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Lambda calculus

Part II
Lambda Calculi with Types

Based on materials provided by H. Barendregt
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Types

are certain objects, usually syntactic expressions                
(e.g. boolean, integer, Char), that may be assigned to terms 
denoting programs.

Types serve to classify the (objects denoted by the) terms.

Semantics.

Each type  σ  has as semantics a set         of �objects of type 
σ�.  There are several systems of type assignment with 
different collections of types.

For more complicated type systems the semantics          will in 
general be not a set, but an object in some category.

σσσσD

σσσσD
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Type assignment is done for the following reasons.

Firstly, the type of a term  F  gives partial specification of 
what the function F  is supposed to do. Usually 
specification of this type is given before the term as program 
is constructed.

Once this term has been constructed, the verification 
whether this term is indeed of the required type provides 
partial correctness proof for the program.

Secondly, types play a role in efficiency. If it is known that a 
subterm S  of a program has a certain type, then S  may be 
executed more efficiently by making use of the type 
information.

Lambda calculus  II 4

To explain the idea of type assignment, we present type 
systems of various strengths.

We start with the system             of simply typed lambda 
calculus. We shall distinguish between typing a la Curry and 
a la Church by introducing          in both ways.

→→→→λλλλ

→→→→λλλλ

Several other systems of typed lambda calculus exist in a Curry 
and a Church version. However it is not so for all systems.

For example, for the Curry system          of intersection types it is 
not clear how to define its Church version and for the Church 
system         (calculus of constructions) it is not clear how to 
define a Curry version.

For the systems that exist in both styles there is a clear relation.

∩∩∩∩λλλλ

Cλλλλ
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The system         -Curry

is assigning elements of a given set T of types to type free 
lambda terms. For this reason the calculi a la Curry are 
sometimes called systems of type assignement.

→→→→λλλλ

The system           -Curry consists of

(i) the set of types of          , notation   Type(        ). We 
write T= Type(        ) for short.

(ii) the finite set of rules.

→→→→λλλλ

→→→→λλλλ →→→→λλλλ
→→→→λλλλ

We shall start with a lot of definitions.
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Definition.(The set of types of          )

The set of types T=Type(         ) is defined inductively,

→→→→λλλλ

→→→→λλλλ

T)(T,
T´´,´,,

∈∈∈∈ττττ→→→→σσσσ⇒⇒⇒⇒∈∈∈∈ττττσσσσ
∈∈∈∈αααααααααααα K (type  variables) 

(function space types)

or in abstract syntax

TT|VT →→→→====

where  V is defined by

V'|V αααα==== (type  variables)
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Notation.

(i) If                          thenT,, ∈∈∈∈σσσσσσσσ n1 K

n21 σσσσ→→→→→→→→σσσσ→→→→σσσσ K

stands  for
)),)((( KK n1n21 σσσσ→→→→σσσσ→→→→→→→→σσσσ→→→→σσσσ −−−−

hence , we use association to the right.

(ii)                      denote arbitrary type variables. K,,, γγγγββββαααα

Lambda calculus  II 8

Definition (        -Curry).

A statement M:σ is derivable from a basis  Γ, notation
→→→→λλλλ

σσσσ−−−−ΓΓΓΓ −−−−→→→→λλλλ :| MCurry

(or
σσσσ−−−−ΓΓΓΓ →→→→λλλλ :| M

or
σσσσ−−−−ΓΓΓΓ :| M

if there is no danger of confusion) if                      can be 
produced by the folowing rules

σσσσ−−−−ΓΓΓΓ :| M
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→→→→λλλλ -Curry (version 0)

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒ΓΓΓΓ∈∈∈∈σσσσ :|):( xx

ττττ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓττττ→→→→σσσσ−−−−ΓΓΓΓ :)(|:|),(:| MNNM

)(:).(|:|:, ττττ→→→→σσσσλλλλ−−−−ΓΓΓΓ⇒⇒⇒⇒ττττ−−−−σσσσΓΓΓΓ MxMx

Here                stands for                  and                    in 
order to             be a basis.

σσσσΓΓΓΓ :, x }:{ σσσσ∪∪∪∪ΓΓΓΓ x )(ΓΓΓΓ∉∉∉∉ Domx
}:{ σσσσ∪∪∪∪ΓΓΓΓ x

If                                    we can write instead of}:,,:{ nn11 xx σσσσσσσσ====ΓΓΓΓ K σσσσ−−−−ΓΓΓΓ :| M
.:|:,,: σσσσ−−−−σσσσσσσσ Mxx nn11 K If Γ is empty, we write .:| σσσσ−−−−M

We pronounce  |- as �yields� or  �is derivable�.
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The rules given in Version 0 are usually expressed as follows. 
→→→→λλλλ

(axiom) ):(| σσσσ−−−−ΓΓΓΓ x if ΓΓΓΓ∈∈∈∈σσσσ):(x

(→→→→ -elimination) ττττ−−−−ΓΓΓΓ
σσσσ−−−−ΓΓΓΓττττ→→→→σσσσ−−−−ΓΓΓΓ

:)(|
:|)(:|

MN
NM

-Curry (Version 1)

(     -introduction)→→→→
)(:).(|

:|:,
ττττ→→→→σσσσλλλλ−−−−ΓΓΓΓ

ττττ−−−−σσσσΓΓΓΓ
Mx

Mx

Lambda calculus  II 11

The following is the natural deduction formulation
-Curry (Version 2)→→→→λλλλ

Elimination rule Introduction rule

ττττ
σσσσττττ→→→→σσσσ

:)(
:)(:

MN
NM

)(:).(
:

ττττ→→→→σσσσλλλλ
ττττ

Mx
M

M

σσσσ////:x

Lambda calculus  II 12

The basic axiom of Versions 0 and 1 is considered here as implicit and 
is not mentioned. The notation

M

σσσσ:x

ττττ:M
Means that from the assumption              together with a set  Γ of other 
statements, one can derive                       

σσσσ:x
.: ττττM
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→→→→λλλλ

(axiom) ):(| σσσσ−−−−ΓΓΓΓ x if ΓΓΓΓ∈∈∈∈σσσσ):(x

(→→→→ -elimination) ττττ−−−−ΓΓΓΓ
σσσσ−−−−ΓΓΓΓττττ→→→→σσσσ−−−−ΓΓΓΓ

:)(|
:|)(:|

MN
NM

-Curry (Version 1)

(     -introduction)→→→→
)(:).(|

:|:,
ττττ→→→→σσσσλλλλ−−−−ΓΓΓΓ

ττττ−−−−σσσσΓΓΓΓ
Mx

Mx
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The following is the natural deduction formulation
-Curry (Version 2)→→→→λλλλ

Elimination rule Introduction rule

ττττ
σσσσττττ→→→→σσσσ

:)(
:)(:

MN
NM

)(:).(
:

ττττ→→→→σσσσλλλλ
ττττ

Mx
M

M

σσσσ////:x

Lambda calculus  II 12

The basic axiom of Versions 0 and 1 is considered here as implicit and 
is not mentioned. The notation

M

σσσσ:x

ττττ:M
Means that from the assumption              together with a set  Γ of other 
statements, one can derive                       

σσσσ:x
.: ττττM
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The rule of       -introduction in the table states that →→→→
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is  derivable even without the assumption                but still using Γ. 
This process is called cancellation of an assumption and is indicated 
by the striking through the statement
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Example.

(a) Using Version 1 of the system the derivation

)(:).(|
)(:).(|:

:|:,:

σσσσ→→→→ττττ→→→→σσσσλλλλ−−−−
σσσσ→→→→ττττλλλλ−−−−σσσσ

σσσσ−−−−ττττσσσσ

xxy
xyx

xyx

Shows that                                        for all)(:).(| σσσσ→→→→ττττ→→→→σσσσλλλλ−−−− xxy .T, ∈∈∈∈ττττσσσσ
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assignment is

2

1

12

xxy
xy

x
yx

)(:).(
)(:).(

:
::

σσσσ→→→→ττττ→→→→σσσσλλλλ
σσσσ→→→→ττττλλλλ

σσσσ
ττττσσσσ

The indices   1 and 2  are bookkeeping devices that indicate at which 
application of a rule a particular assumption is being cancelled.
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(c) For  all           we haveT∈∈∈∈σσσσ

)(:).(| σσσσ→→→→σσσσλλλλ−−−− xx
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(c) For  all           we haveT∈∈∈∈σσσσ

)(:).(| σσσσ→→→→σσσσλλλλ−−−− xx
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(c) For  all           we haveT∈∈∈∈σσσσ

)(:).(| σσσσ→→→→σσσσλλλλ−−−− xx

Indeed

)(:).(|
:|:

σσσσ→→→→σσσσλλλλ−−−−
σσσσ−−−−σσσσ

xx
xx
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)(:).(|
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Properties of         -Curry →→→→λλλλ

Several properties of type assignment in         are valid. First,  we analyse 
how much of a basis is necessary in order to derive a type assignment.

→→→→λλλλ

Definition.

(i) Let  be a basis. We consider Γ as a partial 
function from the set of term variables to the set of types.

}:,,:{ nn11 xx σσσσσσσσ====ΓΓΓΓ K

(ii) Then dom(Γ) =                     is the domain of Γ  and we write       },,{ n1 xx K

iix σσσσ====ΓΓΓΓ )( for the value of  Γ i.e.  The type which is assigned to the 
variable .ix

(iii)  Let         be a set of term variables, the restriction of Γ to            

is defined as follows

'V 'V
)}.('&|:{'| xVxxV ΓΓΓΓ====σσσσ∈∈∈∈σσσσ====ΓΓΓΓ
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(iv) For types                     and a type variable α,  the  substitution  of   τ   
for  α in σ is denoted by

,T, ∈∈∈∈ττττσσσσ
].:[ ττττ====αααασσσσ

Basis lemma for          -Curry→→→→λλλλ

Let  Γ  be a basis.

(i) If                     is another basis, then                               

(ii)

(iii)     

',' ΓΓΓΓ⊆⊆⊆⊆ΓΓΓΓΓΓΓΓ .:|':| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

).()(:| ΓΓΓΓ⊆⊆⊆⊆⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ domMFVM

.:|)(|:| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MMFVM
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Proof.

Since such proofs will occur frequently, we produce it in full only for the 
first statement in order to be briefer later on.

(i) We proceed by induction on the derivation of

Case 1. M : σ  is   x : σ and this declaration is an element of Γ. Then also

.:| σσσσ−−−−ΓΓΓΓ M

': ΓΓΓΓ∈∈∈∈σσσσx and thus .:|' σσσσ−−−−ΓΓΓΓ M

Case 2. M : σ   is                        and it follows directly from two      
assignments                           and                 for some τ. By 
the    Induction  Hypothesis  one   has                                  
and                      Thus

σσσσ:)( 21MM
)(: σσσσ→→→→ττττ1M ττττ:2M

)(:|' σσσσ→→→→ττττ−−−−ΓΓΓΓ 1M
.:|' ττττ−−−−ΓΓΓΓ 2M .:)(|' σσσσ−−−−ΓΓΓΓ 21MM
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(ii) By induction on derivation of M : σ. We prove only  the  case  
that    M : σ  is                                       and   follows  directly  from 
the assumption

)(:).( 211Mx σσσσ→→→→σσσσλλλλ
.:|:, 211 Mx σσσσ−−−−σσσσΓΓΓΓ

Let                                   then                          and                  By 
the Induction Hypothesis one has                                      and   
hence  

),.( 1MxFVy λλλλ∈∈∈∈ )( 1MFVy ∈∈∈∈ .xy ≡≡≡≡////
):,( 1xdomy σσσσΓΓΓΓ∈∈∈∈

.ΓΓΓΓ∈∈∈∈ domy

Case 3. M : σ is                                      and  it  follows  directly   
from by the convention concerning  
bounded variables, one may assume that the variable x does not
occur in the domain  of             Therefore by the   Induction   
Hypothesis   one has and thus

)(:).( 211Mx σσσσ→→→→σσσσλλλλ
.:|:, 211 Mx σσσσ−−−−σσσσΓΓΓΓ

'.ΓΓΓΓ
211 Mx σσσσ−−−−σσσσΓΓΓΓ :|:,'

).(:).(|' 211Mx σσσσ→→→→σσσσλλλλ−−−−ΓΓΓΓ
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(iii) By induction on the derivation of   M :σ. We only treat the case 
that M :σ  is                         and follows directly from  σσσσ:)( 21 MM

and                                                          
for some   Γ, τ. By the Induction Hypothesis one has

)(:| σσσσ→→→→ττττ−−−−ΓΓΓΓ 1M ττττ−−−−ΓΓΓΓ :| 2M

)(:|)(| σσσσ→→→→ττττ−−−−ΓΓΓΓ 11 MMFV and .:|)(| ττττ−−−−ΓΓΓΓ 22 MMFV

As                                                           by (i) one has that ),()()( 2121 MFVMFVMMFV ∪∪∪∪====

)(:|)(| σσσσ→→→→ττττ−−−−ΓΓΓΓ 121 MMMFV and ττττ−−−−ΓΓΓΓ :|)(| 221 MMMFV

and hence .:)(|)(| σσσσ−−−−ΓΓΓΓ 2121 MMMMFV
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first statement in order to be briefer later on.

(i) We proceed by induction on the derivation of

Case 1. M : σ  is   x : σ and this declaration is an element of Γ. Then also

.:| σσσσ−−−−ΓΓΓΓ M

': ΓΓΓΓ∈∈∈∈σσσσx and thus .:|' σσσσ−−−−ΓΓΓΓ M

Case 2. M : σ   is                        and it follows directly from two      
assignments                           and                 for some τ. By 
the    Induction  Hypothesis  one   has                                  
and                      Thus

σσσσ:)( 21MM
)(: σσσσ→→→→ττττ1M ττττ:2M

)(:|' σσσσ→→→→ττττ−−−−ΓΓΓΓ 1M
.:|' ττττ−−−−ΓΓΓΓ 2M .:)(|' σσσσ−−−−ΓΓΓΓ 21MM
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.:|:, 211 Mx σσσσ−−−−σσσσΓΓΓΓ
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the Induction Hypothesis one has                                      and   
hence  

),.( 1MxFVy λλλλ∈∈∈∈ )( 1MFVy ∈∈∈∈ .xy ≡≡≡≡////
):,( 1xdomy σσσσΓΓΓΓ∈∈∈∈

.ΓΓΓΓ∈∈∈∈ domy

Case 3. M : σ is                                      and  it  follows  directly   
from by the convention concerning  
bounded variables, one may assume that the variable x does not
occur in the domain  of             Therefore by the   Induction   
Hypothesis   one has and thus

)(:).( 211Mx σσσσ→→→→σσσσλλλλ
.:|:, 211 Mx σσσσ−−−−σσσσΓΓΓΓ

'.ΓΓΓΓ
211 Mx σσσσ−−−−σσσσΓΓΓΓ :|:,'
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Now we show how terms of a certain form get typed. It 
gives us new insight, among other things we can show 
that certain terms have no types.

Generation lemma for          -Curry→→→→λλλλ

(i) ΓΓΓΓ∈∈∈∈σσσσ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ ):(:| xx

(ii) ]:|&)(:|[:)(| σσσσ−−−−ΓΓΓΓττττ→→→→σσσσ−−−−ΓΓΓΓσσσσ∃∃∃∃⇒⇒⇒⇒ττττ−−−−ΓΓΓΓ NMMN

(iii) )](&:|:,[,:).(| ττττ→→→→σσσσ≡≡≡≡ρρρρττττ−−−−σσσσΓΓΓΓττττσσσσ∃∃∃∃⇒⇒⇒⇒ρρρρλλλλ−−−−ΓΓΓΓ MxMx

Proof. By induction on the length of derivation.
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Typability of subterms in          -Curry→→→→λλλλ

Let        be a subterm of M. Then 'M

':'|':| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

for some '.and σσσσΓΓΓΓ'

In other words: if M has a type which means that for some                              
`  then every subterm                   has a type as well. Note 
that the subterm may be typed from a different basis.          

MM of'

Proof. By induction on the complexity of M.

σσσσ−−−−ΓΓΓΓ :| M
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Substitution lemma for           -Curry.→→→→λλλλ

]:[:|]:[:| ττττ====αααασσσσ−−−−ττττ====ααααΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM(i)

where  α  is a type variable.

(ii) If                               and                     thenττττ−−−−σσσσΓΓΓΓ :|:, Mx ,:| σσσσ−−−−ΓΓΓΓ N ττττ====−−−−ΓΓΓΓ :]:[| NxM

Proof.

(i) By induction on derivation of .:| σσσσ−−−−ΓΓΓΓ M

(ii) By induction on generation of ττττ−−−−σσσσΓΓΓΓ :|:, Mx
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Subject reduction theorem for         -Curry→→→→λλλλ

Let                          Then'.MM ββββ→>→>→>→>

.:'|:| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

Proof.

By induction on generation of              using Generation lemma and 
Substitution lemma. We shall treat the prime case                                   
Assume that  

ββββ→>→>→>→>

'.MM ββββ→→→→
and]:[',).( QxPMQPxM ====≡≡≡≡λλλλ≡≡≡≡

σσσσλλλλ−−−−ΓΓΓΓ :).(| QPx

Then it follows by the Generation lemma that for some τ  one has

ττττ−−−−ΓΓΓΓσσσσ→→→→ττττλλλλ−−−−ΓΓΓΓ :|)(:).(| QPx and
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Substitution lemma. We shall treat the prime case                                   
Assume that  

ββββ→>→>→>→>

'.MM ββββ→→→→
and]:[',).( QxPMQPxM ====≡≡≡≡λλλλ≡≡≡≡

σσσσλλλλ−−−−ΓΓΓΓ :).(| QPx

Then it follows by the Generation lemma that for some τ  one has

ττττ−−−−ΓΓΓΓσσσσ→→→→ττττλλλλ−−−−ΓΓΓΓ :|)(:).(| QPx and
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Using once more the Generation lemma, we get

ττττ−−−−ΓΓΓΓσσσσ−−−−ττττΓΓΓΓ :|:|:, QPx and
And therefore by the Substitution lemma, we have

σσσσ====−−−−ΓΓΓΓ :]:[| QxP

Lambda calculus  II 30

Using once more the Generation lemma, we get

ττττ−−−−ΓΓΓΓσσσσ−−−−ττττΓΓΓΓ :|:|:, QPx and
and therefore by the Substitution lemma, we have

σσσσ====−−−−ΓΓΓΓ :]:[| QxP

Exercises.
)).(.(S).(K),.(I yzxyxyzxxyxx λλλλ====λλλλ====λλλλ==== andLet

has one,,allforthatShow ,T∈∈∈∈ρρρρττττσσσσ

)(:KI|)(
)(:SK|)(

)()()(:S|)(

σσσσ→→→→σσσσ→→→→ττττ−−−−
σσσσ→→→→σσσσ→→→→ττττ→→→→σσσσ−−−−

ρρρρ→→→→σσσσ→→→→ττττ→→→→σσσσ→→→→ρρρρ→→→→ττττ→→→→σσσσ−−−−

c
b
a
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yzxzxyz
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yzxz
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zyx

)()()(:))(.(
)()(:))(.(

)(:))(.(
:))((

)(:)(:)(
:)(:)(:

ρρρρ→→→→σσσσ→→→→ττττ→→→→σσσσ→→→→ρρρρ→→→→ττττ→→→→σσσσλλλλ
ρρρρ→→→→σσσσ→→→→ττττ→→→→σσσσλλλλ

ρρρρ→→→→σσσσλλλλ
ρρρρ

ρρρρ→→→→ττττττττ
σσσσττττ→→→→σσσσρρρρ→→→→ττττ→→→→σσσσ

)(.S yzxzxyzλλλλ≡≡≡≡

Type assignments.

(a)
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(b) ).))((.().))((.(SK uuvyzxzxyzxxyyzxzxyz λλλλλλλλ≡≡≡≡λλλλλλλλ≡≡≡≡

We have

2

1

12

uv
uv

vu

)(:
)(:.
::

σσσσ→→→→ττττ→→→→σσσσλλλλ
σσσσ→→→→ττττλλλλ

ττττσσσσ

Hence

)(:.-K| σσσσ→→→→ττττ→→→→σσσσλλλλ≡≡≡≡ xxy

by           introduction −−−−→→→→

It follows from (a) and          elimination that −−−−→→→→

.)(:-SK| σσσσ→→→→σσσσ→→→→ττττ→→→→σσσσ
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Using once more the Generation lemma, we get

ττττ−−−−ΓΓΓΓσσσσ−−−−ττττΓΓΓΓ :|:|:, QPx and
And therefore by the Substitution lemma, we have

σσσσ====−−−−ΓΓΓΓ :]:[| QxP

Lambda calculus  II 30

Using once more the Generation lemma, we get

ττττ−−−−ΓΓΓΓσσσσ−−−−ττττΓΓΓΓ :|:|:, QPx and
and therefore by the Substitution lemma, we have

σσσσ====−−−−ΓΓΓΓ :]:[| QxP

Exercises.
)).(.(S).(K),.(I yzxyxyzxxyxx λλλλ====λλλλ====λλλλ==== andLet

has one,,allforthatShow ,T∈∈∈∈ρρρρττττσσσσ

)(:KI|)(
)(:SK|)(

)()()(:S|)(

σσσσ→→→→σσσσ→→→→ττττ−−−−
σσσσ→→→→σσσσ→→→→ττττ→→→→σσσσ−−−−
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3
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yzxzxyz
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)()()(:))(.(
)()(:))(.(

)(:))(.(
:))((

)(:)(:)(
:)(:)(:

ρρρρ→→→→σσσσ→→→→ττττ→→→→σσσσ→→→→ρρρρ→→→→ττττ→→→→σσσσλλλλ
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ρρρρ→→→→σσσσλλλλ
ρρρρ

ρρρρ→→→→ττττττττ
σσσσττττ→→→→σσσσρρρρ→→→→ττττ→→→→σσσσ

)(.S yzxzxyzλλλλ≡≡≡≡

Type assignments.

(a)

Lambda calculus  II 32

(b) ).))((.().))((.(SK uuvyzxzxyzxxyyzxzxyz λλλλλλλλ≡≡≡≡λλλλλλλλ≡≡≡≡

We have

2
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uv
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)(:
)(:.
::

σσσσ→→→→ττττ→→→→σσσσλλλλ
σσσσ→→→→ττττλλλλ

ττττσσσσ

Hence

)(:.-K| σσσσ→→→→ττττ→→→→σσσσλλλλ≡≡≡≡ xxy

by           introduction −−−−→→→→

It follows from (a) and          elimination that −−−−→→→→

.)(:-SK| σσσσ→→→→σσσσ→→→→ττττ→→→→σσσσ
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Using once more the Generation lemma, we get

ττττ−−−−ΓΓΓΓσσσσ−−−−ττττΓΓΓΓ :|:|:, QPx and
And therefore by the Substitution lemma, we have

σσσσ====−−−−ΓΓΓΓ :]:[| QxP

Lambda calculus  II 30

Using once more the Generation lemma, we get

ττττ−−−−ΓΓΓΓσσσσ−−−−ττττΓΓΓΓ :|:|:, QPx and
and therefore by the Substitution lemma, we have

σσσσ====−−−−ΓΓΓΓ :]:[| QxP

Exercises.
)).(.(S).(K),.(I yzxyxyzxxyxx λλλλ====λλλλ====λλλλ==== andLet

has one,,allforthatShow ,T∈∈∈∈ρρρρττττσσσσ

)(:KI|)(
)(:SK|)(

)()()(:S|)(

σσσσ→→→→σσσσ→→→→ττττ−−−−
σσσσ→→→→σσσσ→→→→ττττ→→→→σσσσ−−−−
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c
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yzxzxyz
yzxzyz
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yzxz
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)()()(:))(.(
)()(:))(.(

)(:))(.(
:))((

)(:)(:)(
:)(:)(:

ρρρρ→→→→σσσσ→→→→ττττ→→→→σσσσ→→→→ρρρρ→→→→ττττ→→→→σσσσλλλλ
ρρρρ→→→→σσσσ→→→→ττττ→→→→σσσσλλλλ

ρρρρ→→→→σσσσλλλλ
ρρρρ

ρρρρ→→→→ττττττττ
σσσσττττ→→→→σσσσρρρρ→→→→ττττ→→→→σσσσ

)(.S yzxzxyzλλλλ≡≡≡≡

Type assignments.

(a)
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(b) ).))((.().))((.(SK uuvyzxzxyzxxyyzxzxyz λλλλλλλλ≡≡≡≡λλλλλλλλ≡≡≡≡

We have

2

1

12

uv
uv

vu

)(:
)(:.
::

σσσσ→→→→ττττ→→→→σσσσλλλλ
σσσσ→→→→ττττλλλλ

ττττσσσσ

Hence

)(:.-K| σσσσ→→→→ττττ→→→→σσσσλλλλ≡≡≡≡ xxy

by           introduction −−−−→→→→

It follows from (a) and          elimination that −−−−→→→→

.)(:-SK| σσσσ→→→→σσσσ→→→→ττττ→→→→σσσσ
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Using once more the Generation lemma, we get

ττττ−−−−ΓΓΓΓσσσσ−−−−ττττΓΓΓΓ :|:|:, QPx and
And therefore by the Substitution lemma, we have

σσσσ====−−−−ΓΓΓΓ :]:[| QxP

Lambda calculus  II 30

Using once more the Generation lemma, we get

ττττ−−−−ΓΓΓΓσσσσ−−−−ττττΓΓΓΓ :|:|:, QPx and
and therefore by the Substitution lemma, we have

σσσσ====−−−−ΓΓΓΓ :]:[| QxP

Exercises.
)).(.(S).(K),.(I yzxyxyzxxyxx λλλλ====λλλλ====λλλλ==== andLet

has one,,allforthatShow ,T∈∈∈∈ρρρρττττσσσσ

)(:KI|)(
)(:SK|)(

)()()(:S|)(

σσσσ→→→→σσσσ→→→→ττττ−−−−
σσσσ→→→→σσσσ→→→→ττττ→→→→σσσσ−−−−

ρρρρ→→→→σσσσ→→→→ττττ→→→→σσσσ→→→→ρρρρ→→→→ττττ→→→→σσσσ−−−−

c
b
a
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yzxzyz

yzxzz
yzxz

xzyz
zyx

)()()(:))(.(
)()(:))(.(

)(:))(.(
:))((

)(:)(:)(
:)(:)(:

ρρρρ→→→→σσσσ→→→→ττττ→→→→σσσσ→→→→ρρρρ→→→→ττττ→→→→σσσσλλλλ
ρρρρ→→→→σσσσ→→→→ττττ→→→→σσσσλλλλ

ρρρρ→→→→σσσσλλλλ
ρρρρ

ρρρρ→→→→ττττττττ
σσσσττττ→→→→σσσσρρρρ→→→→ττττ→→→→σσσσ

)(.S yzxzxyzλλλλ≡≡≡≡

Type assignments.

(a)
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(b) ).))((.().))((.(SK uuvyzxzxyzxxyyzxzxyz λλλλλλλλ≡≡≡≡λλλλλλλλ≡≡≡≡

We have

2

1

12

uv
uv

vu

)(:
)(:.
::

σσσσ→→→→ττττ→→→→σσσσλλλλ
σσσσ→→→→ττττλλλλ

ττττσσσσ

Hence

)(:.-K| σσσσ→→→→ττττ→→→→σσσσλλλλ≡≡≡≡ xxy

by           introduction −−−−→→→→

It follows from (a) and          elimination that −−−−→→→→

.)(:-SK| σσσσ→→→→σσσσ→→→→ττττ→→→→σσσσ
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The set of Typable terms is not closed under expansion.

A stronger failure of subject expansion has shown van Bakel.

and

 such that     and   are There 'T',', MMMM ββββ→>→>→>→>∈∈∈∈σσσσσσσσΛΛΛΛ∈∈∈∈

.:'|

,':'|
,:|

σσσσ−−−−////

σσσσ−−−−
σσσσ−−−−

M

M
M

but

We have ).(:).(KI|),(:I| σσσσ→→→→σσσσλλλλ−−−−////σσσσ→→→→σσσσ−−−− xxxbut

Observation. (van Bakel 1991)

Lambda calculus  II 34

Proof.
).()('

)(,SK',.
ββββ→→→→ββββ→→→→αααα→→→→ββββ≡≡≡≡σσσσ

ββββ→→→→ββββ→→→→αααα≡≡≡≡σσσσ≡≡≡≡λλλλ≡≡≡≡
  

and    Take MyxyM

).(:SK| ββββ→→→→ββββ→→→→αααα−−−−//// fact that   theuseThen 

.).(KI).(
)(:SK|

→→→→λλλλλλλλλλλλ
ττττσσσσσσσσ→→→→σσσσ→→→→ττττ−−−−////

in     typeno have    and     (b)
.,allfor    (a)

xxxxxx

Exercises.
 thatShow

Lambda calculus  II 35

Proof.

(a)    If )(:).))((.(-SK| σσσσ→→→→σσσσ→→→→ττττλλλλλλλλ≡≡≡≡ xxyyzxzxyz

Then by the generation lemma

]:).(|)&()(&:))(.(|
:[

]:).(|&)(:))(.([|

ρρρρλλλλ−−−−νννν→→→→µµµµ≡≡≡≡σσσσ→→→→σσσσ→→→→ττττ→→→→ρρρρννννλλλλ−−−−
µµµµννννµµµµ∃∃∃∃ρρρρ∃∃∃∃

ρρρρλλλλ−−−−σσσσ→→→→σσσσ→→→→ττττ→→→→ρρρρλλλλ−−−−ρρρρ∃∃∃∃

xxyyzxzyz
x

xxyyzxzxyz

,
obtain weagain, lemma Generation  theusing

Lambda calculus  II 36

]:).(|)&()(&:))(. ρρρρλλλλ−−−−σσσσ→→→→σσσσ→→→→ττττ≡≡≡≡ϕϕϕϕ→→→→εεεεϕϕϕϕλλλλ
εεεερρρρϕϕϕϕεεεε∃∃∃∃ρρρρ∃∃∃∃

xxyyzxzz-(|
:y,:[x,

have  we,repeatedly lemma Generation  theusing

].:).:))(.(|: ρρρρλλλλσσσσ→→→→σσσσ→→→→ττττλλλλ−−−−ρρρρρρρρ∃∃∃∃

σσσσ→→→→σσσσ→→→→ττττ≡≡≡≡υυυυρρρρ≡≡≡≡µµµµ

xxyyzxzyzx -(|)&([
hence

)(&
 thatfollowsIt 
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The set of Typable terms is not closed under expansion.

A stronger failure of subject expansion has shown van Bakel.

and

 such that     and   are There 'T',', MMMM ββββ→>→>→>→>∈∈∈∈σσσσσσσσΛΛΛΛ∈∈∈∈

.:'|

,':'|
,:|

σσσσ−−−−////

σσσσ−−−−
σσσσ−−−−

M

M
M

but

We have ).(:).(KI|),(:I| σσσσ→→→→σσσσλλλλ−−−−////σσσσ→→→→σσσσ−−−− xxxbut

Observation. (van Bakel 1991)
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Proof.
).()('

)(,SK',.
ββββ→→→→ββββ→→→→αααα→→→→ββββ≡≡≡≡σσσσ

ββββ→→→→ββββ→→→→αααα≡≡≡≡σσσσ≡≡≡≡λλλλ≡≡≡≡
  

and    Take MyxyM

).(:SK| ββββ→→→→ββββ→→→→αααα−−−−//// fact that   theuseThen 

.).(KI).(
)(:SK|

→→→→λλλλλλλλλλλλ
ττττσσσσσσσσ→→→→σσσσ→→→→ττττ−−−−////

in     typeno have    and     (b)
.,allfor    (a)

xxxxxx

Exercises.
 thatShow

Lambda calculus  II 35

Proof.

(a)    If )(:).))((.(-SK| σσσσ→→→→σσσσ→→→→ττττλλλλλλλλ≡≡≡≡ xxyyzxzxyz

Then by the generation lemma

]:).(|)&()(&:))(.(|
:[

]:).(|&)(:))(.([|

ρρρρλλλλ−−−−νννν→→→→µµµµ≡≡≡≡σσσσ→→→→σσσσ→→→→ττττ→→→→ρρρρννννλλλλ−−−−
µµµµννννµµµµ∃∃∃∃ρρρρ∃∃∃∃

ρρρρλλλλ−−−−σσσσ→→→→σσσσ→→→→ττττ→→→→ρρρρλλλλ−−−−ρρρρ∃∃∃∃

xxyyzxzyz
x

xxyyzxzxyz

,
obtain weagain, lemma Generation  theusing

Lambda calculus  II 36

]:).(|)&()(&:))(. ρρρρλλλλ−−−−σσσσ→→→→σσσσ→→→→ττττ≡≡≡≡ϕϕϕϕ→→→→εεεεϕϕϕϕλλλλ
εεεερρρρϕϕϕϕεεεε∃∃∃∃ρρρρ∃∃∃∃

xxyyzxzz-(|
:y,:[x,

have  we,repeatedly lemma Generation  theusing

].:).:))(.(|: ρρρρλλλλσσσσ→→→→σσσσ→→→→ττττλλλλ−−−−ρρρρρρρρ∃∃∃∃

σσσσ→→→→σσσσ→→→→ττττ≡≡≡≡υυυυρρρρ≡≡≡≡µµµµ

xxyyzxzyzx -(|)&([
hence

)(&
 thatfollowsIt 
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The set of Typable terms is not closed under expansion.

A stronger failure of subject expansion has shown van Bakel.

and

 such that     and   are There 'T',', MMMM ββββ→>→>→>→>∈∈∈∈σσσσσσσσΛΛΛΛ∈∈∈∈

.:'|

,':'|
,:|

σσσσ−−−−////

σσσσ−−−−
σσσσ−−−−

M

M
M

but

We have ).(:).(KI|),(:I| σσσσ→→→→σσσσλλλλ−−−−////σσσσ→→→→σσσσ−−−− xxxbut

Observation. (van Bakel 1991)
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Proof.
).()('

)(,SK',.
ββββ→→→→ββββ→→→→αααα→→→→ββββ≡≡≡≡σσσσ

ββββ→→→→ββββ→→→→αααα≡≡≡≡σσσσ≡≡≡≡λλλλ≡≡≡≡
  

and    Take MyxyM

).(:SK| ββββ→→→→ββββ→→→→αααα−−−−//// fact that   theuseThen 

.).(KI).(
)(:SK|

→→→→λλλλλλλλλλλλ
ττττσσσσσσσσ→→→→σσσσ→→→→ττττ−−−−////

in     typeno have    and     (b)
.,allfor    (a)

xxxxxx

Exercises.
 thatShow

Lambda calculus  II 35

Proof.

(a)    If )(:).))((.(-SK| σσσσ→→→→σσσσ→→→→ττττλλλλλλλλ≡≡≡≡ xxyyzxzxyz

Then by the generation lemma

]:).(|)&()(&:))(.(|
:[

]:).(|&)(:))(.([|

ρρρρλλλλ−−−−νννν→→→→µµµµ≡≡≡≡σσσσ→→→→σσσσ→→→→ττττ→→→→ρρρρννννλλλλ−−−−
µµµµννννµµµµ∃∃∃∃ρρρρ∃∃∃∃

ρρρρλλλλ−−−−σσσσ→→→→σσσσ→→→→ττττ→→→→ρρρρλλλλ−−−−ρρρρ∃∃∃∃

xxyyzxzyz
x

xxyyzxzxyz

,
obtain weagain, lemma Generation  theusing
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]:).(|)&()(&:))(. ρρρρλλλλ−−−−σσσσ→→→→σσσσ→→→→ττττ≡≡≡≡ϕϕϕϕ→→→→εεεεϕϕϕϕλλλλ
εεεερρρρϕϕϕϕεεεε∃∃∃∃ρρρρ∃∃∃∃

xxyyzxzz-(|
:y,:[x,

have  we,repeatedly lemma Generation  theusing

].:).:))(.(|: ρρρρλλλλσσσσ→→→→σσσσ→→→→ττττλλλλ−−−−ρρρρρρρρ∃∃∃∃

σσσσ→→→→σσσσ→→→→ττττ≡≡≡≡υυυυρρρρ≡≡≡≡µµµµ

xxyyzxzyzx -(|)&([
hence

)(&
 thatfollowsIt 
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The set of Typable terms is not closed under expansion.

A stronger failure of subject expansion has shown van Bakel.

and

 such that     and   are There 'T',', MMMM ββββ→>→>→>→>∈∈∈∈σσσσσσσσΛΛΛΛ∈∈∈∈

.:'|

,':'|
,:|

σσσσ−−−−////

σσσσ−−−−
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M
M

but

We have ).(:).(KI|),(:I| σσσσ→→→→σσσσλλλλ−−−−////σσσσ→→→→σσσσ−−−− xxxbut

Observation. (van Bakel 1991)
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Proof.
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and    Take MyxyM
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in     typeno have    and     (b)
.,allfor    (a)

xxxxxx

Exercises.
 thatShow
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Proof.

(a)    If )(:).))((.(-SK| σσσσ→→→→σσσσ→→→→ττττλλλλλλλλ≡≡≡≡ xxyyzxzxyz

Then by the generation lemma
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xxyyzxzyz
x

xxyyzxzxyz

,
obtain weagain, lemma Generation  theusing
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The system                       A digression.Church−−−−→→→→λλλλ

At the first sight, the main difference between the Curry systems of 
type assignment and Church typing systems consists in the fact that 
in the Curry system, the bounded variables are typed implicitely by 
the system while in the Church typing system, the bounded 
variables are typed explicitely.

But there is in it more than that: 
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The term   (λx.x)  is annotated in the Church sustem by �:σ�, in fact it is 
not a lambda term in the strict sense.

The intuitive meaning is that (λx:σ.x)  takes the argument  x  from the 
domain of the type σ. The explicit mention of types in terms make it 
possible the type checking i.e. to decide whether a term has a certain type. 
For some Curry systems this question is undecidable.

Definition. (pseudoterms)

Let  T be some set of types. The set of T-annotated λ-terms (also called
pseudoterms), denoted by           is defined as follows:  ,TΛΛΛΛ

TTTT T:|| ΛΛΛΛλλλλΛΛΛΛΛΛΛΛ====ΛΛΛΛ xV

where  V  is the set of term variables.
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The term   (λx.x)  is annotated in the Church sustem by �:σ�, in fact it is 
not a lambda term in the strict sense.

The intuitive meaning is that (λx:σ.x)  takes the argument  x  from the 
domain of the type σ. The explicit mention of types in terms make it 
possible the type checking i.e. to decide whether a term has a certain type. 
For some Curry systems this question is undecidable.

Definition. (pseudoterms)

Let  T be some set of types. The set of T-annotated λ-terms (also called
pseudoterms), denoted by           is defined as follows:  ,TΛΛΛΛ

TTTT T:|| ΛΛΛΛλλλλΛΛΛΛΛΛΛΛ====ΛΛΛΛ xV

where  V  is the set of term variables.
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The same syntactic conventions are used for          as for         e.g. TΛΛΛΛ ,ΛΛΛΛ

))).:(:(:(.:: LLL Mnnx22x11xMnnx11x σσσσλλλλσσσσλλλλσσσσλλλλ≡≡≡≡σσσσλλλλσσσσλλλλ

Mx .: σσσσλλλλ≡≡≡≡ rr

Remark.

Several systems of typed λ-calculi `a la Church resemble to the 
Curry systems of type assignments since they consist of a choice of 
the set T of types and of an assignment of types               to termsT∈∈∈∈σσσσ

.TΛΛΛΛ∈∈∈∈M

However, this is not the case in all systems `a la  Church. In some 
such systems the sets of terms and types are defined simultaneous-
ly.

Lambda calculus  II 42

Anyway, for                            the separate definition of the sets of types 
and and (pseudo)terms is possible and one may have  the same set of 
types                             as for

Church−−−−→→→→λλλλ

)(T →→→→λλλλ==== Type Curry.−−−−→→→→λλλλ

Definition.
The typed lambda calculus                              consists ofChurch−−−−→→→→λλλλ

(i)  the set of types defined by  )(T →→→→λλλλ==== Type
TT|VT →→→→====

where  V  is the set of type variables.

(ii) statements of the form T.: T ∈∈∈∈σσσσΛΛΛΛ∈∈∈∈σσσσ andwith MM
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(iii) bases which are again sets of statements with only distinct 
(term) variables as subjects.

(iv) axioms and  rules Church−−−−→→→→λλλλ

(axiom) ΓΓΓΓ∈∈∈∈σσσσσσσσ−−−−ΓΓΓΓ ):(:| xx if                           

ττττΓΓΓΓ
σσσσΓΓΓΓττττ→→→→σσσσΓΓΓΓ→→→→

:(MN)-|
:N-|)(:M-|     on)-eliminati(

)
:,

ττττ→→→→σσσσσσσσλλλλΓΓΓΓ
ττττσσσσΓΓΓΓ→→→→

(:M).:x(-|
:M-|  ion)-introduct( x

Definition.
A statement  M :σ  is  derivable from the basis  Γ, notation  Γ |- M :σ,   
if  M :σ  can be produced using the above axioms and rules.

Lambda calculus  II 44

As we have seen, derivations can be given in several styles. We will not 
repeat it here, although we slightly prefere the Gentzen (natural deduct-
ion) style.

Definition.
The set of legal by defined is  (by   denoted terms, ),→→→→λλλλΛΛΛΛ−−−−→→→→λλλλ

}.:|,|{) T σσσσ−−−−ΓΓΓΓσσσσΓΓΓΓ∃∃∃∃ΛΛΛΛ∈∈∈∈====→→→→λλλλΛΛΛΛ MM( 

To refer specifically to                           one uses the notation Church,−−−−→→→→λλλλ

.:| σσσσ−−−−ΓΓΓΓ −−−−→→→→λλλλ MChurch

If there is little danger of ambiguity one uses also

.||,| −−−−−−−−−−−− →→→→λλλλ or   Church
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Curry systems of type assignments since they consist of a choice of 
the set T of types and of an assignment of types               to termsT∈∈∈∈σσσσ

.TΛΛΛΛ∈∈∈∈M

However, this is not the case in all systems `a la  Church. In some 
such systems the sets of terms and types are defined simultaneous-
ly.
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Anyway, for                            the separate definition of the sets of types 
and and (pseudo)terms is possible and one may have  the same set of 
types                             as for

Church−−−−→→→→λλλλ

)(T →→→→λλλλ==== Type Curry.−−−−→→→→λλλλ

Definition.
The typed lambda calculus                              consists ofChurch−−−−→→→→λλλλ

(i)  the set of types defined by  )(T →→→→λλλλ==== Type
TT|VT →→→→====

where  V  is the set of type variables.

(ii) statements of the form T.: T ∈∈∈∈σσσσΛΛΛΛ∈∈∈∈σσσσ andwith MM
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(iii) bases which are again sets of statements with only distinct 
(term) variables as subjects.

(iv) axioms and  rules Church−−−−→→→→λλλλ

(axiom) ΓΓΓΓ∈∈∈∈σσσσσσσσ−−−−ΓΓΓΓ ):(:| xx if                           

ττττΓΓΓΓ
σσσσΓΓΓΓττττ→→→→σσσσΓΓΓΓ→→→→

:(MN)-|
:N-|)(:M-|     on)-eliminati(

)
:,

ττττ→→→→σσσσσσσσλλλλΓΓΓΓ
ττττσσσσΓΓΓΓ→→→→

(:M).:x(-|
:M-|  ion)-introduct( x

Definition.
A statement  M :σ  is  derivable from the basis  Γ, notation  Γ |- M :σ,   
if  M :σ  can be produced using the above axioms and rules.
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As we have seen, derivations can be given in several styles. We will not 
repeat it here, although we slightly prefere the Gentzen (natural deduct-
ion) style.

Definition.
The set of legal by defined is  (by   denoted terms, ),→→→→λλλλΛΛΛΛ−−−−→→→→λλλλ

}.:|,|{) T σσσσ−−−−ΓΓΓΓσσσσΓΓΓΓ∃∃∃∃ΛΛΛΛ∈∈∈∈====→→→→λλλλΛΛΛΛ MM( 

To refer specifically to                           one uses the notation Church,−−−−→→→→λλλλ

.:| σσσσ−−−−ΓΓΓΓ −−−−→→→→λλλλ MChurch

If there is little danger of ambiguity one uses also

.||,| −−−−−−−−−−−− →→→→λλλλ or   Church
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Exercises.

)(:).:(| σσσσ→→→→σσσσσσσσλλλλ−−−− xx (a)

)(:).::(| σσσσ→→→→ττττ→→→→σσσσττττλλλλσσσσλλλλ−−−− xyx (b)

)(:).:(| σσσσ→→→→ττττττττλλλλ−−−− xy (c)

Similarly as for the type-free theory, one can define reduction and 
conversion on the set of pseudoterms .TΛΛΛΛ

Definition.

The binary relations                                           denoting one-step 
β-reduction, many-steps β-reduction and β-convertibility on        
respectively, are generated by the contraction rule

,, ββββββββββββ ====→>→>→>→>→→→→    and   

].:[).:( NxMNMx ====→→→→σσσσλλλλ

.TΛΛΛΛ
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Examples.

).:().:)(.:( yyyyyyxx ττττλλλλ→→→→ττττλλλλσσσσλλλλ ββββ (a)

).:().:)(.::()( yyzzxyyx ττττλλλλ→>→>→>→>ππππλλλλττττλλλλσσσσλλλλ ββββ b

)().:)(.::( zzzzzzyyx ββββ→>→>→>→>ππππλλλλττττλλλλσσσσλλλλ (c)

Remarks.

(i) It can be shown that the Church-Rosser theorem for             also 
holds on   

ββββ→>→>→>→>
.TΛΛΛΛ

(ii) The following results for                            are essentially the 
same as the corresponding propositions for

Church−−−−→→→→λλλλ
Curry.−−−−→→→→λλλλ

Lambda calculus  II 47

Basis lemma for                      

Let  Γ  be a basis, we have  

Church.−−−−→→→→λλλλ

(i)  If                   is another basis, then´´, ΓΓΓΓ⊆⊆⊆⊆ΓΓΓΓΓΓΓΓ .:´|:| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

(ii) ).()(:| ΓΓΓΓ⊆⊆⊆⊆⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ dom MFVM
(iii) .:|)(|:| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MMFVM

Generation lemma for Church.−−−−→→→→λλλλ

(i) .):(:| ΓΓΓΓ∈∈∈∈σσσσ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ xx

(ii) ].:|&)(:|[:| σσσσ−−−−ΓΓΓΓττττ→→→→σσσσ−−−−ΓΓΓΓσσσσ∃∃∃∃⇒⇒⇒⇒ττττ−−−−ΓΓΓΓ NMMN

(iii) ].:|:,&)([:).:(| ττττ−−−−σσσσΓΓΓΓττττ→→→→σσσσ====ρρρρττττ∃∃∃∃⇒⇒⇒⇒ρρρρσσσσλλλλ−−−−ΓΓΓΓ MxMx
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Typability of subterms in Church.−−−−→→→→λλλλ
If   M´ is a subterm of M  and M has a type i.e. if

for  some                 then M´ has a type as well, i.e.

for  some

σσσσ−−−−ΓΓΓΓ :| MChurch

´´:´| σσσσ−−−−ΓΓΓΓ MChurch

´.´ σσσσΓΓΓΓ  and 

,σσσσΓΓΓΓ  and 

Substitution lemma for Church.−−−−→→→→λλλλ
(i) ].:[:]:[|]:[:| ττττ====αααασσσσττττ====αααα−−−−ττττ====ααααΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

(ii) Suppose      and  .:|:|:, σσσσ−−−−ΓΓΓΓττττ−−−−σσσσΓΓΓΓ NMx
,:]:[| ττττ====−−−−ΓΓΓΓ NxM   Then      

where  α, x  are a type and a term variable respectively and σ, τ are 
types. 
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Exercises.

)(:).:(| σσσσ→→→→σσσσσσσσλλλλ−−−− xx (a)

)(:).::(| σσσσ→→→→ττττ→→→→σσσσττττλλλλσσσσλλλλ−−−− xyx (b)

)(:).:(| σσσσ→→→→ττττττττλλλλ−−−− xy (c)

Similarly as for the type-free theory, one can define reduction and 
conversion on the set of pseudoterms .TΛΛΛΛ

Definition.

The binary relations                                           denoting one-step 
β-reduction, many-steps β-reduction and β-convertibility on        
respectively, are generated by the contraction rule

,, ββββββββββββ ====→>→>→>→>→→→→    and   

].:[).:( NxMNMx ====→→→→σσσσλλλλ

.TΛΛΛΛ
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Examples.

).:().:)(.:( yyyyyyxx ττττλλλλ→→→→ττττλλλλσσσσλλλλ ββββ (a)

).:().:)(.::()( yyzzxyyx ττττλλλλ→>→>→>→>ππππλλλλττττλλλλσσσσλλλλ ββββ b

)().:)(.::( zzzzzzyyx ββββ→>→>→>→>ππππλλλλττττλλλλσσσσλλλλ (c)

Remarks.

(i) It can be shown that the Church-Rosser theorem for             also 
holds on   

ββββ→>→>→>→>
.TΛΛΛΛ

(ii) The following results for                            are essentially the 
same as the corresponding propositions for

Church−−−−→→→→λλλλ
Curry.−−−−→→→→λλλλ
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Basis lemma for                      

Let  Γ  be a basis, we have  

Church.−−−−→→→→λλλλ

(i)  If                   is another basis, then´´, ΓΓΓΓ⊆⊆⊆⊆ΓΓΓΓΓΓΓΓ .:´|:| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

(ii) ).()(:| ΓΓΓΓ⊆⊆⊆⊆⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ dom MFVM
(iii) .:|)(|:| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MMFVM

Generation lemma for Church.−−−−→→→→λλλλ

(i) .):(:| ΓΓΓΓ∈∈∈∈σσσσ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ xx

(ii) ].:|&)(:|[:| σσσσ−−−−ΓΓΓΓττττ→→→→σσσσ−−−−ΓΓΓΓσσσσ∃∃∃∃⇒⇒⇒⇒ττττ−−−−ΓΓΓΓ NMMN

(iii) ].:|:,&)([:).:(| ττττ−−−−σσσσΓΓΓΓττττ→→→→σσσσ====ρρρρττττ∃∃∃∃⇒⇒⇒⇒ρρρρσσσσλλλλ−−−−ΓΓΓΓ MxMx
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Typability of subterms in Church.−−−−→→→→λλλλ
If   M´ is a subterm of M  and M has a type i.e. if

for  some                 then M´ has a type as well, i.e.

for  some

σσσσ−−−−ΓΓΓΓ :| MChurch

´´:´| σσσσ−−−−ΓΓΓΓ MChurch

´.´ σσσσΓΓΓΓ  and 

,σσσσΓΓΓΓ  and 

Substitution lemma for Church.−−−−→→→→λλλλ
(i) ].:[:]:[|]:[:| ττττ====αααασσσσττττ====αααα−−−−ττττ====ααααΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

(ii) Suppose      and  .:|:|:, σσσσ−−−−ΓΓΓΓττττ−−−−σσσσΓΓΓΓ NMx
,:]:[| ττττ====−−−−ΓΓΓΓ NxM   Then      

where  α, x  are a type and a term variable respectively and σ, τ are 
types. 
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Exercises.

)(:).:(| σσσσ→→→→σσσσσσσσλλλλ−−−− xx (a)

)(:).::(| σσσσ→→→→ττττ→→→→σσσσττττλλλλσσσσλλλλ−−−− xyx (b)

)(:).:(| σσσσ→→→→ττττττττλλλλ−−−− xy (c)

Similarly as for the type-free theory, one can define reduction and 
conversion on the set of pseudoterms .TΛΛΛΛ

Definition.

The binary relations                                           denoting one-step 
β-reduction, many-steps β-reduction and β-convertibility on        
respectively, are generated by the contraction rule

,, ββββββββββββ ====→>→>→>→>→→→→    and   

].:[).:( NxMNMx ====→→→→σσσσλλλλ

.TΛΛΛΛ
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Examples.

).:().:)(.:( yyyyyyxx ττττλλλλ→→→→ττττλλλλσσσσλλλλ ββββ (a)

).:().:)(.::()( yyzzxyyx ττττλλλλ→>→>→>→>ππππλλλλττττλλλλσσσσλλλλ ββββ b

)().:)(.::( zzzzzzyyx ββββ→>→>→>→>ππππλλλλττττλλλλσσσσλλλλ (c)

Remarks.

(i) It can be shown that the Church-Rosser theorem for             also 
holds on   

ββββ→>→>→>→>
.TΛΛΛΛ

(ii) The following results for                            are essentially the 
same as the corresponding propositions for

Church−−−−→→→→λλλλ
Curry.−−−−→→→→λλλλ
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Basis lemma for                      

Let  Γ  be a basis, we have  

Church.−−−−→→→→λλλλ

(i)  If                   is another basis, then´´, ΓΓΓΓ⊆⊆⊆⊆ΓΓΓΓΓΓΓΓ .:´|:| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

(ii) ).()(:| ΓΓΓΓ⊆⊆⊆⊆⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ dom MFVM
(iii) .:|)(|:| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MMFVM

Generation lemma for Church.−−−−→→→→λλλλ

(i) .):(:| ΓΓΓΓ∈∈∈∈σσσσ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ xx

(ii) ].:|&)(:|[:| σσσσ−−−−ΓΓΓΓττττ→→→→σσσσ−−−−ΓΓΓΓσσσσ∃∃∃∃⇒⇒⇒⇒ττττ−−−−ΓΓΓΓ NMMN

(iii) ].:|:,&)([:).:(| ττττ−−−−σσσσΓΓΓΓττττ→→→→σσσσ====ρρρρττττ∃∃∃∃⇒⇒⇒⇒ρρρρσσσσλλλλ−−−−ΓΓΓΓ MxMx
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Typability of subterms in Church.−−−−→→→→λλλλ
If   M´ is a subterm of M  and M has a type i.e. if

for  some                 then M´ has a type as well, i.e.

for  some

σσσσ−−−−ΓΓΓΓ :| MChurch

´´:´| σσσσ−−−−ΓΓΓΓ MChurch

´.´ σσσσΓΓΓΓ  and 

,σσσσΓΓΓΓ  and 

Substitution lemma for Church.−−−−→→→→λλλλ
(i) ].:[:]:[|]:[:| ττττ====αααασσσσττττ====αααα−−−−ττττ====ααααΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

(ii) Suppose      and  .:|:|:, σσσσ−−−−ΓΓΓΓττττ−−−−σσσσΓΓΓΓ NMx
,:]:[| ττττ====−−−−ΓΓΓΓ NxM   Then      

where  α, x  are a type and a term variable respectively and σ, τ are 
types. 
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Exercises.

)(:).:(| σσσσ→→→→σσσσσσσσλλλλ−−−− xx (a)

)(:).::(| σσσσ→→→→ττττ→→→→σσσσττττλλλλσσσσλλλλ−−−− xyx (b)

)(:).:(| σσσσ→→→→ττττττττλλλλ−−−− xy (c)

Similarly as for the type-free theory, one can define reduction and 
conversion on the set of pseudoterms .TΛΛΛΛ

Definition.

The binary relations                                           denoting one-step 
β-reduction, many-steps β-reduction and β-convertibility on        
respectively, are generated by the contraction rule

,, ββββββββββββ ====→>→>→>→>→→→→    and   

].:[).:( NxMNMx ====→→→→σσσσλλλλ

.TΛΛΛΛ
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Examples.

).:().:)(.:( yyyyyyxx ττττλλλλ→→→→ττττλλλλσσσσλλλλ ββββ (a)

).:().:)(.::()( yyzzxyyx ττττλλλλ→>→>→>→>ππππλλλλττττλλλλσσσσλλλλ ββββ b

)().:)(.::( zzzzzzyyx ββββ→>→>→>→>ππππλλλλττττλλλλσσσσλλλλ (c)

Remarks.

(i) It can be shown that the Church-Rosser theorem for             also 
holds on   

ββββ→>→>→>→>
.TΛΛΛΛ

(ii) The following results for                            are essentially the 
same as the corresponding propositions for

Church−−−−→→→→λλλλ
Curry.−−−−→→→→λλλλ
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Basis lemma for                      

Let  Γ  be a basis, we have  

Church.−−−−→→→→λλλλ

(i)  If                   is another basis, then´´, ΓΓΓΓ⊆⊆⊆⊆ΓΓΓΓΓΓΓΓ .:´|:| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

(ii) ).()(:| ΓΓΓΓ⊆⊆⊆⊆⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ dom MFVM
(iii) .:|)(|:| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MMFVM

Generation lemma for Church.−−−−→→→→λλλλ

(i) .):(:| ΓΓΓΓ∈∈∈∈σσσσ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ xx

(ii) ].:|&)(:|[:| σσσσ−−−−ΓΓΓΓττττ→→→→σσσσ−−−−ΓΓΓΓσσσσ∃∃∃∃⇒⇒⇒⇒ττττ−−−−ΓΓΓΓ NMMN

(iii) ].:|:,&)([:).:(| ττττ−−−−σσσσΓΓΓΓττττ→→→→σσσσ====ρρρρττττ∃∃∃∃⇒⇒⇒⇒ρρρρσσσσλλλλ−−−−ΓΓΓΓ MxMx
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Typability of subterms in Church.−−−−→→→→λλλλ
If   M´ is a subterm of M  and M has a type i.e. if

for  some                 then M´ has a type as well, i.e.

for  some

σσσσ−−−−ΓΓΓΓ :| MChurch

´´:´| σσσσ−−−−ΓΓΓΓ MChurch

´.´ σσσσΓΓΓΓ  and 

,σσσσΓΓΓΓ  and 

Substitution lemma for Church.−−−−→→→→λλλλ
(i) ].:[:]:[|]:[:| ττττ====αααασσσσττττ====αααα−−−−ττττ====ααααΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

(ii) Suppose      and  .:|:|:, σσσσ−−−−ΓΓΓΓττττ−−−−σσσσΓΓΓΓ NMx
,:]:[| ττττ====−−−−ΓΓΓΓ NxM   Then      

where  α, x  are a type and a term variable respectively and σ, τ are 
types. 
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Subject reduction Theorem for Church.−−−−→→→→λλλλ

Let                       Then´.MM ββββ→>→>→>→> .´:|:| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

Remark.

This theorem implies that the set of legal expressions is closed under 
reduction. It is not closed under expansion and conversion.

Take                       annotated with appropriate types. It follows from 
the Typability of subterms lemma  that             has no type.  

ΩΩΩΩ====ββββ KII
ΩΩΩΩKI

On the other hand convertible legal terms have the same type with 
respect to a given basis.
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Lemma on uniqueness of types for Church.−−−−→→→→λλλλ

(i) Let ´.´.:|:| σσσσ≡≡≡≡σσσσσσσσ−−−−ΓΓΓΓσσσσ−−−−ΓΓΓΓ Then     and  MM

(ii) Let ´.´.´´:|,:| σσσσ====σσσσ====σσσσ−−−−ΓΓΓΓσσσσ−−−−ΓΓΓΓ ββββ Then       and  MMMM

Proof.
(i) By induction on the structure of M.

(ii) Use the Church-Rosser Theorem for             the subject 
reduction theorem for

,TΛΛΛΛ
(i).  and   Church,−−−−→→→→λλλλ

We have seen that this proposition does not hold for Curry.−−−−→→→→λλλλ
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Relating the Curry and Church systems

For typed lambda calculi that can be described in both ways  á la Curry 
and á la Church, often a simple relations can be defined between the 
two versions. We shall show it for the simplest calculus .→→→→λλλλ

Definition

There is a �forgetful� mapping                              defined as followsΛΛΛΛ→→→→ΛΛΛΛ T:.

xx ≡≡≡≡
NMMN ≡≡≡≡

MxMx ..: λλλλ≡≡≡≡σσσσλλλλ

The mapping just erases all annotations of a term in .TΛΛΛΛ
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The following results show that legal pseudoterms in the Church 
version of             ´project´ to legal terms in the Curry version of →→→→λλλλ

.→→→→λλλλ
On the other hand, legal terms in                           can be 
´lifted´  to legal terms in

Curry−−−−→→→→λλλλ
Church.−−−−→→→→λλλλ

Theorem.
(i) (projection) Let                    Then .TΛΛΛΛ∈∈∈∈M

.:|:| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM CurryChurch

(ii)  (lifting) Let                      Then .ΛΛΛΛ∈∈∈∈M

].´&´:|[´:| T MMMMM ChurchCurry ≡≡≡≡σσσσ−−−−ΓΓΓΓΛΛΛΛ∈∈∈∈∃∃∃∃⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ

Proof.
By induction on the derivation of the respective type assignment.
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Subject reduction Theorem for Church.−−−−→→→→λλλλ

Let                       Then´.MM ββββ→>→>→>→> .´:|:| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

Remark.

This theorem implies that the set of legal expressions is closed under 
reduction. It is not closed under expansion and conversion.

Take                       annotated with appropriate types. It follows from 
the Typability of subterms lemma  that             has no type.  

ΩΩΩΩ====ββββ KII
ΩΩΩΩKI

On the other hand convertible legal terms have the same type with 
respect to a given basis.
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Lemma on uniqueness of types for Church.−−−−→→→→λλλλ

(i) Let ´.´.:|:| σσσσ≡≡≡≡σσσσσσσσ−−−−ΓΓΓΓσσσσ−−−−ΓΓΓΓ Then     and  MM
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Relating the Curry and Church systems

For typed lambda calculi that can be described in both ways  á la Curry 
and á la Church, often a simple relations can be defined between the 
two versions. We shall show it for the simplest calculus .→→→→λλλλ

Definition

There is a �forgetful� mapping                              defined as followsΛΛΛΛ→→→→ΛΛΛΛ T:.

xx ≡≡≡≡
NMMN ≡≡≡≡

MxMx ..: λλλλ≡≡≡≡σσσσλλλλ

The mapping just erases all annotations of a term in .TΛΛΛΛ
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The following results show that legal pseudoterms in the Church 
version of             ´project´ to legal terms in the Curry version of →→→→λλλλ

.→→→→λλλλ
On the other hand, legal terms in                           can be 
´lifted´  to legal terms in

Curry−−−−→→→→λλλλ
Church.−−−−→→→→λλλλ

Theorem.
(i) (projection) Let                    Then .TΛΛΛΛ∈∈∈∈M

.:|:| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM CurryChurch

(ii)  (lifting) Let                      Then .ΛΛΛΛ∈∈∈∈M

].´&´:|[´:| T MMMMM ChurchCurry ≡≡≡≡σσσσ−−−−ΓΓΓΓΛΛΛΛ∈∈∈∈∃∃∃∃⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ

Proof.
By induction on the derivation of the respective type assignment.
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Corollary.

For an arbitrary type have   we,T∈∈∈∈σσσσ

-Church.  in inhabited is    in inhabited is  →→→→λλλλσσσσ⇔⇔⇔⇔−−−−→→→→λλλλσσσσ Curry

Lambda calculus  II 54

Bőhm trees and Approximation.  A digression.

To the rule A we need to introduce Bőhm trees which are 
a kind of ´infinite normal forms´.

Lemma.
Each                 is in one of the following forms.  ΛΛΛΛ∈∈∈∈M

 variable.a   and     with    (i) y0mnNyNxxM m1n1 ,,,. ≥≥≥≥λλλλ≡≡≡≡ KK

.,,)..( 1m0nNNNyxxM m10n1 ≥≥≥≥≥≥≥≥λλλλλλλλ≡≡≡≡  with (ii) KK

Lambda calculus  II 55

Proof.

By the definition a  λ-term is either a variable, or of the form of application 
PQ or an abstraction  λx.P. We have to analyze three cases:

(a) if M  is a variable, then M  is of the form (i) with   n = m = 0.

(b) if M  is an application, then

nabstractioan or    (i)) (giving  variablea is    on whether depending  with 
(ii)or    (i)  form  theof is  Then   n.applicatioan not      with  

0

0m10

P0n
MPPPPM

,====
≡≡≡≡ K

giving (ii).

Lambda calculus  II 56

(c) if                                                             and Q is not
an abstraction. Then Q is a variable or an application and it follows 
from the Induction hypothesis that Q is in one of forms (i) or (ii) 
for n = 0. Adding  the prefix does not change the 
form.

0kQxxxPPxM k21 ≥≥≥≥λλλλλλλλλλλλ≡≡≡≡λλλλ≡≡≡≡ ,.. K   where,

k21 xxxx λλλλλλλλλλλλλλλλ K
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Definition. (head normal form, head redex)

(i) A λ-term   M  is in head normal form (hnf)  if M is in the form (i) of 
the above lemma. In that case  y is called the head variable of M.

The following definition deals with the two forms of   λ-terms from the 
above lemma.

(ii)  We say that M  has an head normal form if there is N in hnf such 
that .NM ββββ====

(iii) If  M  is in the form (ii), we call                     the head redex of M.10 NNy ).(λλλλ
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Lemma. (convertibility of head normal forms)  

If  and   ´MM ββββ====

M has hnf  ,. m1n11 NNyxxM KKλλλλ≡≡≡≡

M´ has hnf    ´,´´.´ ´ m1n11 NNyxxM KKλλλλ≡≡≡≡

.´,,´´´,´, mm11 NNNNmmyynn ββββββββ ============≡≡≡≡==== K  and  then  

Lambda calculus  II 59

Proof.

By the Church-Rosser theorem                         have a common reduct 
L.  But then the only possibility is that 

11 MM ´  and  

´´´´ ´´´´´´. m1n1 NNyxxL KKλλλλ≡≡≡≡

where

K,´´´´´´´,´´´,´´ 111 NNNmmmyyynnn ββββββββ ================================   and  

Lambda calculus  II 60

calculus  a digression.−−−−⊥⊥⊥⊥λλλλ

Definition.

calculus is the extension of the lambda calculus defined as 
follows. One of the (term) variables is selected for use as a constant 
and is given the name .⊥⊥⊥⊥

(i) two contraction rules are added:

⊥⊥⊥⊥→→→→⊥⊥⊥⊥
⊥⊥⊥⊥→→→→⊥⊥⊥⊥λλλλ

M
x.

(ii) A reduced.  becannot it  such that is  −−−−⊥⊥⊥⊥ββββ−−−−⊥⊥⊥⊥ββββ form normal

−−−−⊥⊥⊥⊥λλλλ
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We are going to introduce the notion of Böhm tree. The definition is not 
complete, because it does not specify the ordering of the direct 
successors of a node. However this ordering is displayed in the pictures 
of the trees. This suffices for our purposes.

The precise definition of the order can be found in (Barendregt 1984).

Definition.

Let                      The   Böhm tree of M, denoted by  BT(M), is the 
labelled tree defined as follows

.ΛΛΛΛ∈∈∈∈M














⊥⊥⊥⊥

λλλλ
λλλλ

====

hnf no has  M  if

is M  of hnf  theif                           

)()(
.

.

)( m1

m1n1

n1

NBTNBT
NyNxx

yxx

MBT K

KK

K
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Böhm trees for         calculus are defined under condition 
that a         term

−−−−⊥⊥⊥⊥λλλλ
m1n1 NyNxx KK .λλλλ

is in                                       only if             or  form normal head−−−−⊥⊥⊥⊥ββββ
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(c) Recall that the Fixed point operator Y is defined by
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We are going to introduce the notion of Böhm tree. The definition is not 
complete, because it does not specify the ordering of the direct 
successors of a node. However this ordering is displayed in the pictures 
of the trees. This suffices for our purposes.

The precise definition of the order can be found in (Barendregt 1984).

Definition.

Let                      The   Böhm tree of M, denoted by  BT(M), is the 
labelled tree defined as follows
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Remark.

The definition of the Böhm tree is not an inductive definition
of  BT(M), although it seems to be according to presented 
examples. The terms m1 NN ,,K
in the tail of an hnf of M  may be more complex than the 
term  M  itself. [Barendregt 1984, Chapter 10]

Lemma. (Correctnost of the definition of Böhm trees )
(i) Böhm trees are well defined,

(ii) ).()( NBTMBTNM ====⇒⇒⇒⇒====ββββ

Proof.
The definition is correct as it is independent of the 
choice  of the head normal forms. This and (ii) follows 
from the lemma on convertibility of hnfs.
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Definition.  Approximate normal forms.

(i) Let  A  and B  be Böhm trees of some           terms. We 
say that A  is included in B  and write if  A
results from B  by cutting of some subtrees, leaving an 
empty subtree

,BA ⊆⊆⊆⊆

(ii) Let  P, Q be terms. We say that P  
approximates Q  and write  

−−−−⊥⊥⊥⊥λλλλ

).()(, QBTPBTQP ⊆⊆⊆⊆⊆⊆⊆⊆  if  

(iii) Let  P  be a          term. The set of   approximate 
normal forms (anf�s)  of  P, is defined as follows

nf}.a is  −−−−⊥⊥⊥⊥ββββ⊆⊆⊆⊆==== QPQP |{)(A
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Example.

The set of approximate normal forms for the fixed point 
operator   Y  is

},.,.,.,{)Y( K⊥⊥⊥⊥λλλλ⊥⊥⊥⊥λλλλ⊥⊥⊥⊥λλλλ⊥⊥⊥⊥==== 32 ffffffA
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Typing á la Curry

The basic system                       can be extended in 
various ways to stronger systems by adding new types 
and by adding new rules. Some of the new rules are 
related to combinatorial properties of the trees 
representing the terms.

Curry−−−−→→→→λλλλ

The systems to be discussed are                                           
To each of these can be added one of the extra derivation 
rules EQ and A.

. and  ∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ ,, 2

Lambda calculus  II 70

∩∩∩∩λλλλ
++++

λµλµλµλµ→→→→λλλλ
++++

λλλλ

A

EQ
2

The systems á la Curry

Lambda calculus  II 71

Definition. Rules of equality (EQ) and approximation (A).

(i)  The equality rule EQ

σσσσ
====σσσσ ββββ

:
:

N
NMM

  

(ii)  The approximation rules A

σσσσ⊥⊥⊥⊥−−−−ΓΓΓΓ

σσσσ−−−−ΓΓΓΓ
∈∈∈∈σσσσ−−−−ΓΓΓΓ

:|

:|
)(:|

M
MP APallfor   

Lambda calculus  II 72

Remark.  (Side conditions)

Note that in these rules the assumptions                                           
are not type assignments. We call them side conditions. The 
last rule states that        has any type.

)(MPNM A∈∈∈∈====ββββ      and

⊥⊥⊥⊥

Notation.

Let   λ- be any of the systems                                           
We denote by

.,, ∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ or    2

(i) EQ.  rule by the extended    system   the −−−−λλλλ−−−−λλλλ ++++ ,

.  rule by the extended    system   the AA −−−−λλλλ−−−−λλλλ ,(ii) 

So for example
.AA ++++λµλµλµλµ====λµλµλµλµ++++λλλλ====λλλλ ++++    and   EQ22



Lambda calculus  II 69

Typing á la Curry

The basic system                       can be extended in 
various ways to stronger systems by adding new types 
and by adding new rules. Some of the new rules are 
related to combinatorial properties of the trees 
representing the terms.

Curry−−−−→→→→λλλλ

The systems to be discussed are                                           
To each of these can be added one of the extra derivation 
rules EQ and A.

. and  ∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ ,, 2

Lambda calculus  II 70

∩∩∩∩λλλλ
++++

λµλµλµλµ→→→→λλλλ
++++

λλλλ

A

EQ
2

The systems á la Curry

Lambda calculus  II 71

Definition. Rules of equality (EQ) and approximation (A).

(i)  The equality rule EQ

σσσσ
====σσσσ ββββ

:
:

N
NMM

  

(ii)  The approximation rules A

σσσσ⊥⊥⊥⊥−−−−ΓΓΓΓ

σσσσ−−−−ΓΓΓΓ
∈∈∈∈σσσσ−−−−ΓΓΓΓ

:|

:|
)(:|

M
MP APallfor   

Lambda calculus  II 72

Remark.  (Side conditions)

Note that in these rules the assumptions                                           
are not type assignments. We call them side conditions. The 
last rule states that        has any type.

)(MPNM A∈∈∈∈====ββββ      and

⊥⊥⊥⊥

Notation.

Let   λ- be any of the systems                                           
We denote by

.,, ∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ or    2

(i) EQ.  rule by the extended    system   the −−−−λλλλ−−−−λλλλ ++++ ,

.  rule by the extended    system   the AA −−−−λλλλ−−−−λλλλ ,(ii) 

So for example
.AA ++++λµλµλµλµ====λµλµλµλµ++++λλλλ====λλλλ ++++    and   EQ22



Lambda calculus  II 69

Typing á la Curry

The basic system                       can be extended in 
various ways to stronger systems by adding new types 
and by adding new rules. Some of the new rules are 
related to combinatorial properties of the trees 
representing the terms.

Curry−−−−→→→→λλλλ

The systems to be discussed are                                           
To each of these can be added one of the extra derivation 
rules EQ and A.

. and  ∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ ,, 2

Lambda calculus  II 70

∩∩∩∩λλλλ
++++

λµλµλµλµ→→→→λλλλ
++++

λλλλ

A

EQ
2

The systems á la Curry

Lambda calculus  II 71

Definition. Rules of equality (EQ) and approximation (A).

(i)  The equality rule EQ

σσσσ
====σσσσ ββββ

:
:

N
NMM

  

(ii)  The approximation rules A

σσσσ⊥⊥⊥⊥−−−−ΓΓΓΓ

σσσσ−−−−ΓΓΓΓ
∈∈∈∈σσσσ−−−−ΓΓΓΓ

:|

:|
)(:|

M
MP APallfor   

Lambda calculus  II 72

Remark.  (Side conditions)

Note that in these rules the assumptions                                           
are not type assignments. We call them side conditions. The 
last rule states that        has any type.

)(MPNM A∈∈∈∈====ββββ      and

⊥⊥⊥⊥

Notation.

Let   λ- be any of the systems                                           
We denote by

.,, ∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ or    2

(i) EQ.  rule by the extended    system   the −−−−λλλλ−−−−λλλλ ++++ ,

.  rule by the extended    system   the AA −−−−λλλλ−−−−λλλλ ,(ii) 

So for example
.AA ++++λµλµλµλµ====λµλµλµλµ++++λλλλ====λλλλ ++++    and   EQ22



Lambda calculus  II 69

Typing á la Curry

The basic system                       can be extended in 
various ways to stronger systems by adding new types 
and by adding new rules. Some of the new rules are 
related to combinatorial properties of the trees 
representing the terms.

Curry−−−−→→→→λλλλ

The systems to be discussed are                                           
To each of these can be added one of the extra derivation 
rules EQ and A.

. and  ∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ ,, 2
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∩∩∩∩λλλλ
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λµλµλµλµ→→→→λλλλ
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λλλλ

A

EQ
2

The systems á la Curry
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Definition. Rules of equality (EQ) and approximation (A).

(i)  The equality rule EQ

σσσσ
====σσσσ ββββ

:
:

N
NMM

  

(ii)  The approximation rules A

σσσσ⊥⊥⊥⊥−−−−ΓΓΓΓ

σσσσ−−−−ΓΓΓΓ
∈∈∈∈σσσσ−−−−ΓΓΓΓ

:|

:|
)(:|

M
MP APallfor   
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Remark.  (Side conditions)

Note that in these rules the assumptions                                           
are not type assignments. We call them side conditions. The 
last rule states that        has any type.

)(MPNM A∈∈∈∈====ββββ      and

⊥⊥⊥⊥

Notation.

Let   λ- be any of the systems                                           
We denote by

.,, ∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ or    2

(i) EQ.  rule by the extended    system   the −−−−λλλλ−−−−λλλλ ++++ ,

.  rule by the extended    system   the AA −−−−λλλλ−−−−λλλλ ,(ii) 

So for example
.AA ++++λµλµλµλµ====λµλµλµλµ++++λλλλ====λλλλ ++++    and   EQ22
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Examples.

(a)  One has  

)(:)))(..((| σσσσ→→→→ττττ→→→→σσσσλλλλλλλλ−−−− ++++→→→→λλλλ
qpprpq

It follows from the equality                                                    
Note that this statement is not provable in general in          
itself. The term has in          only types of the form

as follows from the generation  lemma.

ppqqpprpq .))(..( λλλλ====λλλλλλλλ

→→→→λλλλ
,)( σσσσ→→→→ττττ→→→→σσσσ→→→→σσσσ

→→→→λλλλ
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(b) Let                                               be the fixed point 
operator. Then  

))(.))((..(Y xxfxxxfxf λλλλλλλλλλλλ≡≡≡≡

))((:Y| σσσσ→→→→σσσσ→→→→σσσσ−−−− →→→→λλλλ A

Indeed, the set of approximate normal forms of Y  is

},.,.,.,{ KK ⊥⊥⊥⊥λλλλ⊥⊥⊥⊥λλλλ⊥⊥⊥⊥λλλλ⊥⊥⊥⊥ n2 ffffff

And all these terms have type                           Again, this 
statement is not derivable in             itself. (In            all 
typable terms have a normal form as we shall see later on.) 

).)(( σσσσ→→→→σσσσ→→→→σσσσ
→→→→λλλλ →→→→λλλλ
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We are going to show that the rule A is stronger than the rule EQ.

Proposition.

Let  λ- be one of the systems                            of  type 
assignments. In all systems λ-A, we have  

∩∩∩∩λλλλλµλµλµλµλλλλ or    ,2

(i) σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒∈∈∈∈σσσσ−−−−ΓΓΓΓ :|)(:| PMPM A  and  

(ii)   Let Then  ´).()( MBTMBT ====

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ ´:|:| MM
(iii)   Let Then   ´.MM ββββ====

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ ´:|:| MM

Note that (iii) is the rule EQ.
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Proof.

(i)  If P is an approximate normal form of M,  then   P
results from   BT(M)  by  replacing some subtrees by       and  
writing  the  result  as  a λ-term  by one of the rules A. 
Therefore P  has the same type as  M. (see an Example 
below).

⊥⊥⊥⊥

(ii) Suppose                                 Then                    and, 
consequently

   ´).()( MBTMBT ==== )(MA ´),(MA====

∈∈∈∈∀∀∀∀⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ PM (:| (i),by    ],:|´))[()( σσσσ−−−−ΓΓΓΓ==== PMM AA

.,´:| A   ruleby    σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒ M
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(iii) If by the
lemma on the correctness  of  the  definition of  Böhm 
trees. The  result  then  follows by (ii).

´),()(´, MBTMBTMM ========ββββ    then   

Example.
)(., ⊥⊥⊥⊥λλλλ≡≡≡≡≡≡≡≡ fffPM let   and combinatorpoint  fixed   theLet  Y

be  an approximant. We have
σσσσ→→→→σσσσ→→→→σσσσ−−−− )(:| Y

By choosing σ as a type for one obtains  ,⊥⊥⊥⊥

σσσσ→→→→σσσσ→→→→σσσσ−−−− )(:| P
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System λ2

� Polymorphic typed lambda calculus
� Second-order typed lambda calculus
� Second-order polymorphic typed λ-calculus
� System  F

� Girard (1972)
� Reynolds (1974)
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Motivation.

(i)  Usually these names refer to  λ2-Church, we shall 
introduce the Curry version of   λ2  to discuss the Church 
version later.

(ii) The idea of polymorphism: while in             we have

for  arbitrary (type) variable α  (and for arbitrary type  σ as

well), one stipulates in λ2

to indicate that            has all types                  or that the type 

of           depends uniformly on α.

→→→→λλλλ
)(:).( αααα→→→→ααααλλλλ xx

)).((:).( αααα→→→→αααααααα∀∀∀∀λλλλ xx
σσσσ→→→→σσσσ

As we shall see later, the mechanism is rather powerful.

xx.λλλλ
xx.λλλλ
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Definition. The set of types of λ2.
The set   T = Type(    )   is defined by the following 
abstract grammar

λ2

TV|TT|VT ∀∀∀∀→→→→====
Notation.

(i) The parentheses by quantifiers cumulate to the right, so 
we have ))))((( KK σσσσαααα∀∀∀∀αααα∀∀∀∀αααα∀∀∀∀ n21(  

(ii)  If there are no parentheses, .han strongly t more binds →→→→∀∀∀∀

Hence
).(.,)( ττττ→→→→σσσσαααα∀∀∀∀≡≡≡≡ττττ→→→→σσσσαααα∀∀∀∀ττττ→→→→σσσσαααα∀∀∀∀≡≡≡≡ττττ→→→→σσσσαααα∀∀∀∀ but    

for   shorthand a as   σσσσαααααααα∀∀∀∀ .n1 K
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Definition. Type assignment in λ2-Curry.

λ2

(start rule)                                                    
σσσσ−−−−ΓΓΓΓ
ΓΓΓΓ∈∈∈∈σσσσ
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n)eliminatio→(
ττττ−−−−ΓΓΓΓ
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Exercises.
).(:).( αααα→→→→αααααααα∀∀∀∀λλλλ xx-|  (a)

).(:).( αααα→→→→ββββ→→→→αααααβαβαβαβ∀∀∀∀λλλλ yxy-|  (b)
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Remarks.
(i)  Exercise (c) shows that the Church numerals                             

have type                                          which 
is sometimes called �polynat�.

).( xffx n
n   c λλλλ≡≡≡≡ )).(( αααα→→→→αααα→→→→αααα→→→→αααααααα∀∀∀∀

(ii)  One reason for the strength of   λ2  is that the Church 
numerals may be used as iterators for functions of types               
for arbitrary      and not only for functions of a fixed type  

σσσσ→→→→σσσσ

.αααα→→→→αααα

(iii)  We shall show later that the typable terms in λ2  have 
a normal form, in fact they are  strongly normalizing.

σσσσ
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The system  λµ

� It is the system of recursive types.
� The recursive types come together with an equivalence 

relation      .
� The type assignment rules consist of the rules of             

and the following rule

≈≈≈≈
→→→→λλλλ

´:|
´:|

σσσσ−−−−ΓΓΓΓ
σσσσ≈≈≈≈σσσσσσσσ−−−−ΓΓΓΓ

M
M
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The system  λµ
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Motivation

A typical example of a recursive type is a  type   0σσσσ

(1)                             000 σσσσ→→→→σσσσ≈≈≈≈σσσσ

This particular type can be used to type arbitrary terms                    
As an example, we shall show that                                           
has        as a type

.ΛΛΛΛ∈∈∈∈M
).)(.( xxxxxx λλλλλλλλ≡≡≡≡ΩΩΩΩ

00 xxx σσσσ−−−−σσσσ :|:
000 xx σσσσ→→→→σσσσ−−−−σσσσ :|:

00xxx σσσσ→→→→σσσσλλλλ−−−− :.|

0xxx σσσσλλλλ−−−− :.|

0xxxxxx σσσσλλλλλλλλ−−−−
ΩΩΩΩ

:).)(.(|
44 344 21

 0σσσσ
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Here is the proof of the same statement in a natural 
deduction setting

000

1
0

xx
x

σσσσσσσσ→→→→σσσσ
σσσσ

::
:

1
xxx

xx
00

0

σσσσ→→→→σσσσλλλλ
σσσσ

:).(
:)(

0

000

xxxxxx
xxxxxx

σσσσλλλλλλλλ
σσσσλλλλσσσσ→→→→σσσσλλλλ

ΩΩΩΩ

:).)(.(
:).(:).(

44 344 21
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Remarks.

(i)  The equation  (1)  is similar to a recursive domain equation 

][ DDD →→→→≅≅≅≅

that enables to interpret elements of Λ in denotational  
semantics.

(ii)  In order to construct a type           satisfying (1), there is an 
operator µ  such that putting                               implies (1).      

0σσσσ
αααα→→→→ααααµαµαµαµα≡≡≡≡σσσσ .0

Lambda calculus  II 88

Definition.   The set  T=Type(λµ),  trees of types of λµ.

(i) The set of types of   λµ,  T = Type(λµ), is defined by the following 
abstract  grammar.

V.T|TT|VT µµµµ→→→→====

where  V  is the set of type variables.
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Here is the proof of the same statement in a natural 
deduction setting

000

1
0

xx
x

σσσσσσσσ→→→→σσσσ
σσσσ

::
:

1
xxx

xx
00

0

σσσσ→→→→σσσσλλλλ
σσσσ

:).(
:)(

0

000

xxxxxx
xxxxxx

σσσσλλλλλλλλ
σσσσλλλλσσσσ→→→→σσσσλλλλ

ΩΩΩΩ

:).)(.(
:).(:).(

44 344 21

Lambda calculus  II 87

Remarks.

(i)  The equation  (1)  is similar to a recursive domain equation 

][ DDD →→→→≅≅≅≅

that enables to interpret elements of Λ in denotational  
semantics.

(ii)  In order to construct a type           satisfying (1), there is an 
operator µ  such that putting                               implies (1).      

0σσσσ
αααα→→→→ααααµαµαµαµα≡≡≡≡σσσσ .0

Lambda calculus  II 88

Definition.   The set  T=Type(λµ),  trees of types of λµ.

(i) The set of types of   λµ,  T = Type(λµ), is defined by the following 
abstract  grammar.

V.T|TT|VT µµµµ→→→→====

where  V  is the set of type variables.



Lambda calculus  II 85

Motivation

A typical example of a recursive type is a  type   0σσσσ

(1)                             000 σσσσ→→→→σσσσ≈≈≈≈σσσσ

This particular type can be used to type arbitrary terms                    
As an example, we shall show that                                           
has        as a type

.ΛΛΛΛ∈∈∈∈M
).)(.( xxxxxx λλλλλλλλ≡≡≡≡ΩΩΩΩ

00 xxx σσσσ−−−−σσσσ :|:
000 xx σσσσ→→→→σσσσ−−−−σσσσ :|:

00xxx σσσσ→→→→σσσσλλλλ−−−− :.|

0xxx σσσσλλλλ−−−− :.|

0xxxxxx σσσσλλλλλλλλ−−−−
ΩΩΩΩ

:).)(.(|
44 344 21

 0σσσσ

Lambda calculus  II 86

Here is the proof of the same statement in a natural 
deduction setting
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(i)  The equation  (1)  is similar to a recursive domain equation 
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that enables to interpret elements of Λ in denotational  
semantics.

(ii)  In order to construct a type           satisfying (1), there is an 
operator µ  such that putting                               implies (1).      
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Definition.   The set  T=Type(λµ),  trees of types of λµ.

(i) The set of types of   λµ,  T = Type(λµ), is defined by the following 
abstract  grammar.
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where  V  is the set of type variables.
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(ii)  Let be a type. The  tree of σ,  T(σ) is defined by
induction on the structure of σ as follows:

T∈∈∈∈σσσσ

====αααα )(T αααα
====ττττ→→→→σσσσ )(T

)()( ττττσσσσ

→→→→

TT









σσσσµαµαµαµα====αααασσσσ

⊥⊥⊥⊥
====σσσσµαµαµαµα

]).:[(
).(

T
T

if          is a type variableαααα

If                                for 
some  

ααααββββµβµβµβµβ≡≡≡≡σσσσ .n1K

0n ≥≥≥≥

else
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(iii) The equivalence relation             on trees is defined as follows:≈≈≈≈
)()( ττττ====σσσσ⇔⇔⇔⇔ττττ≈≈≈≈σσσσ TT

Exercises.

(a)  Assume                               then   ,. γγγγ→→→→ααααµαµαµαµα≡≡≡≡ττττ

γγγγ

γγγγ→→→→

γγγγ→→→→γγγγττττ

→→→→====→→→→====ττττ

K

)(

)(

T

T
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γγγγ

γγγγ→→→→

⊥⊥⊥⊥→→→→

→→→→====ττττ

K

)(T

(b)  Assume                                               then,.).( ββββµδµβµδµβµδµβµδµβ→→→→γγγγ→→→→ααααµαµαµαµα≡≡≡≡ττττ
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(c)    ).)(().( γγγγ→→→→γγγγ→→→→ααααµαµαµαµα≈≈≈≈γγγγ→→→→ααααµαµαµαµα

(d)                                             for all σ,  even if               α.].:[. σσσσµαµαµαµα====αααασσσσ≈≈≈≈σσσσµαµαµαµα .ββββµµµµ≡≡≡≡σσσσ

Definition.

The type assignment system   λµ  is defined by the natural 
deduction system presented in the following picture
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(iii) The equivalence relation             on trees is defined as follows:≈≈≈≈
)()( ττττ====σσσσ⇔⇔⇔⇔ττττ≈≈≈≈σσσσ TT

Exercises.

(a)  Assume                               then   ,. γγγγ→→→→ααααµαµαµαµα≡≡≡≡ττττ

γγγγ
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γγγγ→→→→γγγγττττ

→→→→====→→→→====ττττ
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)(

T

T
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(d)                                             for all σ,  even if               α.].:[. σσσσµαµαµαµα====αααασσσσ≈≈≈≈σσσσµαµαµαµα .ββββµµµµ≡≡≡≡σσσσ

Definition.

The type assignment system   λµ  is defined by the natural 
deduction system presented in the following picture
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σσσσ−−−−ΓΓΓΓ
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x
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Proposition. (Coppo 1985)

For an arbitrary type  σ,  we have in λµ

σσσσ→→→→σσσσ→→→→σσσσ−−−− )(:Y|)(i

σσσσΩΩΩΩ−−−− :|(ii)

Proof.

(i)  If we put                           then                      We will derive,. αααα→→→→ααααµαµαµαµα≡≡≡≡ττττ .σσσσ→→→→ττττ≈≈≈≈ττττ

σσσσ→→→→σσσσ→→→→σσσσλλλλλλλλλλλλ≡≡≡≡ )(:))(.))((..(Y xxfxxxfxf
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xxf
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ττττλλλλσσσσ→→→→ττττλλλλ
σσσσ→→→→ττττλλλλ

:)(.:)(.
:)(.

xxfxxxfx
xxfx

σσσσ→→→→σσσσ→→→→σσσσλλλλλλλλλλλλ≡≡≡≡
σσσσλλλλλλλλ

)(:))(.))((..(Y
:))(.))((.(

xxfxxxfxf
xxfxxxfx

2

1
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(ii)  Note   that                         the result follows from the fact that 

and the subject reduction 
theorem. It is possible to prove   (ii)  directly.

ΩΩΩΩ→>→>→>→>ββββYI
),(:).(I σσσσ→→→→σσσσλλλλ≡≡≡≡ xx )( neliminatio−−−−→→→→
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The system

� It is called the system of  intersection types or Torino 
system.

� Barendregt, Coppo, Dezani,  Honsell and Longo (1981 -
1987)

� The system makes it possible that a (term) variable x  has 
exactly two types σ  and τ  at the same time.

∩∩∩∩λλλλ
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The set of types of the system              comes together with a preorder 
on the set of types.

∩∩∩∩λλλλ

Definition.  The set of types.

(i)  The set of types                               is defined by an abstract 
grammar as follows:  

),(T ∩∩∩∩λλλλ==== Type

TT|TT|VT ∩∩∩∩→→→→====
where V  is the set of type variables.

(ii) We select one of the type variables as a constant and name 
it as  ω.
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Definition. The preorder on  T.

(i) The  relation           is defined on T by the following axioms and 
rules 

≤≤≤≤

ρρρρ≤≤≤≤σσσσ⇒⇒⇒⇒ρρρρ≤≤≤≤ττττττττ≤≤≤≤σσσσ
σσσσ≤≤≤≤σσσσ
,

ωωωω→→→→ωωωω≤≤≤≤ωωωω
ωωωω≤≤≤≤σσσσ

ττττ≤≤≤≤ττττ∩∩∩∩σσσσσσσσ≤≤≤≤ττττ∩∩∩∩σσσσ
ττττ∩∩∩∩ρρρρ→→→→σσσσ≤≤≤≤ττττ→→→→σσσσ∩∩∩∩ρρρρ→→→→σσσσ

,
))(()()(

´´´´,
,

ττττ→→→→σσσσ≤≤≤≤ττττ→→→→σσσσ⇒⇒⇒⇒ττττ≤≤≤≤ττττσσσσ≤≤≤≤σσσσ
ττττ∩∩∩∩σσσσ≤≤≤≤σσσσ⇒⇒⇒⇒ρρρρ≤≤≤≤σσσσττττ≤≤≤≤σσσσ

(ii)  ) & σσσσ≤≤≤≤ττττττττ≤≤≤≤σσσσ⇔⇔⇔⇔ττττσσσσ (pf
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Exercises.

(a) )( ωωωω→→→→ωωωωωωωωpf

(b) )´)(())´()(( ττττ→→→→σσσσ∩∩∩∩σσσσ≤≤≤≤ττττ→→→→σσσσ∩∩∩∩ττττ→→→→σσσσ
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The system

� It is called the system of  intersection types or Torino 
system.

� Barendregt, Coppo, Dezani,  Honsell and Longo (1981 -
1987)

� The system makes it possible that a (term) variable x  has 
exactly two types σ  and τ  at the same time.

∩∩∩∩λλλλ
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The set of types of the system              comes together with a preorder 
on the set of types.

∩∩∩∩λλλλ

Definition.  The set of types.

(i)  The set of types                               is defined by an abstract 
grammar as follows:  

),(T ∩∩∩∩λλλλ==== Type

TT|TT|VT ∩∩∩∩→→→→====
where V  is the set of type variables.

(ii) We select one of the type variables as a constant and name 
it as  ω.
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Definition. The preorder on  T.

(i) The  relation           is defined on T by the following axioms and 
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≤≤≤≤

ρρρρ≤≤≤≤σσσσ⇒⇒⇒⇒ρρρρ≤≤≤≤ττττττττ≤≤≤≤σσσσ
σσσσ≤≤≤≤σσσσ
,

ωωωω→→→→ωωωω≤≤≤≤ωωωω
ωωωω≤≤≤≤σσσσ

ττττ≤≤≤≤ττττ∩∩∩∩σσσσσσσσ≤≤≤≤ττττ∩∩∩∩σσσσ
ττττ∩∩∩∩ρρρρ→→→→σσσσ≤≤≤≤ττττ→→→→σσσσ∩∩∩∩ρρρρ→→→→σσσσ

,
))(()()(

´´´´,
,
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(b)  We know     thusσσσσ≤≤≤≤σσσσ∩∩∩∩σσσσ ´
)´)(( ττττ→→→→σσσσ∩∩∩∩σσσσ≤≤≤≤ττττ→→→→σσσσ )(1

trivially
)()´()( ττττ→→→→σσσσ≤≤≤≤ττττ→→→→σσσσ∩∩∩∩ττττ→→→→σσσσ )(2

Then (b) follows from (1) and (2) by transitivity.
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Definition. The system of type assignment .∩∩∩∩λλλλ

(start rule)

n)eliminatio−−−−→→→→(

on)introducti−−−−→→→→(

n)eliminatio−−−−∩∩∩∩(

on)introducti−−−−∩∩∩∩(

on)introducti−−−−ωωωω(

rule)−−−−≤≤≤≤(

σσσσ−−−−ΓΓΓΓ
ΓΓΓΓ∈∈∈∈σσσσ

:|
):(
x

x

ττττ−−−−ΓΓΓΓ
σσσσ−−−−ΓΓΓΓττττ→→→→σσσσ−−−−ΓΓΓΓ

:)(|
:|)(:|

MN
NM

)(:).(|
:|:,

ττττ→→→→σσσσλλλλ−−−−ΓΓΓΓ
ττττ−−−−σσσσΓΓΓΓ

Mx
Mx

ττττ−−−−ΓΓΓΓσσσσ−−−−ΓΓΓΓ
ττττ∩∩∩∩σσσσ−−−−ΓΓΓΓ

:|:|
)(:|
MM

M

)(:|
:|:|

ττττ∩∩∩∩σσσσ−−−−ΓΓΓΓ
ττττ−−−−ΓΓΓΓσσσσ−−−−ΓΓΓΓ

M
MM

ωωωω−−−−ΓΓΓΓ :| M

ττττ−−−−ΓΓΓΓ
ττττ≤≤≤≤σσσσσσσσ−−−−ΓΓΓΓ

:|
:|

M
M
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Proof.

(a) σσσσττττ→→→→σσσσ
σσσσ∩∩∩∩ττττ→→→→σσσσ
::

)(:
xx

x

ττττ→→→→σσσσ∩∩∩∩ττττ→→→→σσσσλλλλ
ττττ

))((:).(
:)(

xxx
xx

1

1

(b)   Obvious, it can be shown that M has no head normal form 
iff ω is the only possible type for  M. (Barendregt 1983)

(c) )(:).(
:::
σσσσ→→→→ωωωωλλλλ

ωωωωσσσσττττ
pr

rpq
ωωωω:)(qp

σσσσλλλλ :))(.( qppr

))((:)))(..((
)(:)))(..((

σσσσ→→→→ττττ→→→→σσσσλλλλλλλλ
σσσσ→→→→ττττλλλλλλλλ

qpprpq
qpprq

2
1

3

3

1

2
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Combining the systems á la Curry

(i)  there are some variants of the system              in one of 
them the rule (axiom) that assigns  ω  to any term.

.∩∩∩∩λλλλ

(ii)  The systems                                 are all extensions of              
They can be combined into other systems, an extreme case is           

which includes all these systems. It can be extended 
by cartesian products and direct sums in order to fall into the 
cartesian closed category.

∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ   and  ,, 2 .→→→→λλλλ

∩∩∩∩µµµµλλλλ2
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Basic properties.

The Curry systems                                            enjoy several properties∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ   and  ,, 2

�Basis lemma

�Subterm lemma

�Substitution lemma

�Subject reduction Theorem                  

Common to all systems:

Each system has a proper variant
�Generation lemma

�Strong normalization
does not hold for all
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In the following       refers to one of Curry systems −−−−| .,, ∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ   and  2

The following three common properties are proved in the same way as we 
have done for .→→→→λλλλ

Basis lemma for the Curry systems.

Let  Γ  be a basis.

(i) If                      is another basis, then´´, ΓΓΓΓ⊆⊆⊆⊆ΓΓΓΓΓΓΓΓ σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ :´|:| MM

(ii) )()(:| ΓΓΓΓ⊆⊆⊆⊆⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ domMFVM

(iii) σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ :|)(|:| MMFVM

Lambda calculus  II 108

Subterm lemma for the Curry systems.

Let  M´ be a subterm of M. Then  

':'|':| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

For some ´.´ σσσσΓΓΓΓ   and  

Substitution lemma for the Curry systems.

(i) ]:[:|]:[:| ττττ====αααασσσσ−−−−ττττ====ααααΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

(ii) ττττ====−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓττττ−−−−σσσσΓΓΓΓ :]:[|):|&:|:,( NxMNMx
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(ii)  The systems                                 are all extensions of              
They can be combined into other systems, an extreme case is           

which includes all these systems. It can be extended 
by cartesian products and direct sums in order to fall into the 
cartesian closed category.

∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ   and  ,, 2 .→→→→λλλλ

∩∩∩∩µµµµλλλλ2
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Basic properties.

The Curry systems                                            enjoy several properties∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ   and  ,, 2

�Basis lemma

�Subterm lemma

�Substitution lemma

�Subject reduction Theorem                  

Common to all systems:

Each system has a proper variant
�Generation lemma

�Strong normalization
does not hold for all
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In the following       refers to one of Curry systems −−−−| .,, ∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ   and  2

The following three common properties are proved in the same way as we 
have done for .→→→→λλλλ

Basis lemma for the Curry systems.

Let  Γ  be a basis.

(i) If                      is another basis, then´´, ΓΓΓΓ⊆⊆⊆⊆ΓΓΓΓΓΓΓΓ σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ :´|:| MM

(ii) )()(:| ΓΓΓΓ⊆⊆⊆⊆⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ domMFVM

(iii) σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ :|)(|:| MMFVM
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Subterm lemma for the Curry systems.

Let  M´ be a subterm of M. Then  

':'|':| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

For some ´.´ σσσσΓΓΓΓ   and  

Substitution lemma for the Curry systems.
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Exercise.

Show that for  each of the systems                                          
one has

∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ   and  ,, 2

)(:| αααα→→→→αααα−−−−//// K

in that system.
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Subject reduction and subject conversion.

Subject reduction

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒→>→>→>→>σσσσ−−−−ΓΓΓΓ :'|':| MMMM β   and   

holds for the main systems of type assignment á la Curry, namely

with or without the additional rules   EQ and A.,,, ∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ   and  2

Subject conversion

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒====σσσσ−−−−ΓΓΓΓ :'|':| MMMM β   and   

Holds only for the systems including          or rule A or if the rule EQ 
is included.  

∩∩∩∩λλλλ  
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Subject reduction.

We have already proved the Subject reduction theorem for the basic 
system            and we are going to prove it for        We need some 
definitions and throughout the proof T = Type(      ).

→→→→λλλλ .2λλλλ
2λλλλ

Definition.

(i) Write            if one of the following conditions is satisfiedττττ>>>>σσσσ

ππππππππ====αααασσσσ≡≡≡≡ττττ
σσσσαααα∀∀∀∀≡≡≡≡σσσσ

σσσσσσσσαααα∀∀∀∀≡≡≡≡ττττ

  somefor    

or
   somefor    

],:[
&.

,,.

1

1

(ii) The relation        is the reflexive and transitive closure of  > .≥≥≥≥
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(iii)  A map o :              is defined as followsTT →→→→

oo

o

o

σσσσ====σσσσαααα∀∀∀∀
ττττ→→→→σσσσ====ττττ→→→→σσσσ

αααααααα====αααα

).(
)(

 variable typea is    if

Remark.

Note that the      -introduction and       -elimination   rules are the 
only ones in which the subject does not change. Several instances of 
these rules may be applied consecutively, giving 

∀∀∀∀ ∀ ∀∀∀

ττττ

σσσσ

:

:

M

M

M

M

In this case                 By this reasoning, one obtains the following:            .ττττ≥≥≥≥σσσσ



Lambda calculus  II 109

Exercise.

Show that for  each of the systems                                          
one has

∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ   and  ,, 2

)(:| αααα→→→→αααα−−−−//// K

in that system.

Lambda calculus  II 110

Subject reduction and subject conversion.

Subject reduction

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒→>→>→>→>σσσσ−−−−ΓΓΓΓ :'|':| MMMM β   and   

holds for the main systems of type assignment á la Curry, namely

with or without the additional rules   EQ and A.,,, ∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ   and  2

Subject conversion

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒====σσσσ−−−−ΓΓΓΓ :'|':| MMMM β   and   

Holds only for the systems including          or rule A or if the rule EQ 
is included.  

∩∩∩∩λλλλ  

Lambda calculus  II 111

Subject reduction.

We have already proved the Subject reduction theorem for the basic 
system            and we are going to prove it for        We need some 
definitions and throughout the proof T = Type(      ).

→→→→λλλλ .2λλλλ
2λλλλ

Definition.

(i) Write            if one of the following conditions is satisfiedττττ>>>>σσσσ

ππππππππ====αααασσσσ≡≡≡≡ττττ
σσσσαααα∀∀∀∀≡≡≡≡σσσσ

σσσσσσσσαααα∀∀∀∀≡≡≡≡ττττ

  somefor    

or
   somefor    

],:[
&.

,,.

1

1

(ii) The relation        is the reflexive and transitive closure of  > .≥≥≥≥

Lambda calculus  II 112

(iii)  A map o :              is defined as followsTT →→→→

oo

o

o

σσσσ====σσσσαααα∀∀∀∀
ττττ→→→→σσσσ====ττττ→→→→σσσσ

αααααααα====αααα

).(
)(

 variable typea is    if

Remark.

Note that the      -introduction and       -elimination   rules are the 
only ones in which the subject does not change. Several instances of 
these rules may be applied consecutively, giving 

∀∀∀∀ ∀ ∀∀∀

ττττ

σσσσ

:

:

M

M

M

M

In this case                 By this reasoning, one obtains the following:            .ττττ≥≥≥≥σσσσ



Lambda calculus  II 109

Exercise.

Show that for  each of the systems                                          
one has

∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ   and  ,, 2

)(:| αααα→→→→αααα−−−−//// K

in that system.

Lambda calculus  II 110

Subject reduction and subject conversion.

Subject reduction

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒→>→>→>→>σσσσ−−−−ΓΓΓΓ :'|':| MMMM β   and   

holds for the main systems of type assignment á la Curry, namely

with or without the additional rules   EQ and A.,,, ∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ   and  2

Subject conversion

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒====σσσσ−−−−ΓΓΓΓ :'|':| MMMM β   and   

Holds only for the systems including          or rule A or if the rule EQ 
is included.  

∩∩∩∩λλλλ  

Lambda calculus  II 111

Subject reduction.

We have already proved the Subject reduction theorem for the basic 
system            and we are going to prove it for        We need some 
definitions and throughout the proof T = Type(      ).

→→→→λλλλ .2λλλλ
2λλλλ

Definition.

(i) Write            if one of the following conditions is satisfiedττττ>>>>σσσσ

ππππππππ====αααασσσσ≡≡≡≡ττττ
σσσσαααα∀∀∀∀≡≡≡≡σσσσ

σσσσσσσσαααα∀∀∀∀≡≡≡≡ττττ

  somefor    

or
   somefor    

],:[
&.

,,.

1

1

(ii) The relation        is the reflexive and transitive closure of  > .≥≥≥≥

Lambda calculus  II 112

(iii)  A map o :              is defined as followsTT →→→→

oo

o

o

σσσσ====σσσσαααα∀∀∀∀
ττττ→→→→σσσσ====ττττ→→→→σσσσ

αααααααα====αααα

).(
)(

 variable typea is    if

Remark.

Note that the      -introduction and       -elimination   rules are the 
only ones in which the subject does not change. Several instances of 
these rules may be applied consecutively, giving 

∀∀∀∀ ∀ ∀∀∀

ττττ

σσσσ

:

:

M

M

M

M

In this case                 By this reasoning, one obtains the following:            .ττττ≥≥≥≥σσσσ



Lambda calculus  II 109

Exercise.

Show that for  each of the systems                                          
one has

∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ   and  ,, 2

)(:| αααα→→→→αααα−−−−//// K

in that system.

Lambda calculus  II 110

Subject reduction and subject conversion.

Subject reduction

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒→>→>→>→>σσσσ−−−−ΓΓΓΓ :'|':| MMMM β   and   

holds for the main systems of type assignment á la Curry, namely

with or without the additional rules   EQ and A.,,, ∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ   and  2

Subject conversion

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒====σσσσ−−−−ΓΓΓΓ :'|':| MMMM β   and   

Holds only for the systems including          or rule A or if the rule EQ 
is included.  

∩∩∩∩λλλλ  

Lambda calculus  II 111

Subject reduction.

We have already proved the Subject reduction theorem for the basic 
system            and we are going to prove it for        We need some 
definitions and throughout the proof T = Type(      ).

→→→→λλλλ .2λλλλ
2λλλλ

Definition.

(i) Write            if one of the following conditions is satisfiedττττ>>>>σσσσ

ππππππππ====αααασσσσ≡≡≡≡ττττ
σσσσαααα∀∀∀∀≡≡≡≡σσσσ

σσσσσσσσαααα∀∀∀∀≡≡≡≡ττττ

  somefor    

or
   somefor    

],:[
&.

,,.

1

1

(ii) The relation        is the reflexive and transitive closure of  > .≥≥≥≥

Lambda calculus  II 112

(iii)  A map o :              is defined as followsTT →→→→

oo

o

o

σσσσ====σσσσαααα∀∀∀∀
ττττ→→→→σσσσ====ττττ→→→→σσσσ

αααααααα====αααα

).(
)(

 variable typea is    if

Remark.

Note that the      -introduction and       -elimination   rules are the 
only ones in which the subject does not change. Several instances of 
these rules may be applied consecutively, giving 

∀∀∀∀ ∀ ∀∀∀

ττττ

σσσσ

:

:

M

M

M

M

In this case                 By this reasoning, one obtains the following:            .ττττ≥≥≥≥σσσσ



Lambda calculus  II 113

Lemma.
Let              an assume that no free type variable in σ  occurs in Γ.  
Then

ττττ≥≥≥≥σσσσ
ττττ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ :|:| MM

Proof.

σσσσ−−−−ΓΓΓΓ :| M .ττττ≥≥≥≥σσσσSuppose                      and                Then            
for some                       if necessary, by renaming some bound 
type variables, we may assume that for                    we have 

ττττ≡≡≡≡σσσσ>>>>>>>>σσσσ≡≡≡≡σσσσ n1 L
.,, n1 σσσσσσσσ L

,, ni1i <<<<≤≤≤≤
)(. ΓΓΓΓ∉∉∉∉αααα⇒⇒⇒⇒σσσσαααα∀∀∀∀≡≡≡≡σσσσ ++++ FV11i

By the definition of the relation > and the rules of   λ2,  it 
follows that we have

1ii MM ++++σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ :|:|

for all   i < n. Hence .:| ττττ≡≡≡≡σσσσ−−−−ΓΓΓΓ nM
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Generation lemma for λ2-Curry.

]:|&´:|[´:)(| σσσσ−−−−ΓΓΓΓττττ→→→→σσσσ−−−−ΓΓΓΓττττ≥≥≥≥ττττ∃∃∃∃σσσσ∃∃∃∃⇒⇒⇒⇒ττττ−−−−ΓΓΓΓ NMMN  (ii)

ΓΓΓΓ∈∈∈∈σσσσσσσσ≥≥≥≥σσσσ∃∃∃∃⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ ):((´:| xx  (i)

]&:|:,[:).(| ρρρρ≥≥≥≥ττττ→→→→σσσσττττ−−−−σσσσΓΓΓΓττττ∃∃∃∃σσσσ∃∃∃∃⇒⇒⇒⇒ρρρρλλλλ−−−−ΓΓΓΓ MxMx  (iii)

Proof.

By induction on derivations.
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Lemma on preorder of types.

(i) Given types σ, τ, there exists a type  τ´ such that

´]:[]):[( ττττ====αααασσσσ≡≡≡≡ττττ====αααασσσσ oo

(ii) ]:[( ττττ====αααασσσσ≡≡≡≡σσσσττττ∃∃∃∃αααα∃∃∃∃⇒⇒⇒⇒σσσσ≥≥≥≥σσσσ rro
1

o
221

(iii) ]:)[(´)´(´)´()( ττττ====ααααρρρρ→→→→σσσσ≡≡≡≡ρρρρ→→→→σσσσττττ∃∃∃∃αααα∃∃∃∃⇒⇒⇒⇒ρρρρ→→→→σσσσ≥≥≥≥ρρρρ→→→→σσσσ rrrr
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Proof.

(i) By induction on the structure of σ.

(ii)  It suffices to prove it for                   We have to consider two cases .21 σσσσ≥≥≥≥σσσσ

Case 1. ... o
1

o
212 σσσσ≡≡≡≡σσσσσσσσαααα∀∀∀∀≡≡≡≡σσσσ Then    

Case 2. ]:[. ττττ====ααααρρρρ≡≡≡≡σσσσρρρραααα∀∀∀∀≡≡≡≡σσσσ 21    and  

Then by (i) we have ´]:[´]:[ ττττ====αααασσσσ≡≡≡≡ττττ====ααααρρρρ≡≡≡≡σσσσ o
1

oo
2

(iii)  By (ii), we have

])[(]:[)(´)´(´)´( ττττ→→→→ααααρρρρ→→→→σσσσ≡≡≡≡ττττ====ααααρρρρ→→→→σσσσ≡≡≡≡ρρρρ→→→→σσσσ≡≡≡≡ρρρρ→→→→σσσσ rrrroo
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ττττ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ :|:| MM

Proof.

σσσσ−−−−ΓΓΓΓ :| M .ττττ≥≥≥≥σσσσSuppose                      and                Then            
for some                       if necessary, by renaming some bound 
type variables, we may assume that for                    we have 

ττττ≡≡≡≡σσσσ>>>>>>>>σσσσ≡≡≡≡σσσσ n1 L
.,, n1 σσσσσσσσ L

,, ni1i <<<<≤≤≤≤
)(. ΓΓΓΓ∉∉∉∉αααα⇒⇒⇒⇒σσσσαααα∀∀∀∀≡≡≡≡σσσσ ++++ FV11i

By the definition of the relation > and the rules of   λ2,  it 
follows that we have

1ii MM ++++σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ :|:|

for all   i < n. Hence .:| ττττ≡≡≡≡σσσσ−−−−ΓΓΓΓ nM
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Generation lemma for λ2-Curry.

]:|&´:|[´:)(| σσσσ−−−−ΓΓΓΓττττ→→→→σσσσ−−−−ΓΓΓΓττττ≥≥≥≥ττττ∃∃∃∃σσσσ∃∃∃∃⇒⇒⇒⇒ττττ−−−−ΓΓΓΓ NMMN  (ii)

ΓΓΓΓ∈∈∈∈σσσσσσσσ≥≥≥≥σσσσ∃∃∃∃⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ ):((´:| xx  (i)

]&:|:,[:).(| ρρρρ≥≥≥≥ττττ→→→→σσσσττττ−−−−σσσσΓΓΓΓττττ∃∃∃∃σσσσ∃∃∃∃⇒⇒⇒⇒ρρρρλλλλ−−−−ΓΓΓΓ MxMx  (iii)

Proof.

By induction on derivations.
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Lemma on preorder of types.

(i) Given types σ, τ, there exists a type  τ´ such that

´]:[]):[( ττττ====αααασσσσ≡≡≡≡ττττ====αααασσσσ oo

(ii) ]:[( ττττ====αααασσσσ≡≡≡≡σσσσττττ∃∃∃∃αααα∃∃∃∃⇒⇒⇒⇒σσσσ≥≥≥≥σσσσ rro
1

o
221

(iii) ]:)[(´)´(´)´()( ττττ====ααααρρρρ→→→→σσσσ≡≡≡≡ρρρρ→→→→σσσσττττ∃∃∃∃αααα∃∃∃∃⇒⇒⇒⇒ρρρρ→→→→σσσσ≥≥≥≥ρρρρ→→→→σσσσ rrrr
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Proof.

(i) By induction on the structure of σ.

(ii)  It suffices to prove it for                   We have to consider two cases .21 σσσσ≥≥≥≥σσσσ

Case 1. ... o
1

o
212 σσσσ≡≡≡≡σσσσσσσσαααα∀∀∀∀≡≡≡≡σσσσ Then    

Case 2. ]:[. ττττ====ααααρρρρ≡≡≡≡σσσσρρρραααα∀∀∀∀≡≡≡≡σσσσ 21    and  

Then by (i) we have ´]:[´]:[ ττττ====αααασσσσ≡≡≡≡ττττ====ααααρρρρ≡≡≡≡σσσσ o
1

oo
2

(iii)  By (ii), we have
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Subject reduction theorem for  λ2-Curry.

If                       then we have´,MM ββββ→>→>→>→>

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ ´:|:| MM
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Proof.

By induction on the derivation of                          We will treat only 
the case of β-reduction i.e. the case that

´.MM ββββ→>→>→>→>
].:[´).( QxPMQPxM ====≡≡≡≡λλλλ≡≡≡≡   and  

By the generation lemma, we obtain

]:|&´)(´´)´(&´´:´|:,[´´´
]:|&´)(:).(|[´

:)).((|

ρρρρ−−−−ΓΓΓΓσσσσ→→→→ρρρρ≥≥≥≥σσσσ→→→→ρρρρσσσσ−−−−ρρρρΓΓΓΓσσσσ≥≥≥≥σσσσ∃∃∃∃ρρρρ∃∃∃∃⇒⇒⇒⇒
ρρρρ−−−−ΓΓΓΓσσσσ→→→→ρρρρλλλλ−−−−ΓΓΓΓσσσσ≥≥≥≥σσσσ∃∃∃∃ρρρρ∃∃∃∃⇒⇒⇒⇒

σσσσλλλλ−−−−ΓΓΓΓ

QPx
QPx

QPx

From (iii) of the lemma on preorder of types, it follows

]:´´)[´(´)( ττττ====αααασσσσ→→→→ρρρρ≡≡≡≡σσσσ→→→→ρρρρ rr
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and hence by (i) of the the Substitution lemma

pe.smaller ty a of assignment  theimplies
 terma  toebigger typ a of assignment that stating lemma by the  

lemmaon Substituti  theof (ii)by     and
  and  

σσσσ====−−−−ΓΓΓΓ⇒⇒⇒⇒
σσσσ≥≥≥≥σσσσσσσσ====−−−−ΓΓΓΓ⇒⇒⇒⇒

σσσσ≥≥≥≥σσσσρρρρ−−−−ΓΓΓΓσσσσ−−−−ρρρρΓΓΓΓ⇒⇒⇒⇒

:]:[|
´´:]:[|

´:|´,:|:,

QxP
QxP

QPx
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Subject reduction theorem for  λµ.

Let                       then for  λµ one has  ´,MM ββββ→>→>→>→>

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ ´:|:| MM
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Subject reduction theorem for  λµ.

Let                       then for  λµ one has  ´,MM ββββ→>→>→>→>

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ ´:|:| MM
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Subject reduction theorem for  λµ.

Let                       then for  λµ one has  ´,MM ββββ→>→>→>→>
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and hence by (i) of the the Substitution lemma

pe.smaller ty a of assignment  theimplies
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QxP
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Subject reduction theorem for  λµ.

Let                       then for  λµ one has  ´,MM ββββ→>→>→>→>

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ ´:|:| MM
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Proof.

The proof of the subject reduction theorem for λµ is 
somewhat easier than that for  λ2. It follows similar steps 
but using the relation            insted of≈≈≈≈ .≥≥≥≥

Lambda calculus  II 122

Remark.

The subject reduction theorem holds also for          This 
system is also closed under the rule EQ as we will show
later on. We will see that in the systems                         
and  λ-A the subject conversion theorem holds. This is 
not so for 

.∩∩∩∩λλλλ

.∩∩∩∩λλλλ

., λµλµλµλµλλλλ→→→→λλλλ   and  2
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Example. What makes              closed under β-expansion.  ∩∩∩∩λλλλ

Let

.contractum its    andredex   thebe  ]:[´).( QxPMQPxM ====≡≡≡≡λλλλ≡≡≡≡

To show that β-expansion holds for this pair assume that

.´:| σσσσ−−−−ΓΓΓΓ ∩∩∩∩λλλλ M
Now Q occurs                                   each occurence having its 
proper type                            Define                                                        

´,M0n in      times≥≥≥≥
.ni1i ≤≤≤≤≤≤≤≤ττττ for  





====ωωωω
>>>>ττττ∩∩∩∩∩∩∩∩ττττ

≡≡≡≡ττττ
0n
0nn1

  if
  ifL

Then

σσσσ−−−−ττττΓΓΓΓ
ττττ−−−−ΓΓΓΓ

:|:,
:|

Px
Q

Hence .:):(|)(:).(| σσσσλλλλ−−−−ΓΓΓΓσσσσ→→→→ττττλλλλ−−−−ΓΓΓΓ QPxPx   and  
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In                                  it is not guaranteed that there is a common type 
for the different occurrences of Q. Note that the type  ω  is essential in 
case when Q has no occurrence in P[x:= Q].

., λµλµλµλµλλλλ→→→→λλλλ   and  2

Subject conversion theorem for       .∩∩∩∩λλλλ

Let                      then for         one has  ´,MM ββββ====
σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ ´:|:| MM

Without proof

∩∩∩∩λλλλ
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and  λ-A the subject conversion theorem holds. This is 
not so for 

.∩∩∩∩λλλλ

.∩∩∩∩λλλλ

., λµλµλµλµλλλλ→→→→λλλλ   and  2
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Example. What makes              closed under β-expansion.  ∩∩∩∩λλλλ

Let

.contractum its    andredex   thebe  ]:[´).( QxPMQPxM ====≡≡≡≡λλλλ≡≡≡≡

To show that β-expansion holds for this pair assume that

.´:| σσσσ−−−−ΓΓΓΓ ∩∩∩∩λλλλ M
Now Q occurs                                   each occurence having its 
proper type                            Define                                                        

´,M0n in      times≥≥≥≥
.ni1i ≤≤≤≤≤≤≤≤ττττ for  





====ωωωω
>>>>ττττ∩∩∩∩∩∩∩∩ττττ

≡≡≡≡ττττ
0n
0nn1

  if
  ifL

Then

σσσσ−−−−ττττΓΓΓΓ
ττττ−−−−ΓΓΓΓ

:|:,
:|

Px
Q

Hence .:):(|)(:).(| σσσσλλλλ−−−−ΓΓΓΓσσσσ→→→→ττττλλλλ−−−−ΓΓΓΓ QPxPx   and  
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In                                  it is not guaranteed that there is a common type 
for the different occurrences of Q. Note that the type  ω  is essential in 
case when Q has no occurrence in P[x:= Q].

., λµλµλµλµλλλλ→→→→λλλλ   and  2

Subject conversion theorem for       .∩∩∩∩λλλλ

Let                      then for         one has  ´,MM ββββ====
σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ ´:|:| MM

Without proof

∩∩∩∩λλλλ
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Strong normalization

Definition
A lambda term  M   is called strongly normalizing iff all reduction 
sequences starting with M terminate.

KIK is strongly normalizing, while KIΩ is not.

We are going to show that every term typable in                            is 
strongly normalizing.  This is not true for                      since in these 
systems, all terms are typable.   

   and 2λλλλ→→→→λλλλ
∩∩∩∩λλλλλµλµλµλµ   and  

Lambda calculus  II 126

We start with the proof of strong normalization for .→→→→λλλλ

Definition.

(i) }|{ gnormalizinstrongly  is  MMSN ΛΛΛΛ∈∈∈∈====

(ii)  Let                     Define a subset                            as follows:  ., ΛΛΛΛ⊆⊆⊆⊆BA ΛΛΛΛ→→→→   of  BA

)}(|{ BFaAaAFBA ∈∈∈∈∈∈∈∈∀∀∀∀∈∈∈∈====→→→→

(iii) For every                              we define a set                as 
follows           

), Type( →→→→λλλλ∈∈∈∈σσσσ ΛΛΛΛ⊆⊆⊆⊆σσσσ

  variable typea is    if     αααα====αααα SN

ττττ→→→→σσσσ====ττττ→→→→σσσσ
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Definition.

(i) We call a subset                     saturated ifSNX ⊆⊆⊆⊆

])[,,)( XRxSNRR0n n1 ∈∈∈∈∈∈∈∈∀∀∀∀≥≥≥≥∀∀∀∀
r

K(  (a)

where  x is any term variable.

))(,,)( SNQSNRR0n n1 ∈∈∈∈∀∀∀∀∈∈∈∈∀∀∀∀≥≥≥≥∀∀∀∀ K(  (b)
]).(]:[[ XRQPxXRQxP ∈∈∈∈λλλλ⇒⇒⇒⇒∈∈∈∈====

rr

(ii) }|{ saturated is  XXSAT ΛΛΛΛ⊆⊆⊆⊆====

Note that saturated sets are non-empty, as they contain all term 
variables, and that they are closed under a particular type of 
expansion.
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Lemma on saturated sets.

SATSN ∈∈∈∈ (i)

SATBASATBA ∈∈∈∈→→→→⇒⇒⇒⇒∈∈∈∈, (ii)

SATA
SATA

iIi

Iii

∈∈∈∈∈∈∈∈

∈∈∈∈

I                                                                     
 then    of members of collection a be  Let   (iii) ,}{

 SAT has one  )Type(  allFor  (iv) ∈∈∈∈σσσσ→→→→λλλλ∈∈∈∈σσσσ
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Proof.

(i) Obviously                     and it satisfies the condition (a).   As to the 
condition (b), suppose

SNSN ⊆⊆⊆⊆

SNRQSNRQxP ∈∈∈∈∈∈∈∈====
rr

,&]:[ )(1

We claim that also
SNRQPx ∈∈∈∈λλλλ

r
).( )(2

Note that the reductions inside                              must terminate 
since these terms are strongly normalising by assumption. The term

RQP
r

  or the  ,

]:[ QxP ====

is a subterm of a term in SN by (1) hence it is itself in SN and, 
consequently,   P is i n SN. So after finitely many reduction steps 
applied to  the term in (2), we obtain

etcetera  ´&´´´).( PPRQPx ββββ→>→>→>→>λλλλ
r
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´´´).( RQPx
r

λλλλThen the contraction of                      gives

´´]:´[ RQxP
r

==== )(3

This is a reduct of                             and since this term is SN, then 
(3) and the term                 are  SN.

RQxP
r

]:[ ====
QPx ).(λλλλ

(ii) Let                      Then by definition            for all variables x.., SATBA ∈∈∈∈ Ax ∈∈∈∈

Hence

SNF
SNFx

BFxBAF

∈∈∈∈⇒⇒⇒⇒
∈∈∈∈⇒⇒⇒⇒

∈∈∈∈⇒⇒⇒⇒→→→→∈∈∈∈

So indeed                            We prove the condition (i) (a) of 
saturation, let                 We must show for a variable x that                              
.  which means    

.SNBA ⊆⊆⊆⊆→→→→
.SNR ∈∈∈∈

r

BARx →→→→∈∈∈∈
r

)( BQRxAQ ∈∈∈∈∈∈∈∈∀∀∀∀

which is true since                   and B  is saturated.SNA ⊆⊆⊆⊆
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(iii) Similarly

(iv) By induction on the generation of σ, using (i) and (ii).

Definition.

In order to prove the key Soundness Theorem, we need the folowing

(i) A valuation in  Λ  is a map                     where  V is the set of term 
variables.

,: ΛΛΛΛ→→→→ρρρρ V

(ii) Let  ρ  be a valuation in Λ. We define

)](:,),(:[ nn11 xxxxMM ρρρρ====ρρρρ========
ρρρρ

K

where                               is the set of free variables in M.n1 xxx ,,Kr ====

Lambda calculus  II 132

(iii) Let  ρ be a valuation in  Λ. We say that  ρ satisfies M : σ and write

.,:| σσσσ∈∈∈∈σσσσ====ρρρρ
ρρρρ

MM    if  

If Γ  is a basis, we say that ρ  satisfies Γ and write                                 
for all

σσσσ====ρρρρΓΓΓΓ====ρρρρ :|,| x  if  
.):( ΓΓΓΓ∈∈∈∈σσσσx

(iv) A basis Γ  satisfies M : σ  and write                        if,:| σσσσ====ΓΓΓΓ M

]:||[ σσσσ====ρρρρ⇒⇒⇒⇒ΓΓΓΓ====ρρρρρρρρ∀∀∀∀ M
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Proof.

(i) Obviously                     and it satisfies the condition (a).   As to the 
condition (b), suppose

SNSN ⊆⊆⊆⊆

SNRQSNRQxP ∈∈∈∈∈∈∈∈====
rr

,&]:[ )(1

We claim that also
SNRQPx ∈∈∈∈λλλλ

r
).( )(2

Note that the reductions inside                              must terminate 
since these terms are strongly normalising by assumption. The term

RQP
r

  or the  ,

]:[ QxP ====

is a subterm of a term in SN by (1) hence it is itself in SN and, 
consequently,   P is i n SN. So after finitely many reduction steps 
applied to  the term in (2), we obtain

etcetera  ´&´´´).( PPRQPx ββββ→>→>→>→>λλλλ
r
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´´´).( RQPx
r

λλλλThen the contraction of                      gives

´´]:´[ RQxP
r

==== )(3

This is a reduct of                             and since this term is SN, then 
(3) and the term                 are  SN.

RQxP
r

]:[ ====
QPx ).(λλλλ

(ii) Let                      Then by definition            for all variables x.., SATBA ∈∈∈∈ Ax ∈∈∈∈

Hence

SNF
SNFx

BFxBAF

∈∈∈∈⇒⇒⇒⇒
∈∈∈∈⇒⇒⇒⇒

∈∈∈∈⇒⇒⇒⇒→→→→∈∈∈∈

So indeed                            We prove the condition (i) (a) of 
saturation, let                 We must show for a variable x that                              
.  which means    

.SNBA ⊆⊆⊆⊆→→→→
.SNR ∈∈∈∈

r

BARx →→→→∈∈∈∈
r

)( BQRxAQ ∈∈∈∈∈∈∈∈∀∀∀∀

which is true since                   and B  is saturated.SNA ⊆⊆⊆⊆
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(iii) Similarly

(iv) By induction on the generation of σ, using (i) and (ii).

Definition.

In order to prove the key Soundness Theorem, we need the folowing

(i) A valuation in  Λ  is a map                     where  V is the set of term 
variables.

,: ΛΛΛΛ→→→→ρρρρ V

(ii) Let  ρ  be a valuation in Λ. We define

)](:,),(:[ nn11 xxxxMM ρρρρ====ρρρρ========
ρρρρ

K

where                               is the set of free variables in M.n1 xxx ,,Kr ====
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(iii) Let  ρ be a valuation in  Λ. We say that  ρ satisfies M : σ and write

.,:| σσσσ∈∈∈∈σσσσ====ρρρρ
ρρρρ

MM    if  

If Γ  is a basis, we say that ρ  satisfies Γ and write                                 
for all

σσσσ====ρρρρΓΓΓΓ====ρρρρ :|,| x  if  
.):( ΓΓΓΓ∈∈∈∈σσσσx

(iv) A basis Γ  satisfies M : σ  and write                        if,:| σσσσ====ΓΓΓΓ M

]:||[ σσσσ====ρρρρ⇒⇒⇒⇒ΓΓΓΓ====ρρρρρρρρ∀∀∀∀ M



Lambda calculus  II 133

(iii) Let  ρ be a valuation in  Λ. We say that  ρ satisfies M : σ and write

.,:| σσσσ∈∈∈∈σσσσ====ρρρρ
ρρρρ

MM    if  

If Γ  is a basis, we say that ρ  satisfies Γ and write                                 
for all

σσσσ====ρρρρΓΓΓΓ====ρρρρ :|,| x  if  
.):( ΓΓΓΓ∈∈∈∈σσσσx

(iv) A basis Γ  satisfies M : σ  and write                        if,:| σσσσ====ΓΓΓΓ M

]:||[ σσσσ====ρρρρ⇒⇒⇒⇒ΓΓΓΓ====ρρρρρρρρ∀∀∀∀ M

Soundness Theorem.

σσσσ====ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ →→→→λλλλ :|:| MM
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Proof.

By induction on derivation of .: σσσσM

Case 1.  If                                            follows from      then            
trivially

σσσσ−−−−ΓΓΓΓ≡≡≡≡ :| MxM   and  ,):( ΓΓΓΓ∈∈∈∈σσσσx
.:| σσσσ====ΓΓΓΓ x

Case 2. If                                                   is a direct consequence ofσσσσ−−−−ΓΓΓΓ≡≡≡≡ :| MMMM 21   and  
,:|:| ττττ−−−−ΓΓΓΓσσσσ→→→→ττττ−−−−ΓΓΓΓ 21 MM   and  In order to show ,:| σσσσ====ρρρρ 21MM

We suppose               Then                                   which 
means

.| ΓΓΓΓ====ρρρρ ττττ====ρρρρσσσσ→→→→ττττ====ρρρρ :|:| 21 MM    and   

ττττ∈∈∈∈σσσσ→→→→ττττ====σσσσ→→→→ττττ∈∈∈∈
ρρρρρρρρ 2M  and   1M

But then

σσσσ====ρρρρσσσσ∈∈∈∈====
ρρρρρρρρρρρρ

:| 212121 MMMMMM   means  which 
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Case 3. Let                                                          be a direct 
consequence  of   

21MMxM σσσσ→→→→σσσσ≡≡≡≡σσσσσσσσ−−−−ΓΓΓΓλλλλ≡≡≡≡ let    and  :|´,.
.´:|:, 21 Mx σσσσ−−−−σσσσΓΓΓΓ

By the induction hypothesis, we have

21 Mx σσσσ====σσσσΓΓΓΓ ´:|:, )(1

In order to show                                      suppose                We have to 
show

,´:.| 21Mx σσσσ→→→→σσσσλλλλ====ρρρρ .| ΓΓΓΓ====ρρρρ

12 NNMx σσσσ∈∈∈∈σσσσ∈∈∈∈λλλλ
ρρρρ

  allfor    ´.

Let                   Then                                    and hence   .1N σσσσ∈∈∈∈ ,:,|):( 1xNx σσσσΓΓΓΓ========ρρρρ

2Nx
M σσσσ∈∈∈∈

====ρρρρ ):(
´

by (1).
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Since

):(
´

]),(:´[

)](:´)[.(´.

Nx
M

NxyyM

NyyMxNMx

====ρρρρ

ββββ

ρρρρ

≡≡≡≡

====ρρρρ====→→→→

ρρρρ====λλλλ≡≡≡≡λλλλ
rr

vr

it follows from the saturation of .´. 22 NMx σσσσ∈∈∈∈λλλλσσσσ
ρρρρ

  that  
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´
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Strong normalization theorem for          -Curry →→→→λλλλ

Suppose 

σσσσ−−−−ΓΓΓΓ →→→→λλλλ :| M

then  M  is strongly normalizing.
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Proof.

Suppose                    Then                      according to the Soundness 
Theorem.  If  we put                                    then                       Note  
that                since         is saturated.    

.:| σσσσ−−−−ΓΓΓΓ M σσσσ====ΓΓΓΓ :| M
.| ΓΓΓΓ====ρρρρ0

ττττ∈∈∈∈x
,)( xxx0   allfor   ====ρρρρ

ττττ is saturated.

Therefore                         hence,:| σσσσ====ρρρρ M0 .SNMM
0

⊆⊆⊆⊆σσσσ∈∈∈∈≡≡≡≡
ρρρρ
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Proof.

Suppose                    Then                      according to the Soundness 
Theorem.  If  we put                                    then                       Note  
that                since         is saturated.    

.:| σσσσ−−−−ΓΓΓΓ M σσσσ====ΓΓΓΓ :| M
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ττττ∈∈∈∈x
,)( xxx0   allfor   ====ρρρρ

ττττ is saturated.

Therefore                         hence,:| σσσσ====ρρρρ M0 .SNMM
0

⊆⊆⊆⊆σσσσ∈∈∈∈≡≡≡≡
ρρρρ

Remark.

A simple generalization of the method proves the Strong 
Normalization Theorem for λ2.
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Definition.

(i) A valuation in SAT is a map

SAT→→→→ξξξξ V:
Where  V is the set of type variables.

(ii) Given a valuation ξ  in SAT one defines a set                    for  every 
type  σ  in   λ2   as follows:

ΛΛΛΛ⊆⊆⊆⊆σσσσ
ξξξξ

):(
.

V),(

XSATX ====ααααξξξξ∈∈∈∈ξξξξ

ξξξξξξξξξξξξ

ξξξξ

σσσσ====σσσσαααα∀∀∀∀

ττττ→→→→σσσσ====ττττ→→→→σσσσ

∈∈∈∈ααααααααξξξξ====αααα

I

     where
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Strong normalization theorem for          -Curry →→→→λλλλ
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Proof.
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.| ΓΓΓΓ====ρρρρ0

ττττ∈∈∈∈x
,)( xxx0   allfor   ====ρρρρ

ττττ is saturated.

Therefore                         hence,:| σσσσ====ρρρρ M0 .SNMM
0

⊆⊆⊆⊆σσσσ∈∈∈∈≡≡≡≡
ρρρρ

Remark.

A simple generalization of the method proves the Strong 
Normalization Theorem for λ2.
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Definition.

(i) A valuation in SAT is a map

SAT→→→→ξξξξ V:
Where  V is the set of type variables.

(ii) Given a valuation ξ  in SAT one defines a set                    for  every 
type  σ  in   λ2   as follows:

ΛΛΛΛ⊆⊆⊆⊆σσσσ
ξξξξ

):(
.

V),(

XSATX ====ααααξξξξ∈∈∈∈ξξξξ

ξξξξξξξξξξξξ

ξξξξ

σσσσ====σσσσαααα∀∀∀∀

ττττ→→→→σσσσ====ττττ→→→→σσσσ

∈∈∈∈ααααααααξξξξ====αααα

I

     where
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Strong normalization theorem for          -Curry →→→→λλλλ

Suppose 

σσσσ−−−−ΓΓΓΓ →→→→λλλλ :| M

then  M  is strongly normalizing.
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Definition.
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Lemma.

Given a valuation ξ  in SAT and a type  σ  in λ2, then .SAT∈∈∈∈σσσσ
ξξξξ

Proof.
As the proof of (iv) in lemma on saturated sets using the fact that 
SAT is closed under arbitrary intersections.
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Definition.

Let  ρ  be a valuation in Λ  and ξ  be a valuation in SAT.

(i) We write ξξξξρρρρ
σσσσ∈∈∈∈σσσσ====ξξξξρρρρ MM   iff  :|,

(ii) If Γ is a basis, we write

ΓΓΓΓσσσσσσσσ====ξξξξρρρρΓΓΓΓ====ξξξξρρρρ in      allfor       iff   ::|,|, xx

(iii) We write

]:|,|,[,:| σσσσ====ξξξξρρρρ⇒⇒⇒⇒ΓΓΓΓ====ξξξξρρρρξξξξρρρρ∀∀∀∀σσσσ====ΓΓΓΓ MM   iff   
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Soundness Theorem for λ2.

σσσσ====ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ λλλλ :|:| MM2
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Soundness Theorem for λ2.

σσσσ====ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ λλλλ :|:| MM2

Proof.

By induction on the derivation of                       as in the proof 
of Soundness Theorem for               There are two more cases 
corresponding to   

σσσσ−−−−ΓΓΓΓ :| M
.→→→→λλλλ

rules.−−−−∀∀∀∀

Case 4.                                                          is a direct 
consequence of                              By the Induction 
Hypothesis, we have

]:[:| ττττ====αααασσσσ≡≡≡≡σσσσσσσσ−−−−ΓΓΓΓ 0M     where
..:| 0M σσσσαααα∀∀∀∀−−−−ΓΓΓΓ

0M σσσσαααα∀∀∀∀====ΓΓΓΓ .:| )(1

In order to show
]:[:|, ττττ====αααασσσσ====ξξξξρρρρ 0M

suppose
.|, ΓΓΓΓ====ξξξξρρρρ



Lambda calculus  II 141

Lemma.

Given a valuation ξ  in SAT and a type  σ  in λ2, then .SAT∈∈∈∈σσσσ
ξξξξ

Proof.
As the proof of (iv) in lemma on saturated sets using the fact that 
SAT is closed under arbitrary intersections.

Lambda calculus  II 142

Definition.

Let  ρ  be a valuation in Λ  and ξ  be a valuation in SAT.

(i) We write ξξξξρρρρ
σσσσ∈∈∈∈σσσσ====ξξξξρρρρ MM   iff  :|,

(ii) If Γ is a basis, we write

ΓΓΓΓσσσσσσσσ====ξξξξρρρρΓΓΓΓ====ξξξξρρρρ in      allfor       iff   ::|,|, xx

(iii) We write

]:|,|,[,:| σσσσ====ξξξξρρρρ⇒⇒⇒⇒ΓΓΓΓ====ξξξξρρρρξξξξρρρρ∀∀∀∀σσσσ====ΓΓΓΓ MM   iff   

Lambda calculus  II 143

Soundness Theorem for λ2.

σσσσ====ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ λλλλ :|:| MM2

Lambda calculus  II 144

Soundness Theorem for λ2.
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Soundness Theorem for λ2.
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Soundness Theorem for λ2.

σσσσ====ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ λλλλ :|:| MM2

Proof.

By induction on the derivation of                       as in the proof 
of Soundness Theorem for               There are two more cases 
corresponding to   

σσσσ−−−−ΓΓΓΓ :| M
.→→→→λλλλ

rules.−−−−∀∀∀∀

Case 4.                                                          is a direct 
consequence of                              By the Induction 
Hypothesis, we have
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Soundness Theorem for λ2.
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Soundness Theorem for λ2.

σσσσ====ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ λλλλ :|:| MM2

Proof.

By induction on the derivation of                       as in the proof 
of Soundness Theorem for               There are two more cases 
corresponding to   

σσσσ−−−−ΓΓΓΓ :| M
.→→→→λλλλ

rules.−−−−∀∀∀∀

Case 4.                                                          is a direct 
consequence of                              By the Induction 
Hypothesis, we have

]:[:| ττττ====αααασσσσ≡≡≡≡σσσσσσσσ−−−−ΓΓΓΓ 0M     where
..:| 0M σσσσαααα∀∀∀∀−−−−ΓΓΓΓ

0M σσσσαααα∀∀∀∀====ΓΓΓΓ .:| )(1

In order to show
]:[:|, ττττ====αααασσσσ====ξξξξρρρρ 0M

suppose
.|, ΓΓΓΓ====ξξξξρρρρ
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It follows from (1) that

):(
.

X0
SATX

0M
====ααααξξξξ

∈∈∈∈
ξξξξρρρρ

σσσσ====σσσσαααα∀∀∀∀∈∈∈∈ I

Hence

):( ξξξξττττ====ααααξξξξρρρρ
σσσσ∈∈∈∈ 0M

By induction on                           (some care is needed in case  2)Type( λλλλ∈∈∈∈σσσσ0 ). 00 ττττββββ∀∀∀∀≡≡≡≡σσσσ

we prove

]:[
):(

ττττ====αααασσσσ====σσσσ
ξξξξττττ====ααααξξξξ 00

which completes the proof of the Case 4.
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Case 5.  Let                                                         is a direct 
consequence of                      By the Induction Hypothesis, we have 

)(.:| ΓΓΓΓ∉∉∉∉αααασσσσαααα∀∀∀∀≡≡≡≡σσσσσσσσ−−−−ΓΓΓΓ FVM 0   and    with  
.:| 0M σσσσ−−−−ΓΓΓΓ

0M σσσσ====ΓΓΓΓ :|

In order to show                                                         Since  .|,,.:|, ΓΓΓΓ====ξξξξρρρρσσσσαααα∀∀∀∀====ξξξξρρρρ   suppose   we0M ),(ΓΓΓΓ∉∉∉∉αααα FV

we have                                                         Therefore .|):(, SATXX ∈∈∈∈ΓΓΓΓ========ααααξξξξρρρρ   allfor   

SATXM
X0 ∈∈∈∈σσσσ∈∈∈∈

====ααααξξξξρρρρ
  allfor   

):(

)(2

It follows from (2) that

ξξξξρρρρ
σσσσαααα∀∀∀∀∈∈∈∈ 0M .

Hence
321

σσσσ

σσσσαααα∀∀∀∀====ξξξξρρρρ 0M .:|,
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Strong Normalization Theorem for  λ2-Curry

gnormalizinstrongly  is  MM2 ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ λλλλ :|
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Strong Normalization Theorem for  λ2-Curry

gnormalizinstrongly  is  MM2 ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ λλλλ :|

Proof   of the theorem is similar to the proof of Strong 
Normalizing Theorem for   Curry.−−−−→→→→λλλλ
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It follows from (1) that

):(
.

X0
SATX

0M
====ααααξξξξ

∈∈∈∈
ξξξξρρρρ
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Strong Normalization Theorem for  λ2-Curry
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Strong Normalization Theorem for  λ2-Curry
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Strong Normalization Theorem for  λ2-Curry

gnormalizinstrongly  is  MM2 ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ λλλλ :|
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Decidability of type assignment.

Note that for arbitrary base                                             one has}:,,:{ nn11 xx σσσσσσσσ====ΓΓΓΓ K

)(:).(|:| σσσσ→→→→σσσσ→→→→σσσσλλλλλλλλ−−−−⇔⇔⇔⇔σσσσ−−−−ΓΓΓΓ n1n1 MxxM KK

Consequently, analysing the type assignment, we may 
assume that the base is always empty. Typical questions are

�Given M and σ, does it hold                 ?  

�Given M, does there exist a  σ   such that                 ?

�Given σ, does there exist an M such that                 ?

σσσσ−−−− :| M

σσσσ−−−− :| M

σσσσ−−−− :| M

These three problems are called type checking, typability and
inhabitation respectively and we shall denote them             ,  

.:? σσσσ   and
?: σσσσM

?,:M
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We shall examine the decidability of these three problems for the 
various systems of type assignments. The results can be summarized 
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Definition. Unifiers.

(i) Let  σ  and τ  be two types. A unifier for σ and  τ  is a substitutor ∗∗∗∗
such that .∗∗∗∗∗∗∗∗ ττττ≡≡≡≡σσσσ

(ii) The substitutor       is a most general unifier for σ and  τ if      ∗∗∗∗

(a)        is a unifier for σ and  τ ∗∗∗∗
(b) if         an arbitrary unifier for σ and  τ, then there is a 
substitutor         such that 

1∗∗∗∗
2∗∗∗∗ .∗∗∗∗∗∗∗∗≡≡≡≡∗∗∗∗ o21

(iii) Let                                               be a finite set of equations 
between types. The equations do not need to be valid. A  unifier for  E 
is a substitutor      such that                                    In that case one 
writes                Similarly one defines the notion of a most general 
unifier for  E.

},,{ nn11E ττττ====σσσσττττ====σσσσ==== K

∗∗∗∗ .,, ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ττττ====σσσσττττ====σσσσ nn11 K

.| E====∗∗∗∗
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Examples.

The types

δδδδ→→→→γγγγ→→→→γγγγββββ→→→→αααα→→→→ββββ )()(

have unfiers

)]()(:,:,:[
)](:,:[

γγγγ→→→→γγγγ→→→→εεεε→→→→εεεε====δδδδεεεε→→→→εεεε====ααααγγγγ→→→→γγγγ====ββββ====∗∗∗∗
γγγγ→→→→γγγγ→→→→αααα====δδδδγγγγ→→→→γγγγ====ββββ====∗∗∗∗

1

The unifier      is most general, the unifier        is not.∗∗∗∗ 1∗∗∗∗
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Definition.  Variants.
The type σ is a variant of the type τ if there are substitutors 21 ∗∗∗∗∗∗∗∗ ,
such that

21 ∗∗∗∗∗∗∗∗ σσσσ====ττττττττ====σσσσ     and  

Examples.

αααα→→→→ββββ→→→→ααααββββ→→→→ββββ→→→→αααα
δδδδ→→→→δδδδ→→→→γγγγββββ→→→→ββββ→→→→αααα

  of variant anot  is   
othereach  of  variantsare      and   

Note that if                          are two most general unifiers of 
types σ  and   τ   then                           are variants of each 
other and similarly for  τ. 

21    and   ∗∗∗∗∗∗∗∗
21 ∗∗∗∗∗∗∗∗ σσσσσσσσ    and  
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Unification Theorem.

(i) There is a recursive function   U with input (after coding) a 
pair of types and with output which is either a substitutor or fail 
such that









ττττσσσσ
ττττσσσσ

ττττσσσσ
====ττττσσσσ

unifier no have    and     if
unifier a have    and     if            

  and  for  unifier  generalmost  a

      fail
),(U

(ii) There is a recursive function U with input (after coding) finite 
sets of equations between types and with output either a substitutor 
or fail such that








====

unifier no has  E  if
unifier a has  E  if              

Efor  unifier  generalmost  a

       fail
)(EU
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Proof.

Note that
22112121 ττττ≡≡≡≡σσσσττττ≡≡≡≡σσσσ⇔⇔⇔⇔ττττ→→→→ττττ≡≡≡≡σσσσ→→→→σσσσ &

(i)  Define                by the following recursive loop with case 
distinction. 

),( ττττσσσσU








αααα====ττττ

ττττ∉∉∉∉ααααττττ====αααα
====τττταααα

else                               
  if        identity) (the    
  if                        

fail
Id

FV
U

)(]:[
),(

),(),( 2121 UU σσσσ→→→→σσσσαααα====αααασσσσ→→→→σσσσ

),(),(),( ),(),(
22

U
1

U
12121 UUU 2222 ττττσσσσττττσσσσ====ττττ→→→→ττττσσσσ→→→→σσσσ ττττσσσσττττσσσσ o

Where the last expression is considered to be fail if one of its parts is.

Lambda calculus  II 158

Proof.

(i) By induction on the lexicografic order of pairs of natural numbers 
defined as follows:

#                     the number of variables in                and #====ττττσσσσ ),(var ττττ→→→→σσσσ ====ττττσσσσ→→→→ ),(
the number of arrows in .ττττ→→→→σσσσ

By induction on pairs  (#                 ,#             )  ordered lexicograph-
ically,  one can show that                 is always defined. Moreover U
satisfies the specification.   
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Remarks.

Note that   if (Γ,σ) is a principal pair for  M, then every variant 
(Γ´,σ´)  of (Γ,σ),  in the obvious sense, is a principal pair for  M.

Conversely, if   (Γ,σ)  and (Γ´,σ´)  are both principal pairs for  M,
then (Γ´,σ´)  is a variant of (Γ,σ) .

Moreover, if (Γ,σ) is a principal pair for  M,  then ).dom( ΓΓΓΓ====)(MFV
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:|)(
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Remarks.

Note that   if (Γ,σ) is a principal pair for  M, then every variant 
(Γ´,σ´)  of (Γ,σ),  in the obvious sense, is a principal pair for  M.

Conversely, if   (Γ,σ)  and (Γ´,σ´)  are both principal pairs for  M,
then (Γ´,σ´)  is a variant of (Γ,σ) .

Moreover, if (Γ,σ) is a principal pair for  M,  then ).dom( ΓΓΓΓ====)(MFV
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Principal Type Theorem for              Curry. −−−−→→→→λλλλ
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 σσσσΓΓΓΓ

====
 typeno has  if                                          

exists for   typea if  for pair  principal a  
M

MM
Mpp
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)(

(ii) There exists (after coding)  a recursive function pt such that for 
closed terms M one has



σσσσ

====
 typeno has  if                                          

exists for   typea if        for   typeprincipal a  
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MM
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Proof.
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:|
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failfail )),,((
)),,((),(

)(
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0000

MEU
MEU

Mpp

Then pp(M)  satisfies the statement (i) of the theorem. Indeed, if 
M has a type, then                                                            
follows from (i) in the proposition on substitutors and equations.  

∗∗∗∗∗∗∗∗ σσσσ−−−−ΓΓΓΓ∗∗∗∗====σσσσΓΓΓΓ 0000 MMEU :|)),,((    and   
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To show that                    is a principal pair,  suppose that also),( ∗∗∗∗∗∗∗∗ σσσσΓΓΓΓ 00 ´.:´| σσσσ−−−−ΓΓΓΓ M

Let                             write                                     Then also),(´|~ MFVΓΓΓΓ====ΓΓΓΓ .´~ 0
00
∗∗∗∗σσσσ====σσσσΓΓΓΓ====ΓΓΓΓ ∗∗∗∗   and  

00
00 M ∗∗∗∗∗∗∗∗ σσσσ−−−−ΓΓΓΓ :|

Hence by (ii)  in the proposition on substitutors and equations, there is

1∗∗∗∗ , acting in the same way as       on             such that   0∗∗∗∗ 00 σσσσΓΓΓΓ , ).,,(| 001 ME σσσσΓΓΓΓ====∗∗∗∗

By the Unification Theorem        is a most general unifier, hence
there is a       such that

∗∗∗∗
2∗∗∗∗ .∗∗∗∗∗∗∗∗====∗∗∗∗ o21

Now
´~)( ΓΓΓΓ====ΓΓΓΓ====ΓΓΓΓ====ΓΓΓΓ====ΓΓΓΓ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 012

000

and
´)( σσσσ====σσσσ====σσσσ====σσσσ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 012

000

This completes the case when M has a type.
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If M  has no type,  then there is no substitutor satisfying ),,,( 00 ME σσσσΓΓΓΓ

hence

)()),,(( MppMEU 00 ========σσσσΓΓΓΓ fail

(ii)  Let  M be closed and                              Then                and we 
can put

).,()( σσσσΓΓΓΓ====Mpp 0////====ΓΓΓΓ

σσσσ====)(Mpt
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Proof.

(a) Type checking: given  M and σ, we have

])([:| ∗∗∗∗====σσσσ∗∗∗∗∃∃∃∃⇔⇔⇔⇔σσσσ−−−− MptM

This is decidable by a pattern matching algorithm similar to the 
unification algorithm.

(b) Typability: given   M,  then   M has a type iff  fail.====////)(Mpt
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Decidability of the inhabitation problem for              is shown 
equivalent to provability of σ  in the minimal intuitionistic 
proposition calculus PROP  with only          as connective and σ  
considered as an element of PROP. Using finite Kripke models it 
can be shown that provability  of σ  is decidable.

−−−−→→→→λλλλ

→→→→

Theorem.
the inhabitation problem for               that is,−−−−→→→→λλλλ σσσσ−−−−ΛΛΛΛ∈∈∈∈∃∃∃∃ →→→→λλλλ :| MM
is a decidable property of σ. 
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Decidability of the inhabitation problem for              is shown 
equivalent to provability of σ  in the minimal intuitionistic 
proposition calculus PROP  with only          as connective and σ  
considered as an element of PROP. Using finite Kripke models it 
can be shown that provability  of σ  is decidable.
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→→→→

Theorem.
the inhabitation problem for               that is,→→→→λλλλ σσσσ−−−−ΛΛΛΛ∈∈∈∈∃∃∃∃ →→→→λλλλ :| MM
is a decidable property of σ. 

Proof.

PROPin    provable is                                                  
-Churchin    inhabited is  -Curryin    inhabited is  

σσσσ⇔⇔⇔⇔
→→→→λλλλσσσσ⇔⇔⇔⇔→→→→λλλλσσσσ
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Now, we consider λ2. The question whether type checking and 
typability is open. There is only a result showing that the problem of 
typability in λ2 can be reduced to that of type checking.

Proposition.

   decidable is    decidable is  }:||{}:||):{( σσσσ−−−−σσσσ∃∃∃∃⇒⇒⇒⇒σσσσ−−−−σσσσ λλλλλλλλ MMMM 22

Proof.
One has

)(:).(|:| αααα→→→→ααααλλλλ−−−−⇔⇔⇔⇔σσσσ−−−−σσσσ∃∃∃∃ MyxyM

The implication         is obvious, since⇒⇒⇒⇒

σσσσαααα→→→→αααα→→→→σσσσλλλλ−−−−   allfor    )(:).(| yxy

The other implication follows from the lemma on typability of 
subterms.
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Theorem.

The inhabitation problem for λ2  is undecidable. 

Proof.

As for           one can show the first equivalence,→→→→λλλλ

PROP2in    provable is                                                   
Churchin   inhabited is     Curryin   inhabited is   

σσσσ⇔⇔⇔⇔
−−−−λλλλσσσσ⇔⇔⇔⇔−−−−λλλλσσσσ 22

where PROP2  is the constructive second-order propositional 
calculus. Löb (1976) proved that the last property is undecidable.
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Theorem.

For  λµ  one has the following:

(i) Type checking is decidable.

(ii) Typability is trivially decidable, we showed that 
every λ-term has a type.

(iii)  The inhabitation problem for λµ  is trivially 
decidable: all types are inhabited.
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For  λµ  one has the following:
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(iii)  The inhabitation problem for λµ  is trivially 
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Proof.

(i) Use the same method as for             and the fact that T(σ) = T(τ)   is 
decidable.  

→→→→λλλλ

(ii) In a motivation example for λµ, we have shown that every λ-term 
has a type  ..        where, 0 αααα→→→→ααααµαµαµαµα====σσσσσσσσ0

(iii) All types are inhabited by the term  Ώ.
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Lemma.  Systems with subject conversion 
Let  λ- be a system of type assignment satisfying subject conversion 
i.e.

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒====σσσσ−−−−ΓΓΓΓ −−−−λλλλββββ−−−−λλλλ :|&:| NNMM

(i)  Suppose that some closed terms have the type                      and 
others not. Then the problem of type checking is undecidable.

αααα→→→→αααα

(ii) Suppose that some terms have a type and others not. Then the 
problem of typability is undecidable.
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Proof.

(i) If the set                                       is decidable, then so is the set                      }:|||),{( σσσσ−−−−σσσσ MM

}.:|||{ αααα→→→→αααα−−−− MM

This set is by assumption closed under =  and non-trivial, hence 
by the Scott´s theorem is not recursive, a contradiction.

(ii) Similarly.
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Proposition.

For           one has the following∩∩∩∩λλλλ
(i) Type checking problem is undecidable.
(ii) Typability is trivially decidable: all terms have a type.

Proof.

(i) Using the subject conversion for         , the statement (i) of 
the previous lemma applies and there are facts   

∩∩∩∩λλλλ

αααα→→→→αααα−−−−////αααα→→→→αααα−−−− :K|:I|    and   

(ii) For all  .: ωωωωMM   has one   
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Proof.

(i) Use the same method as for             and the fact that T(σ) = T(τ)   is 
decidable.  

→→→→λλλλ

(ii) In a motivation example for λµ, we have shown that every λ-term 
has a type  ..        where, 0 αααα→→→→ααααµαµαµαµα====σσσσσσσσ0

(iii) All types are inhabited by the term  Ώ.
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Lemma.  Systems with subject conversion 
Let  λ- be a system of type assignment satisfying subject conversion 
i.e.

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒====σσσσ−−−−ΓΓΓΓ −−−−λλλλββββ−−−−λλλλ :|&:| NNMM

(i)  Suppose that some closed terms have the type                      and 
others not. Then the problem of type checking is undecidable.

αααα→→→→αααα

(ii) Suppose that some terms have a type and others not. Then the 
problem of typability is undecidable.
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Lemma on reduction.
Let          be one of the systems á la Curry. Then we have−−−−λλλλ
(i) ]´:|&´´[:| σσσσ−−−−ΓΓΓΓ→>→>→>→>∃∃∃∃⇔⇔⇔⇔σσσσ−−−−ΓΓΓΓ −−−−λλλλββββ−−−−λλλλ ++++ MMMMM
(ii)  σ is ihabited in                    σ is inhabited in ⇔⇔⇔⇔−−−−λλλλ ++++ −−−−λλλλ

Proof.
(i) ´.´)( MMMM ββββββββ ====→>→>→>→>⇐⇐⇐⇐   implies    since  trivialis  

.:)( σσσσ⇒⇒⇒⇒ M  of derivation on theinduction by   
The only interesting case is when the last applied rule is an 
application of rule  EQ. Suppose

σσσσ
====σσσσ ββββ

:
:

M
MMM 11

The induction hypothesis says that there is ´´ 111 MMM ββββ→>→>→>→> such that   
and one has                         By the Church-Rosser theorem,.´:| σσσσ−−−−ΓΓΓΓ −−−−λλλλ 1M MM1   and ´
have a common reduct,  say M ´. But by the subject reduction theorem, 
we have                          and the proof is complete.  σσσσ−−−−ΓΓΓΓ −−−−λλλλ ´:| M
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(ii) By (i).

Proposition.  The systems           .  ++++−−−−λλλλ

For the systems           one has the following: ++++−−−−λλλλ

(i) Type checking is undecidable

(ii) Typability is undecidable for                         but trivially 
decidable for

,++++++++ λλλλ→→→→λλλλ 2  and  
.++++++++ ∩∩∩∩λλλλλµλµλµλµ    and  

(iii) The status of the inhabitation problem is the same for both
.−−−−λλλλ−−−−λλλλ ++++    and  
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Proof.

(i) Subject conversion holds for the systems             by definition.  In 
all systems                      It follows from (i)  of the lemma on reduction  
and the fact that                        that type checking is undecidable by (i)  
of the lemma on systems

++++−−−−λλλλ
.:I αααα→→→→αααα

αααα→→→→αααα−−−−//// :K|
.−−−−λλλλ

(ii) We have already shown that terms without a normal form have no 
type in                           Hence by the reduction lemma these terms 
have no type in                            Since for these systems there are 
terms that have a type  by (ii) of lemma on systems with subject 
conversion the  undecidability of typability for                            
follows.

.2λλλλ→→→→λλλλ   and  
.++++++++ λλλλ→→→→λλλλ 2or   

2λλλλ→→→→λλλλ   and  

(iii) By (ii) of the reduction lemma.

Lambda calculus  II 180

Lemma. Typing of normal forms.

Let  M be a term in normal form. Then

σσσσ−−−−⇒⇒⇒⇒σσσσ−−−− −−−−λλλλ−−−−λλλλ :|:| MMA
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Lemma. Typing of normal forms.

Let  M be a term in normal form. Then

σσσσ−−−−⇒⇒⇒⇒σσσσ−−−− −−−−λλλλ−−−−λλλλ :|:| MMA

Proof.

By induction on the given derivation, using the fact that ).(MM A∈∈∈∈
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Proposition. Systems .A−−−−λλλλ

For systems               we have the following:,A−−−−λλλλ

(i) The problem of type checking is undecidable for the systems ,A→→→→λλλλ
.  and AAA ∩∩∩∩λλλλλµλµλµλµλλλλ ,2

(ii) The problem of typability is undecidable for the systems                 
and               but it is trivially decidable for the systems

,A→→→→λλλλ
,A2λλλλ AA ∩∩∩∩λλλλλµλµλµλµ   and

(all terms are typable).

(iii) The problem of inhabitation is trivially decidable for all four systems 
includin the rule  A (all types are inhabited).
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Proof.

(i) By lemma on typing normal forms and the fact that                           
in all four basic Curry systems and (i) of  subject conversion systems
lemma, we get undecidability. 

αααα→→→→αααα−−−−//// :K|

(ii) similarly.

(iii) The inhabitation problem becomes trivial: in all four systems 
one has                for all types  σ. This follows from the facts thatσσσσΩΩΩΩ−−−− :|

),)((:Y| σσσσ→→→→σσσσ→→→→σσσσ−−−− →→→→λλλλ A A−−−−λλλλΩΩΩΩ====ββββ    and   YI is closed 
under the rule   EQ.
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