous in each of its variables separately i.e.

and                       are continuous for all      
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The last equality follows from the fact that X is directed. 
Hence   f is continuous.
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We are going to define the lattice versions of operations of 
application and abstraction and we will show that these 
operations are continuous.

Definition.
Put
(i)                                          by                 
(ii) for                                 define abstraction as follows
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Theorem.
(i) Ap is continuous.

(ii)                                        and depends continuously on x.

Proof.
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family , we have
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Hence Ap is continuous.

(ii) It follows from the separate continuity that

Moreover,  for a directed               we have

]"'[),(. DDyxfys →→→→∈∈∈∈λλλλ

DX ⊆⊆⊆⊆

),(.sup
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s
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x
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by continuity of f and the commutativity of supremum 
and set abstraction.
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Definition.
(i) We say that  D is a retract of D� and write

if there are continuous mappings F, G

such that                                             and            

(ii) We say that D is reflexive if

,'DD <<<<

':,': DDGDDF →→→→→→→→ .DidGF ====o

.][ DDD <<<<→→→→

Remark. If              using maps F, G, then F is
�onto� and G is �one-to-one�. We may identify D

with its image                     Then F  �retracts� the 
larger space D� to the subspace D.

'DD <<<<

'.)( DDG ⊆⊆⊆⊆
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We shall show that every reflexive complete lattice 
determines a  model of the lambda calculus.

Definition.
Let  D be reflexive due to mappings F, G. Hence

)(][:

)(][:

][

2DDDG

1DDDDF

DDD

→→→→→→→→

⊆⊆⊆⊆→→→→→→→→

<<<<→→→→

(i) Thus for we have                            In this 
way elements of D become functions on  D and we 
may write for application

Dx ∈∈∈∈ ].[)( DDxF →→→→∈∈∈∈

).())((. DyxFyFx ∈∈∈∈====
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(ii) On the other hand, every function continuous on D
becomes via  G an element of D.Thus for continuous f,
we may write (abstraction) ).()()(. DfGxfxG ∈∈∈∈====λλλλ

Definition.
A valuation in D is a map  ρ which to every term
variable x adds a value ρ(x) in D.
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variable x adds a value ρ(x) in D.
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Definition.
Let  D be reflexive via  F, G. Let  ρ be a valuation in D
and M be a λ-term. The denotation          of M in D
under valuation ρ is defined by induction on  M as
follows:

D

dx
GD

DDD

D

PdPx

QFPPQ

xx

):(
..

.

)(

====ρρρρρρρρ

ρρρρρρρρρρρρ

ρρρρ

λλλλ====λλλλ

====

ρρρρ====

where ρ(x:=d) is the valuation ρ� with





≡≡≡≡

≡≡≡≡////ρρρρ
====ρρρρ

xyifd

xyify
y

)(
)('

ρρρρ
M
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The definition is correct. By induction on  P  one can show 
the continuity of ..

):(

D

dx
G Pd

====ρρρρ
λλλλ

Definition.
We say that M=N  is true in D and write D|= M=N  if for 
all valuations ρ,  we have .DD NM

ρρρρρρρρ
====

Intuitively, the denotation          is M  interpreted in D where
every lambda calculus application is interpreted as       and 
every abstraction λ  as          For instance

DM
ρρρρ

F.
.Gλλλλ

).(.)(.. yxxyddxyx GGD ρρρρλλλλ====ρρρρλλλλ====λλλλ
ρρρρ
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Notation.
If D is reflexive and  ρ is a valuation, it is obvious that the 
denotation            depends only on the values of  ρ  on                 DM

ρρρρ ).(MFV

DD MMMFVMFV
'

)(|')(|
ρρρρρρρρ

====⇒⇒⇒⇒ρρρρ====ρρρρ

Where | denotes the function restriction. In particular for com-
binators,         does not depend on ρ and may be written              
If  D  is clear from the context, we write          or

DM
ρρρρ .DM

ρρρρ
M .M
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Theorem.
If D  is a reflexive complete lattice by means of mappings
F and G, then D is a sound model for the lambda 
calculus. In other words, we have

.|| NMDNM ========⇒⇒⇒⇒====−−−−λλλλ

Proof.

By induction of the proof of M=N. The only two 
interesting cases are the axiom (β) and the rule (ξ).
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Definition.
We say that M=N  is true in D and write D|= M=N  if for 
all valuations ρ,  we have .DD NM
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Intuitively, the denotation          is M  interpreted in D where
every lambda calculus application is interpreted as       and 
every abstraction λ  as          For instance
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Notation.
If D is reflexive and  ρ is a valuation, it is obvious that the 
denotation            depends only on the values of  ρ  on                 DM

ρρρρ ).(MFV

DD MMMFVMFV
'

)(|')(|
ρρρρρρρρ

====⇒⇒⇒⇒ρρρρ====ρρρρ

Where | denotes the function restriction. In particular for com-
binators,         does not depend on ρ and may be written              
If  D  is clear from the context, we write          or

DM
ρρρρ .DM

ρρρρ
M .M
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Theorem.
If D  is a reflexive complete lattice by means of mappings
F and G, then D is a sound model for the lambda 
calculus. In other words, we have

.|| NMDNM ========⇒⇒⇒⇒====−−−−λλλλ

Proof.

By induction of the proof of M=N. The only two 
interesting cases are the axiom (β) and the rule (ξ).
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(β) is the scheme                                       For an arbitrary 
valuation  ρ, we have
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Proof by induction on the structure of M. Write
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We have proved                                   and the proof of 
the axiom (β) is complete.

ρρρρρρρρ
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The rule ξ:                                             We have to show... NxMxNM λλλλ====λλλλ⇒⇒⇒⇒====
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It remains to show that reflexive complete lattices do exist. We 
will give an example of a reflexive complete lattice called         
The method is due to Engeler and it is a code-free variant of the 
graph model  Pω due to Plotkin and Scott.

.AD

Definition.

(i) Let  A be a set, by induction on defineNn ∈∈∈∈

},|),{( finite  and ββββ⊆⊆⊆⊆ββββ∈∈∈∈ββββ∪∪∪∪====
====

++++ nnn1n

0

BBbbBB
AB

U
n

nBB ====

}|{)( BxxBPDA ⊆⊆⊆⊆========
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is considered as a complete lattice ordered by inclusion          
The set B  is the closure of A  under the operation of forming 
ordered pairs. It is assumed that A  consists of urelements in 
order it does not contain pairs 

).(⊆⊆⊆⊆

.),( Bb ∈∈∈∈ββββ

AD

(ii) Define

by ][: AAA DDDF →→→→→→→→ AAA DDDG →→→→→→→→ ][:

)}),((|{))(( xbybyxF ∈∈∈∈ββββ⊆⊆⊆⊆ββββ∃∃∃∃====

)}.(|),{()( ββββ∈∈∈∈ββββ==== fbbfG
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We shall show later that F, G  are continuos  and prove 
the reflexivity. Let and                 be 
arbitrary. We have 

],[ AA DDf →→→→∈∈∈∈ ADy ∈∈∈∈

))})((|),({())(( yfbbFyfGF ββββ∈∈∈∈ββββ====o

)}(|{ ββββ∈∈∈∈⊆⊆⊆⊆ββββ∃∃∃∃==== fbyb

U
y

f
⊆⊆⊆⊆ββββ

ββββ==== )(

)( yf====

Since                 is a directed supremum. We haveU
y

y
⊆⊆⊆⊆ββββ

ββββ====

.][ AA DDidGF →→→→====o
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(a) F is continuous: let                 be directed.ADX ⊆⊆⊆⊆

}),(|{))(())((sup U U XbybyXFyXF ∈∈∈∈ββββ⊆⊆⊆⊆ββββ∃∃∃∃========

U
Xx

xbyb
∈∈∈∈

∈∈∈∈ββββ⊆⊆⊆⊆ββββ∃∃∃∃==== }),(|{

}|))(({sup XxyxF ∈∈∈∈====

(b) continuity of G: let                           be directed, let ][ AA DDY →→→→⊆⊆⊆⊆
Yf sup==== U

Yy

yf
∈∈∈∈

ββββ====ββββ ).()(

Then U
Yy

ybbfbbfG
∈∈∈∈

ββββ∈∈∈∈ββββ====ββββ∈∈∈∈ββββ==== )(|),{()}(|),{()(

U
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ybb
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ββββ∈∈∈∈ββββ==== )}(|),{(

}|)(sup{ YyyG ∈∈∈∈====

hence
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Theorem. (Semantic proof of consistency of λ-calculus)

The lambda calculus is consistent: .| falsetrue ====−−−−////λλλλ

Proof.

If                     then                         It suffices to take a 
valuation ρ of variables in        such that 

yx ====−−−−λλλλ | .| yxDA ========

AD
).()( yx ρρρρ====////ρρρρ Then                       a contradiction.yxDA ========////|
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Theorem. (Semantic proof of consistency of λ-calculus)

The lambda calculus is consistent: .| falsetrue ====−−−−////λλλλ

Proof.

If                     then                         It suffices to take a 
valuation ρ of variables in        such that 

yx ====−−−−λλλλ | .| yxDA ========

AD
).()( yx ρρρρ====////ρρρρ Then                       a contradiction.yxDA ========////|
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is considered as a complete lattice ordered by inclusion          
The set B  is the closure of A  under the operation of forming 
ordered pairs. It is assumed that A  consists of urelements in 
order it does not contain pairs 
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the reflexivity. Let and                 be 
arbitrary. We have 

],[ AA DDf →→→→∈∈∈∈ ADy ∈∈∈∈

))})((|),({())(( yfbbFyfGF ββββ∈∈∈∈ββββ====o

)}(|{ ββββ∈∈∈∈⊆⊆⊆⊆ββββ∃∃∃∃==== fbyb

U
y

f
⊆⊆⊆⊆ββββ

ββββ==== )(

)( yf====

Since                 is a directed supremum. We haveU
y

y
⊆⊆⊆⊆ββββ

ββββ====

.][ AA DDidGF →→→→====o

Lambda calculus I 115

(a) F is continuous: let                 be directed.ADX ⊆⊆⊆⊆

}),(|{))(())((sup U U XbybyXFyXF ∈∈∈∈ββββ⊆⊆⊆⊆ββββ∃∃∃∃========

U
Xx

xbyb
∈∈∈∈

∈∈∈∈ββββ⊆⊆⊆⊆ββββ∃∃∃∃==== }),(|{

}|))(({sup XxyxF ∈∈∈∈====

(b) continuity of G: let                           be directed, let ][ AA DDY →→→→⊆⊆⊆⊆
Yf sup==== U

Yy

yf
∈∈∈∈

ββββ====ββββ ).()(

Then U
Yy

ybbfbbfG
∈∈∈∈

ββββ∈∈∈∈ββββ====ββββ∈∈∈∈ββββ==== )(|),{()}(|),{()(

U
Yy

ybb
∈∈∈∈

ββββ∈∈∈∈ββββ==== )}(|),{(

}|)(sup{ YyyG ∈∈∈∈====

hence

Lambda calculus I 116

Theorem. (Semantic proof of consistency of λ-calculus)

The lambda calculus is consistent: .| falsetrue ====−−−−////λλλλ

Proof.

If                     then                         It suffices to take a 
valuation ρ of variables in        such that 

yx ====−−−−λλλλ | .| yxDA ========

AD
).()( yx ρρρρ====////ρρρρ Then                       a contradiction.yxDA ========////|



Lambda calculus I 113

is considered as a complete lattice ordered by inclusion          
The set B  is the closure of A  under the operation of forming 
ordered pairs. It is assumed that A  consists of urelements in 
order it does not contain pairs 

).(⊆⊆⊆⊆

.),( Bb ∈∈∈∈ββββ

AD

(ii) Define

by ][: AAA DDDF →→→→→→→→ AAA DDDG →→→→→→→→ ][:

)}),((|{))(( xbybyxF ∈∈∈∈ββββ⊆⊆⊆⊆ββββ∃∃∃∃====

)}.(|),{()( ββββ∈∈∈∈ββββ==== fbbfG

Lambda calculus I 114

We shall show later that F, G  are continuos  and prove 
the reflexivity. Let and                 be 
arbitrary. We have 

],[ AA DDf →→→→∈∈∈∈ ADy ∈∈∈∈

))})((|),({())(( yfbbFyfGF ββββ∈∈∈∈ββββ====o

)}(|{ ββββ∈∈∈∈⊆⊆⊆⊆ββββ∃∃∃∃==== fbyb

U
y

f
⊆⊆⊆⊆ββββ

ββββ==== )(

)( yf====

Since                 is a directed supremum. We haveU
y

y
⊆⊆⊆⊆ββββ

ββββ====

.][ AA DDidGF →→→→====o

Lambda calculus I 115

(a) F is continuous: let                 be directed.ADX ⊆⊆⊆⊆

}),(|{))(())((sup U U XbybyXFyXF ∈∈∈∈ββββ⊆⊆⊆⊆ββββ∃∃∃∃========

U
Xx

xbyb
∈∈∈∈

∈∈∈∈ββββ⊆⊆⊆⊆ββββ∃∃∃∃==== }),(|{

}|))(({sup XxyxF ∈∈∈∈====

(b) continuity of G: let                           be directed, let ][ AA DDY →→→→⊆⊆⊆⊆
Yf sup==== U

Yy

yf
∈∈∈∈

ββββ====ββββ ).()(

Then U
Yy

ybbfbbfG
∈∈∈∈

ββββ∈∈∈∈ββββ====ββββ∈∈∈∈ββββ==== )(|),{()}(|),{()(

U
Yy

ybb
∈∈∈∈

ββββ∈∈∈∈ββββ==== )}(|),{(

}|)(sup{ YyyG ∈∈∈∈====

hence

Lambda calculus I 116

Theorem. (Semantic proof of consistency of λ-calculus)

The lambda calculus is consistent: .| falsetrue ====−−−−////λλλλ

Proof.

If                     then                         It suffices to take a 
valuation ρ of variables in        such that 

yx ====−−−−λλλλ | .| yxDA ========

AD
).()( yx ρρρρ====////ρρρρ Then                       a contradiction.yxDA ========////|



Lambda calculus I 117

Extending the language

Some language constructs in functional languages

(i)   �Let  x = M  in E�  stands for                  orMEx ).(λλλλ

].:[ MxE ==== The latter is usefull if we want to
type expressions, the various expressions may need to 
be typed differently.

(ii)  �Letrec                      in  E�  stands for  

Let                                      in E. Here           is the 
Turings fixed point operator.

Similarly one can define Letrec using the double fixed 
point.

],[ xfCxf rr ====

]),[.( xfCxff rrλλλλΘΘΘΘ==== ΘΘΘΘ
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Delta rules
are useful in extending the lambda calculus by �external� 
functions. Implementations of functional languages exploit 
the standard arithmetics of the processor which is much 
more efficient than computations with numerals in the 
lambda calculus. Besides the type integer, they use the 
standard types boolean and Char.

To represent all this and more, we extend the lambda
calculus by so-called δ-rules. They are very helpful in 
theoretical analysis of programs and proofs.

Lambda calculus I 119

Motivation. One of the first versions of a δ-rule was used 
by Church (1941). He used the rule to test the equality of 
numerals. It is possible to formulate it in a more general 
setting.

Example.

Let  X be a set of closed terms in normal form. For                  
we define  

XNM ∈∈∈∈,

NMifxxyMN ≡≡≡≡λλλλ→→→→δδδδ .
NMifyxyMN ≡≡≡≡////λλλλ→→→→δδδδ .

Note that this is not one contraction rule, but a  rule 
scheme. For any two elements of X  one contraction 
rule.

Lambda calculus I 120

Both assumptions on terms M, N  are necessary to keep the 
Church-Rosser property working.

Example.

(a) Put
).(

).)(.(
zzN

yyxxM
λλλλ≡≡≡≡

λλλλλλλλ≡≡≡≡

then M  is not in normal form, but both terms are without free 
variables. We have

xxy

NNyxy

NM

.

)(.

)(

λλλλ

δδδδ

δδδδλλλλ

ββββδδδδ

δδδδ



Lambda calculus I 117

Extending the language

Some language constructs in functional languages

(i)   �Let  x = M  in E�  stands for                  orMEx ).(λλλλ

].:[ MxE ==== The latter is usefull if we want to
type expressions, the various expressions may need to 
be typed differently.

(ii)  �Letrec                      in  E�  stands for  

Let                                      in E. Here           is the 
Turings fixed point operator.

Similarly one can define Letrec using the double fixed 
point.

],[ xfCxf rr ====

]),[.( xfCxff rrλλλλΘΘΘΘ==== ΘΘΘΘ

Lambda calculus I 118

Delta rules
are useful in extending the lambda calculus by �external� 
functions. Implementations of functional languages exploit 
the standard arithmetics of the processor which is much 
more efficient than computations with numerals in the 
lambda calculus. Besides the type integer, they use the 
standard types boolean and Char.

To represent all this and more, we extend the lambda
calculus by so-called δ-rules. They are very helpful in 
theoretical analysis of programs and proofs.

Lambda calculus I 119

Motivation. One of the first versions of a δ-rule was used 
by Church (1941). He used the rule to test the equality of 
numerals. It is possible to formulate it in a more general 
setting.

Example.

Let  X be a set of closed terms in normal form. For                  
we define  

XNM ∈∈∈∈,

NMifxxyMN ≡≡≡≡λλλλ→→→→δδδδ .
NMifyxyMN ≡≡≡≡////λλλλ→→→→δδδδ .

Note that this is not one contraction rule, but a  rule 
scheme. For any two elements of X  one contraction 
rule.

Lambda calculus I 120

Both assumptions on terms M, N  are necessary to keep the 
Church-Rosser property working.

Example.

(a) Put
).(

).)(.(
zzN

yyxxM
λλλλ≡≡≡≡

λλλλλλλλ≡≡≡≡

then M  is not in normal form, but both terms are without free 
variables. We have

xxy

NNyxy

NM

.

)(.

)(

λλλλ

δδδδ

δδδδλλλλ

ββββδδδδ

δδδδ



Lambda calculus I 117

Extending the language

Some language constructs in functional languages

(i)   �Let  x = M  in E�  stands for                  orMEx ).(λλλλ

].:[ MxE ==== The latter is usefull if we want to
type expressions, the various expressions may need to 
be typed differently.

(ii)  �Letrec                      in  E�  stands for  

Let                                      in E. Here           is the 
Turings fixed point operator.

Similarly one can define Letrec using the double fixed 
point.

],[ xfCxf rr ====

]),[.( xfCxff rrλλλλΘΘΘΘ==== ΘΘΘΘ

Lambda calculus I 118

Delta rules
are useful in extending the lambda calculus by �external� 
functions. Implementations of functional languages exploit 
the standard arithmetics of the processor which is much 
more efficient than computations with numerals in the 
lambda calculus. Besides the type integer, they use the 
standard types boolean and Char.

To represent all this and more, we extend the lambda
calculus by so-called δ-rules. They are very helpful in 
theoretical analysis of programs and proofs.

Lambda calculus I 119

Motivation. One of the first versions of a δ-rule was used 
by Church (1941). He used the rule to test the equality of 
numerals. It is possible to formulate it in a more general 
setting.

Example.

Let  X be a set of closed terms in normal form. For                  
we define  

XNM ∈∈∈∈,

NMifxxyMN ≡≡≡≡λλλλ→→→→δδδδ .
NMifyxyMN ≡≡≡≡////λλλλ→→→→δδδδ .

Note that this is not one contraction rule, but a  rule 
scheme. For any two elements of X  one contraction 
rule.

Lambda calculus I 120

Both assumptions on terms M, N  are necessary to keep the 
Church-Rosser property working.

Example.

(a) Put
).(

).)(.(
zzN

yyxxM
λλλλ≡≡≡≡

λλλλλλλλ≡≡≡≡

then M  is not in normal form, but both terms are without free 
variables. We have

xxy

NNyxy

NM

.

)(.

)(

λλλλ

δδδδ

δδδδλλλλ

ββββδδδδ

δδδδ



Lambda calculus I 117

Extending the language

Some language constructs in functional languages

(i)   �Let  x = M  in E�  stands for                  orMEx ).(λλλλ

].:[ MxE ==== The latter is usefull if we want to
type expressions, the various expressions may need to 
be typed differently.

(ii)  �Letrec                      in  E�  stands for  

Let                                      in E. Here           is the 
Turings fixed point operator.

Similarly one can define Letrec using the double fixed 
point.

],[ xfCxf rr ====

]),[.( xfCxff rrλλλλΘΘΘΘ==== ΘΘΘΘ

Lambda calculus I 118

Delta rules
are useful in extending the lambda calculus by �external� 
functions. Implementations of functional languages exploit 
the standard arithmetics of the processor which is much 
more efficient than computations with numerals in the 
lambda calculus. Besides the type integer, they use the 
standard types boolean and Char.

To represent all this and more, we extend the lambda
calculus by so-called δ-rules. They are very helpful in 
theoretical analysis of programs and proofs.

Lambda calculus I 119

Motivation. One of the first versions of a δ-rule was used 
by Church (1941). He used the rule to test the equality of 
numerals. It is possible to formulate it in a more general 
setting.

Example.

Let  X be a set of closed terms in normal form. For                  
we define  

XNM ∈∈∈∈,

NMifxxyMN ≡≡≡≡λλλλ→→→→δδδδ .
NMifyxyMN ≡≡≡≡////λλλλ→→→→δδδδ .

Note that this is not one contraction rule, but a  rule 
scheme. For any two elements of X  one contraction 
rule.

Lambda calculus I 120

Both assumptions on terms M, N  are necessary to keep the 
Church-Rosser property working.

Example.

(a) Put
).(

).)(.(
zzN

yyxxM
λλλλ≡≡≡≡

λλλλλλλλ≡≡≡≡

then M  is not in normal form, but both terms are without free 
variables. We have

xxy

NNyxy

NM

.

)(.

)(

λλλλ

δδδδ

δδδδλλλλ

ββββδδδδ

δδδδ



Lambda calculus I 121

(b) If we put                                            then we have).(),.( xxNwxxM λλλλ≡≡≡≡λλλλ≡≡≡≡

xxy

yxyNxx

zzyxywNxzzx

zzNMw

.

.))).(((

).)(.()))))..(((((

).)().(((

λλλλ

δδδδ

λλλλλλλλδδδδ

ββββββββ

λλλλλλλλλλλλλλλλλλλλδδδδ

δδδδββββ

λλλλδδδδλλλλ
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Definition.

Let                 be a set of closed terms in normal forms. 
Usually we take constants for the elements of C, hence              
Let         be an �externally defined� function. In 
order to represent f,  a so-called δ-rules are added to the 
lambda calculus as follows:

(1) A special constant in C  is selected and is given a name

(2) New contraction rules are added to those of the lambda 
calculus:  

ΛΛΛΛ⊆⊆⊆⊆X
.CX ⊆⊆⊆⊆

ΛΛΛΛ→→→→kXf :

).( fδδδδ====δδδδ

XMMMMfMM k1k1k1 ∈∈∈∈→→→→δδδδ ...,),...,(...

Lambda calculus I 123

For a given function f , this is not one contraction rule but in 
fact a rule scheme. The resulting extended calculus is called 
the λδ-calculus. The corresponding notions of reduction are 
denoted                         So   δ-reduction is not an absolute 
notion, but it depends on the choice of f.

., βδβδβδβδβδβδβδβδ →>→>→>→>→→→→

Theorem. (Mitschke)

Let  f  be a function on a set of closed terms in normal 
form. Then the resulting notion of reduction              
satisfies the Church-Rosser theorem.

βδβδβδβδ→>→>→>→>

Lambda calculus I 124

The notion of normal form generalises to βδ-normal form. 
So does the concept of leftmost reduction. The nor-
mal forms can be found by a leftmost reduction. 

−−−−βδβδβδβδ

Theorem.

If                    and  N  is in        normal form, thenNM βδβδβδβδ→>→>→>→> −−−−βδβδβδβδ .NM lβδβδβδβδ→>→>→>→>
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Example. Set of δ-rules for the booleans.

The following constants are selected in C

)(,,,, elsethenifforiteandnotfalsetrue

And  the following δ-rules are introduced

xxytrueite
falsetruefalseand

truetruetrueand
falsetruenot

.true λλλλ≡≡≡≡→→→→
→→→→→→→→

→→→→
→→→→

yxyfalseite
falsefalsefalseand

falsefalsetrueand
truefalsenot

.false λλλλ≡≡≡≡→→→→
→→→→
→→→→

→→→→
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It follows that
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In the lambda calculus, we have defined domains and the 
corresponding δ-rules of operations on the sets of standard 
data types

boolean              integer                Char

By this way, we made a first step to the theory of lambda 
calculi with types.
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