
Lambda calculus II 1

Lambda calculus

Part II
Lambda Calculi with Types

Based on materials provided by H. Barendregt

Lambda calculus II 2

Types

are certain objects, usually syntactic expressions
(e.g. boolean, integer, Char), that may be assigned to terms
denoting programs.

Types serve to classify the (objects denoted by the) terms.

Semantics.

Each type σ has as semantics a set of �objects of type
σ�. There are several systems of type assignment with
different collections of types.

For more complicated type systems the semantics will in
general be not a set, but an object in some category.

σσσσD

σσσσD

Lambda calculus II 3

Type assignment is done for the following reasons.

Firstly, the type of a term F gives partial specification of
what the function F is supposed to do. Usually
specification of this type is given before the term as program
is constructed.

Once this term has been constructed, the verification
whether this term is indeed of the required type provides
partial correctness proof for the program.

Secondly, types play a role in efficiency. If it is known that a
subterm S of a program has a certain type, then S may be
executed more efficiently by making use of the type
information.

Lambda calculus II 4

To explain the idea of type assignment, we present type
systems of various strengths.

We start with the system of simply typed lambda
calculus. We shall distinguish between typing a la Curry and
a la Church by introducing in both ways.

→→→→λλλλ

→→→→λλλλ

Several other systems of typed lambda calculus exist in a Curry
and a Church version. However it is not so for all systems.

For example, for the Curry system of intersection types it is
not clear how to define its Church version and for the Church
system (calculus of constructions) it is not clear how to
define a Curry version.

For the systems that exist in both styles there is a clear relation.

∩∩∩∩λλλλ

Cλλλλ

Lambda calculus II 1

Lambda calculus

Part II
Lambda Calculi with Types

Based on materials provided by H. Barendregt

Lambda calculus II 2

Types

are certain objects, usually syntactic expressions
(e.g. boolean, integer, Char), that may be assigned to terms
denoting programs.

Types serve to classify the (objects denoted by the) terms.

Semantics.

Each type σ has as semantics a set of �objects of type
σ�. There are several systems of type assignment with
different collections of types.

For more complicated type systems the semantics will in
general be not a set, but an object in some category.

σσσσD

σσσσD

Lambda calculus II 3

Type assignment is done for the following reasons.

Firstly, the type of a term F gives partial specification of
what the function F is supposed to do. Usually
specification of this type is given before the term as program
is constructed.

Once this term has been constructed, the verification
whether this term is indeed of the required type provides
partial correctness proof for the program.

Secondly, types play a role in efficiency. If it is known that a
subterm S of a program has a certain type, then S may be
executed more efficiently by making use of the type
information.

Lambda calculus II 4

To explain the idea of type assignment, we present type
systems of various strengths.

We start with the system of simply typed lambda
calculus. We shall distinguish between typing a la Curry and
a la Church by introducing in both ways.

→→→→λλλλ

→→→→λλλλ

Several other systems of typed lambda calculus exist in a Curry
and a Church version. However it is not so for all systems.

For example, for the Curry system of intersection types it is
not clear how to define its Church version and for the Church
system (calculus of constructions) it is not clear how to
define a Curry version.

For the systems that exist in both styles there is a clear relation.

∩∩∩∩λλλλ

Cλλλλ

Lambda calculus II 1

Lambda calculus

Part II
Lambda Calculi with Types

Based on materials provided by H. Barendregt

Lambda calculus II 2

Types

are certain objects, usually syntactic expressions
(e.g. boolean, integer, Char), that may be assigned to terms
denoting programs.

Types serve to classify the (objects denoted by the) terms.

Semantics.

Each type σ has as semantics a set of �objects of type
σ�. There are several systems of type assignment with
different collections of types.

For more complicated type systems the semantics will in
general be not a set, but an object in some category.

σσσσD

σσσσD

Lambda calculus II 3

Type assignment is done for the following reasons.

Firstly, the type of a term F gives partial specification of
what the function F is supposed to do. Usually
specification of this type is given before the term as program
is constructed.

Once this term has been constructed, the verification
whether this term is indeed of the required type provides
partial correctness proof for the program.

Secondly, types play a role in efficiency. If it is known that a
subterm S of a program has a certain type, then S may be
executed more efficiently by making use of the type
information.

Lambda calculus II 4

To explain the idea of type assignment, we present type
systems of various strengths.

We start with the system of simply typed lambda
calculus. We shall distinguish between typing a la Curry and
a la Church by introducing in both ways.

→→→→λλλλ

→→→→λλλλ

Several other systems of typed lambda calculus exist in a Curry
and a Church version. However it is not so for all systems.

For example, for the Curry system of intersection types it is
not clear how to define its Church version and for the Church
system (calculus of constructions) it is not clear how to
define a Curry version.

For the systems that exist in both styles there is a clear relation.

∩∩∩∩λλλλ

Cλλλλ

Lambda calculus II 1

Lambda calculus

Part II
Lambda Calculi with Types

Based on materials provided by H. Barendregt

Lambda calculus II 2

Types

are certain objects, usually syntactic expressions
(e.g. boolean, integer, Char), that may be assigned to terms
denoting programs.

Types serve to classify the (objects denoted by the) terms.

Semantics.

Each type σ has as semantics a set of �objects of type
σ�. There are several systems of type assignment with
different collections of types.

For more complicated type systems the semantics will in
general be not a set, but an object in some category.

σσσσD

σσσσD

Lambda calculus II 3

Type assignment is done for the following reasons.

Firstly, the type of a term F gives partial specification of
what the function F is supposed to do. Usually
specification of this type is given before the term as program
is constructed.

Once this term has been constructed, the verification
whether this term is indeed of the required type provides
partial correctness proof for the program.

Secondly, types play a role in efficiency. If it is known that a
subterm S of a program has a certain type, then S may be
executed more efficiently by making use of the type
information.

Lambda calculus II 4

To explain the idea of type assignment, we present type
systems of various strengths.

We start with the system of simply typed lambda
calculus. We shall distinguish between typing a la Curry and
a la Church by introducing in both ways.

→→→→λλλλ

→→→→λλλλ

Several other systems of typed lambda calculus exist in a Curry
and a Church version. However it is not so for all systems.

For example, for the Curry system of intersection types it is
not clear how to define its Church version and for the Church
system (calculus of constructions) it is not clear how to
define a Curry version.

For the systems that exist in both styles there is a clear relation.

∩∩∩∩λλλλ

Cλλλλ

Lambda calculus II 5

The system -Curry

is assigning elements of a given set T of types to type free
lambda terms. For this reason the calculi a la Curry are
sometimes called systems of type assignement.

→→→→λλλλ

The system -Curry consists of

(i) the set of types of , notation Type(). We
write T= Type() for short.

(ii) the finite set of rules.

→→→→λλλλ

→→→→λλλλ →→→→λλλλ
→→→→λλλλ

We shall start with a lot of definitions.

Lambda calculus II 6

Definition.(The set of types of)

The set of types T=Type() is defined inductively,

→→→→λλλλ

→→→→λλλλ

T)(T,
T´´,´,,

∈∈∈∈ττττ→→→→σσσσ⇒⇒⇒⇒∈∈∈∈ττττσσσσ
∈∈∈∈αααααααααααα K (type variables)

(function space types)

or in abstract syntax

TT|VT →→→→====

where V is defined by

V'|V αααα==== (type variables)

Lambda calculus II 7

Notation.

(i) If thenT,, ∈∈∈∈σσσσσσσσ n1 K

n21 σσσσ→→→→→→→→σσσσ→→→→σσσσ K

stands for
)),)(((KK n1n21 σσσσ→→→→σσσσ→→→→→→→→σσσσ→→→→σσσσ −−−−

hence , we use association to the right.

(ii) denote arbitrary type variables. K,,, γγγγββββαααα

Lambda calculus II 8

Definition (-Curry).

A statement M:σ is derivable from a basis Γ, notation
→→→→λλλλ

σσσσ−−−−ΓΓΓΓ −−−−→→→→λλλλ :| MCurry

(or
σσσσ−−−−ΓΓΓΓ →→→→λλλλ :| M

or
σσσσ−−−−ΓΓΓΓ :| M

if there is no danger of confusion) if can be
produced by the folowing rules

σσσσ−−−−ΓΓΓΓ :| M

Lambda calculus II 5

The system -Curry

is assigning elements of a given set T of types to type free
lambda terms. For this reason the calculi a la Curry are
sometimes called systems of type assignement.

→→→→λλλλ

The system -Curry consists of

(i) the set of types of , notation Type(). We
write T= Type() for short.

(ii) the finite set of rules.

→→→→λλλλ

→→→→λλλλ →→→→λλλλ
→→→→λλλλ

We shall start with a lot of definitions.

Lambda calculus II 6

Definition.(The set of types of)

The set of types T=Type() is defined inductively,

→→→→λλλλ

→→→→λλλλ

T)(T,
T´´,´,,

∈∈∈∈ττττ→→→→σσσσ⇒⇒⇒⇒∈∈∈∈ττττσσσσ
∈∈∈∈αααααααααααα K (type variables)

(function space types)

or in abstract syntax

TT|VT →→→→====

where V is defined by

V'|V αααα==== (type variables)

Lambda calculus II 7

Notation.

(i) If thenT,, ∈∈∈∈σσσσσσσσ n1 K

n21 σσσσ→→→→→→→→σσσσ→→→→σσσσ K

stands for
)),)(((KK n1n21 σσσσ→→→→σσσσ→→→→→→→→σσσσ→→→→σσσσ −−−−

hence , we use association to the right.

(ii) denote arbitrary type variables. K,,, γγγγββββαααα

Lambda calculus II 8

Definition (-Curry).

A statement M:σ is derivable from a basis Γ, notation
→→→→λλλλ

σσσσ−−−−ΓΓΓΓ −−−−→→→→λλλλ :| MCurry

(or
σσσσ−−−−ΓΓΓΓ →→→→λλλλ :| M

or
σσσσ−−−−ΓΓΓΓ :| M

if there is no danger of confusion) if can be
produced by the folowing rules

σσσσ−−−−ΓΓΓΓ :| M

Lambda calculus II 5

The system -Curry

is assigning elements of a given set T of types to type free
lambda terms. For this reason the calculi a la Curry are
sometimes called systems of type assignement.

→→→→λλλλ

The system -Curry consists of

(i) the set of types of , notation Type(). We
write T= Type() for short.

(ii) the finite set of rules.

→→→→λλλλ

→→→→λλλλ →→→→λλλλ
→→→→λλλλ

We shall start with a lot of definitions.

Lambda calculus II 6

Definition.(The set of types of)

The set of types T=Type() is defined inductively,

→→→→λλλλ

→→→→λλλλ

T)(T,
T´´,´,,

∈∈∈∈ττττ→→→→σσσσ⇒⇒⇒⇒∈∈∈∈ττττσσσσ
∈∈∈∈αααααααααααα K (type variables)

(function space types)

or in abstract syntax

TT|VT →→→→====

where V is defined by

V'|V αααα==== (type variables)

Lambda calculus II 7

Notation.

(i) If thenT,, ∈∈∈∈σσσσσσσσ n1 K

n21 σσσσ→→→→→→→→σσσσ→→→→σσσσ K

stands for
)),)(((KK n1n21 σσσσ→→→→σσσσ→→→→→→→→σσσσ→→→→σσσσ −−−−

hence , we use association to the right.

(ii) denote arbitrary type variables. K,,, γγγγββββαααα

Lambda calculus II 8

Definition (-Curry).

A statement M:σ is derivable from a basis Γ, notation
→→→→λλλλ

σσσσ−−−−ΓΓΓΓ −−−−→→→→λλλλ :| MCurry

(or
σσσσ−−−−ΓΓΓΓ →→→→λλλλ :| M

or
σσσσ−−−−ΓΓΓΓ :| M

if there is no danger of confusion) if can be
produced by the folowing rules

σσσσ−−−−ΓΓΓΓ :| M

Lambda calculus II 5

The system -Curry

is assigning elements of a given set T of types to type free
lambda terms. For this reason the calculi a la Curry are
sometimes called systems of type assignement.

→→→→λλλλ

The system -Curry consists of

(i) the set of types of , notation Type(). We
write T= Type() for short.

(ii) the finite set of rules.

→→→→λλλλ

→→→→λλλλ →→→→λλλλ
→→→→λλλλ

We shall start with a lot of definitions.

Lambda calculus II 6

Definition.(The set of types of)

The set of types T=Type() is defined inductively,

→→→→λλλλ

→→→→λλλλ

T)(T,
T´´,´,,

∈∈∈∈ττττ→→→→σσσσ⇒⇒⇒⇒∈∈∈∈ττττσσσσ
∈∈∈∈αααααααααααα K (type variables)

(function space types)

or in abstract syntax

TT|VT →→→→====

where V is defined by

V'|V αααα==== (type variables)

Lambda calculus II 7

Notation.

(i) If thenT,, ∈∈∈∈σσσσσσσσ n1 K

n21 σσσσ→→→→→→→→σσσσ→→→→σσσσ K

stands for
)),)(((KK n1n21 σσσσ→→→→σσσσ→→→→→→→→σσσσ→→→→σσσσ −−−−

hence , we use association to the right.

(ii) denote arbitrary type variables. K,,, γγγγββββαααα

Lambda calculus II 8

Definition (-Curry).

A statement M:σ is derivable from a basis Γ, notation
→→→→λλλλ

σσσσ−−−−ΓΓΓΓ −−−−→→→→λλλλ :| MCurry

(or
σσσσ−−−−ΓΓΓΓ →→→→λλλλ :| M

or
σσσσ−−−−ΓΓΓΓ :| M

if there is no danger of confusion) if can be
produced by the folowing rules

σσσσ−−−−ΓΓΓΓ :| M

Lambda calculus II 9

→→→→λλλλ -Curry (version 0)

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒ΓΓΓΓ∈∈∈∈σσσσ :|):(xx

ττττ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓττττ→→→→σσσσ−−−−ΓΓΓΓ :)(|:|),(:| MNNM

)(:).(|:|:, ττττ→→→→σσσσλλλλ−−−−ΓΓΓΓ⇒⇒⇒⇒ττττ−−−−σσσσΓΓΓΓ MxMx

Here stands for and in
order to be a basis.

σσσσΓΓΓΓ :, x }:{ σσσσ∪∪∪∪ΓΓΓΓ x)(ΓΓΓΓ∉∉∉∉ Domx
}:{ σσσσ∪∪∪∪ΓΓΓΓ x

If we can write instead of}:,,:{ nn11 xx σσσσσσσσ====ΓΓΓΓ K σσσσ−−−−ΓΓΓΓ :| M
.:|:,,: σσσσ−−−−σσσσσσσσ Mxx nn11 K If Γ is empty, we write .:| σσσσ−−−−M

We pronounce |- as �yields� or �is derivable�.

Lambda calculus II 10

The rules given in Version 0 are usually expressed as follows.
→→→→λλλλ

(axiom)):(| σσσσ−−−−ΓΓΓΓ x if ΓΓΓΓ∈∈∈∈σσσσ):(x

(→→→→ -elimination) ττττ−−−−ΓΓΓΓ
σσσσ−−−−ΓΓΓΓττττ→→→→σσσσ−−−−ΓΓΓΓ

:)(|
:|)(:|

MN
NM

-Curry (Version 1)

(-introduction)→→→→
)(:).(|

:|:,
ττττ→→→→σσσσλλλλ−−−−ΓΓΓΓ

ττττ−−−−σσσσΓΓΓΓ
Mx

Mx

Lambda calculus II 11

The following is the natural deduction formulation
-Curry (Version 2)→→→→λλλλ

Elimination rule Introduction rule

ττττ
σσσσττττ→→→→σσσσ

:)(
:)(:

MN
NM

)(:).(
:

ττττ→→→→σσσσλλλλ
ττττ

Mx
M

M

σσσσ////:x

Lambda calculus II 12

The basic axiom of Versions 0 and 1 is considered here as implicit and
is not mentioned. The notation

M

σσσσ:x

ττττ:M
Means that from the assumption together with a set Γ of other
statements, one can derive

σσσσ:x
.: ττττM

Lambda calculus II 9

→→→→λλλλ -Curry (version 0)

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒ΓΓΓΓ∈∈∈∈σσσσ :|):(xx

ττττ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓττττ→→→→σσσσ−−−−ΓΓΓΓ :)(|:|),(:| MNNM

)(:).(|:|:, ττττ→→→→σσσσλλλλ−−−−ΓΓΓΓ⇒⇒⇒⇒ττττ−−−−σσσσΓΓΓΓ MxMx

Here stands for and in
order to be a basis.

σσσσΓΓΓΓ :, x }:{ σσσσ∪∪∪∪ΓΓΓΓ x)(ΓΓΓΓ∉∉∉∉ Domx
}:{ σσσσ∪∪∪∪ΓΓΓΓ x

If we can write instead of}:,,:{ nn11 xx σσσσσσσσ====ΓΓΓΓ K σσσσ−−−−ΓΓΓΓ :| M
.:|:,,: σσσσ−−−−σσσσσσσσ Mxx nn11 K If Γ is empty, we write .:| σσσσ−−−−M

We pronounce |- as �yields� or �is derivable�.

Lambda calculus II 10

The rules given in Version 0 are usually expressed as follows.
→→→→λλλλ

(axiom)):(| σσσσ−−−−ΓΓΓΓ x if ΓΓΓΓ∈∈∈∈σσσσ):(x

(→→→→ -elimination) ττττ−−−−ΓΓΓΓ
σσσσ−−−−ΓΓΓΓττττ→→→→σσσσ−−−−ΓΓΓΓ

:)(|
:|)(:|

MN
NM

-Curry (Version 1)

(-introduction)→→→→
)(:).(|

:|:,
ττττ→→→→σσσσλλλλ−−−−ΓΓΓΓ

ττττ−−−−σσσσΓΓΓΓ
Mx

Mx

Lambda calculus II 11

The following is the natural deduction formulation
-Curry (Version 2)→→→→λλλλ

Elimination rule Introduction rule

ττττ
σσσσττττ→→→→σσσσ

:)(
:)(:

MN
NM

)(:).(
:

ττττ→→→→σσσσλλλλ
ττττ

Mx
M

M

σσσσ////:x

Lambda calculus II 12

The basic axiom of Versions 0 and 1 is considered here as implicit and
is not mentioned. The notation

M

σσσσ:x

ττττ:M
Means that from the assumption together with a set Γ of other
statements, one can derive

σσσσ:x
.: ττττM

Lambda calculus II 9

→→→→λλλλ -Curry (version 0)

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒ΓΓΓΓ∈∈∈∈σσσσ :|):(xx

ττττ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓττττ→→→→σσσσ−−−−ΓΓΓΓ :)(|:|),(:| MNNM

)(:).(|:|:, ττττ→→→→σσσσλλλλ−−−−ΓΓΓΓ⇒⇒⇒⇒ττττ−−−−σσσσΓΓΓΓ MxMx

Here stands for and in
order to be a basis.

σσσσΓΓΓΓ :, x }:{ σσσσ∪∪∪∪ΓΓΓΓ x)(ΓΓΓΓ∉∉∉∉ Domx
}:{ σσσσ∪∪∪∪ΓΓΓΓ x

If we can write instead of}:,,:{ nn11 xx σσσσσσσσ====ΓΓΓΓ K σσσσ−−−−ΓΓΓΓ :| M
.:|:,,: σσσσ−−−−σσσσσσσσ Mxx nn11 K If Γ is empty, we write .:| σσσσ−−−−M

We pronounce |- as �yields� or �is derivable�.

Lambda calculus II 10

The rules given in Version 0 are usually expressed as follows.
→→→→λλλλ

(axiom)):(| σσσσ−−−−ΓΓΓΓ x if ΓΓΓΓ∈∈∈∈σσσσ):(x

(→→→→ -elimination) ττττ−−−−ΓΓΓΓ
σσσσ−−−−ΓΓΓΓττττ→→→→σσσσ−−−−ΓΓΓΓ

:)(|
:|)(:|

MN
NM

-Curry (Version 1)

(-introduction)→→→→
)(:).(|

:|:,
ττττ→→→→σσσσλλλλ−−−−ΓΓΓΓ

ττττ−−−−σσσσΓΓΓΓ
Mx

Mx

Lambda calculus II 11

The following is the natural deduction formulation
-Curry (Version 2)→→→→λλλλ

Elimination rule Introduction rule

ττττ
σσσσττττ→→→→σσσσ

:)(
:)(:

MN
NM

)(:).(
:

ττττ→→→→σσσσλλλλ
ττττ

Mx
M

M

σσσσ////:x

Lambda calculus II 12

The basic axiom of Versions 0 and 1 is considered here as implicit and
is not mentioned. The notation

M

σσσσ:x

ττττ:M
Means that from the assumption together with a set Γ of other
statements, one can derive

σσσσ:x
.: ττττM

Lambda calculus II 9

→→→→λλλλ -Curry (version 0)

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒ΓΓΓΓ∈∈∈∈σσσσ :|):(xx

ττττ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓττττ→→→→σσσσ−−−−ΓΓΓΓ :)(|:|),(:| MNNM

)(:).(|:|:, ττττ→→→→σσσσλλλλ−−−−ΓΓΓΓ⇒⇒⇒⇒ττττ−−−−σσσσΓΓΓΓ MxMx

Here stands for and in
order to be a basis.

σσσσΓΓΓΓ :, x }:{ σσσσ∪∪∪∪ΓΓΓΓ x)(ΓΓΓΓ∉∉∉∉ Domx
}:{ σσσσ∪∪∪∪ΓΓΓΓ x

If we can write instead of}:,,:{ nn11 xx σσσσσσσσ====ΓΓΓΓ K σσσσ−−−−ΓΓΓΓ :| M
.:|:,,: σσσσ−−−−σσσσσσσσ Mxx nn11 K If Γ is empty, we write .:| σσσσ−−−−M

We pronounce |- as �yields� or �is derivable�.

Lambda calculus II 10

The rules given in Version 0 are usually expressed as follows.
→→→→λλλλ

(axiom)):(| σσσσ−−−−ΓΓΓΓ x if ΓΓΓΓ∈∈∈∈σσσσ):(x

(→→→→ -elimination) ττττ−−−−ΓΓΓΓ
σσσσ−−−−ΓΓΓΓττττ→→→→σσσσ−−−−ΓΓΓΓ

:)(|
:|)(:|

MN
NM

-Curry (Version 1)

(-introduction)→→→→
)(:).(|

:|:,
ττττ→→→→σσσσλλλλ−−−−ΓΓΓΓ

ττττ−−−−σσσσΓΓΓΓ
Mx

Mx

Lambda calculus II 11

The following is the natural deduction formulation
-Curry (Version 2)→→→→λλλλ

Elimination rule Introduction rule

ττττ
σσσσττττ→→→→σσσσ

:)(
:)(:

MN
NM

)(:).(
:

ττττ→→→→σσσσλλλλ
ττττ

Mx
M

M

σσσσ////:x

Lambda calculus II 12

The basic axiom of Versions 0 and 1 is considered here as implicit and
is not mentioned. The notation

M

σσσσ:x

ττττ:M
Means that from the assumption together with a set Γ of other
statements, one can derive

σσσσ:x
.: ττττM

Lambda calculus II 13

The basic axiom of Versions 0 and 1 is considered here as implicit and
is not mentioned. The notation

M

σσσσ:x

ττττ:M
Means that from the assumption together with a set Γ of other
statements, one can derive

σσσσ:x
.: ττττM

The rule of -introduction in the table states that →→→→
)(:).(ττττ→→→→σσσσλλλλ Mx

is derivable even without the assumption but still using Γ.
This process is called cancellation of an assumption and is indicated
by the striking through the statement

σσσσ:x

.: σσσσx

Lambda calculus II 14

Example.

(a) Using Version 1 of the system the derivation

)(:).(|
)(:).(|:

:|:,:

σσσσ→→→→ττττ→→→→σσσσλλλλ−−−−
σσσσ→→→→ττττλλλλ−−−−σσσσ

σσσσ−−−−ττττσσσσ

xxy
xyx

xyx

Shows that for all)(:).(| σσσσ→→→→ττττ→→→→σσσσλλλλ−−−− xxy .T, ∈∈∈∈ττττσσσσ

Lambda calculus II 15

Example.

(a) Using Version 1 of the system the derivation

)(:).(|
)(:).(|:

:|:,:

σσσσ→→→→ττττ→→→→σσσσλλλλ−−−−
σσσσ→→→→ττττλλλλ−−−−σσσσ

σσσσ−−−−ττττσσσσ

xxy
xyx

xyx

Shows that for all)(:).(| σσσσ→→→→ττττ→→→→σσσσλλλλ−−−− xxy .T, ∈∈∈∈ττττσσσσ

(b) Using Version 2, a natural deduction derivation of the same type
assignment is

2

1

12

xxy
xy

x
yx

)(:).(
)(:).(

:
::

σσσσ→→→→ττττ→→→→σσσσλλλλ
σσσσ→→→→ττττλλλλ

σσσσ
ττττσσσσ

The indices 1 and 2 are bookkeeping devices that indicate at which
application of a rule a particular assumption is being cancelled.

Lambda calculus II 16

(c) For all we haveT∈∈∈∈σσσσ

)(:).(| σσσσ→→→→σσσσλλλλ−−−− xx

Lambda calculus II 13

The basic axiom of Versions 0 and 1 is considered here as implicit and
is not mentioned. The notation

M

σσσσ:x

ττττ:M
Means that from the assumption together with a set Γ of other
statements, one can derive

σσσσ:x
.: ττττM

The rule of -introduction in the table states that →→→→
)(:).(ττττ→→→→σσσσλλλλ Mx

is derivable even without the assumption but still using Γ.
This process is called cancellation of an assumption and is indicated
by the striking through the statement

σσσσ:x

.: σσσσx

Lambda calculus II 14

Example.

(a) Using Version 1 of the system the derivation

)(:).(|
)(:).(|:

:|:,:

σσσσ→→→→ττττ→→→→σσσσλλλλ−−−−
σσσσ→→→→ττττλλλλ−−−−σσσσ

σσσσ−−−−ττττσσσσ

xxy
xyx

xyx

Shows that for all)(:).(| σσσσ→→→→ττττ→→→→σσσσλλλλ−−−− xxy .T, ∈∈∈∈ττττσσσσ

Lambda calculus II 15

Example.

(a) Using Version 1 of the system the derivation

)(:).(|
)(:).(|:

:|:,:

σσσσ→→→→ττττ→→→→σσσσλλλλ−−−−
σσσσ→→→→ττττλλλλ−−−−σσσσ

σσσσ−−−−ττττσσσσ

xxy
xyx

xyx

Shows that for all)(:).(| σσσσ→→→→ττττ→→→→σσσσλλλλ−−−− xxy .T, ∈∈∈∈ττττσσσσ

(b) Using Version 2, a natural deduction derivation of the same type
assignment is

2

1

12

xxy
xy

x
yx

)(:).(
)(:).(

:
::

σσσσ→→→→ττττ→→→→σσσσλλλλ
σσσσ→→→→ττττλλλλ

σσσσ
ττττσσσσ

The indices 1 and 2 are bookkeeping devices that indicate at which
application of a rule a particular assumption is being cancelled.

Lambda calculus II 16

(c) For all we haveT∈∈∈∈σσσσ

)(:).(| σσσσ→→→→σσσσλλλλ−−−− xx

Lambda calculus II 13

The basic axiom of Versions 0 and 1 is considered here as implicit and
is not mentioned. The notation

M

σσσσ:x

ττττ:M
Means that from the assumption together with a set Γ of other
statements, one can derive

σσσσ:x
.: ττττM

The rule of -introduction in the table states that →→→→
)(:).(ττττ→→→→σσσσλλλλ Mx

is derivable even without the assumption but still using Γ.
This process is called cancellation of an assumption and is indicated
by the striking through the statement

σσσσ:x

.: σσσσx

Lambda calculus II 14

Example.

(a) Using Version 1 of the system the derivation

)(:).(|
)(:).(|:

:|:,:

σσσσ→→→→ττττ→→→→σσσσλλλλ−−−−
σσσσ→→→→ττττλλλλ−−−−σσσσ

σσσσ−−−−ττττσσσσ

xxy
xyx

xyx

Shows that for all)(:).(| σσσσ→→→→ττττ→→→→σσσσλλλλ−−−− xxy .T, ∈∈∈∈ττττσσσσ

Lambda calculus II 15

Example.

(a) Using Version 1 of the system the derivation

)(:).(|
)(:).(|:

:|:,:

σσσσ→→→→ττττ→→→→σσσσλλλλ−−−−
σσσσ→→→→ττττλλλλ−−−−σσσσ

σσσσ−−−−ττττσσσσ

xxy
xyx

xyx

Shows that for all)(:).(| σσσσ→→→→ττττ→→→→σσσσλλλλ−−−− xxy .T, ∈∈∈∈ττττσσσσ

(b) Using Version 2, a natural deduction derivation of the same type
assignment is

2

1

12

xxy
xy

x
yx

)(:).(
)(:).(

:
::

σσσσ→→→→ττττ→→→→σσσσλλλλ
σσσσ→→→→ττττλλλλ

σσσσ
ττττσσσσ

The indices 1 and 2 are bookkeeping devices that indicate at which
application of a rule a particular assumption is being cancelled.

Lambda calculus II 16

(c) For all we haveT∈∈∈∈σσσσ

)(:).(| σσσσ→→→→σσσσλλλλ−−−− xx

Lambda calculus II 13

The basic axiom of Versions 0 and 1 is considered here as implicit and
is not mentioned. The notation

M

σσσσ:x

ττττ:M
Means that from the assumption together with a set Γ of other
statements, one can derive

σσσσ:x
.: ττττM

The rule of -introduction in the table states that →→→→
)(:).(ττττ→→→→σσσσλλλλ Mx

is derivable even without the assumption but still using Γ.
This process is called cancellation of an assumption and is indicated
by the striking through the statement

σσσσ:x

.: σσσσx

Lambda calculus II 14

Example.

(a) Using Version 1 of the system the derivation

)(:).(|
)(:).(|:

:|:,:

σσσσ→→→→ττττ→→→→σσσσλλλλ−−−−
σσσσ→→→→ττττλλλλ−−−−σσσσ

σσσσ−−−−ττττσσσσ

xxy
xyx

xyx

Shows that for all)(:).(| σσσσ→→→→ττττ→→→→σσσσλλλλ−−−− xxy .T, ∈∈∈∈ττττσσσσ

Lambda calculus II 15

Example.

(a) Using Version 1 of the system the derivation

)(:).(|
)(:).(|:

:|:,:

σσσσ→→→→ττττ→→→→σσσσλλλλ−−−−
σσσσ→→→→ττττλλλλ−−−−σσσσ

σσσσ−−−−ττττσσσσ

xxy
xyx

xyx

Shows that for all)(:).(| σσσσ→→→→ττττ→→→→σσσσλλλλ−−−− xxy .T, ∈∈∈∈ττττσσσσ

(b) Using Version 2, a natural deduction derivation of the same type
assignment is

2

1

12

xxy
xy

x
yx

)(:).(
)(:).(

:
::

σσσσ→→→→ττττ→→→→σσσσλλλλ
σσσσ→→→→ττττλλλλ

σσσσ
ττττσσσσ

The indices 1 and 2 are bookkeeping devices that indicate at which
application of a rule a particular assumption is being cancelled.

Lambda calculus II 16

(c) For all we haveT∈∈∈∈σσσσ

)(:).(| σσσσ→→→→σσσσλλλλ−−−− xx

Lambda calculus II 17

(c) For all we haveT∈∈∈∈σσσσ

)(:).(| σσσσ→→→→σσσσλλλλ−−−− xx

Indeed

)(:).(|
:|:

σσσσ→→→→σσσσλλλλ−−−−
σσσσ−−−−σσσσ

xx
xx

Lambda calculus II 18

(c) For all we haveT∈∈∈∈σσσσ

)(:).(| σσσσ→→→→σσσσλλλλ−−−− xx

Indeed

)(:).(|
:|:

σσσσ→→→→σσσσλλλλ−−−−
σσσσ−−−−σσσσ

xx
xx

(d) σσσσλλλλ−−−−σσσσ :).(|: yxxy

Lambda calculus II 19

(c) For all we haveT∈∈∈∈σσσσ

)(:).(| σσσσ→→→→σσσσλλλλ−−−− xx

Indeed

)(:).(|
:|:

σσσσ→→→→σσσσλλλλ−−−−
σσσσ−−−−σσσσ

xx
xx

(d) σσσσλλλλ−−−−σσσσ :).(|: yxxy

It follows from (c) and Elimination rule that

σσσσλλλλ−−−−σσσσ
σσσσ→→→→σσσσλλλλ−−−−

:).(|:
)(:).(|

yxxy
xx

Lambda calculus II 20

Properties of -Curry →→→→λλλλ

Several properties of type assignment in are valid. First, we analyse
how much of a basis is necessary in order to derive a type assignment.

→→→→λλλλ

Definition.

(i) Let be a basis. We consider Γ as a partial
function from the set of term variables to the set of types.

}:,,:{ nn11 xx σσσσσσσσ====ΓΓΓΓ K

(ii) Then dom(Γ) = is the domain of Γ and we write },,{ n1 xx K

iix σσσσ====ΓΓΓΓ)(for the value of Γ i.e. The type which is assigned to the
variable .ix

(iii) Let be a set of term variables, the restriction of Γ to

is defined as follows

'V 'V
)}.('&|:{'| xVxxV ΓΓΓΓ====σσσσ∈∈∈∈σσσσ====ΓΓΓΓ

Lambda calculus II 17

(c) For all we haveT∈∈∈∈σσσσ

)(:).(| σσσσ→→→→σσσσλλλλ−−−− xx

Indeed

)(:).(|
:|:

σσσσ→→→→σσσσλλλλ−−−−
σσσσ−−−−σσσσ

xx
xx

Lambda calculus II 18

(c) For all we haveT∈∈∈∈σσσσ

)(:).(| σσσσ→→→→σσσσλλλλ−−−− xx

Indeed

)(:).(|
:|:

σσσσ→→→→σσσσλλλλ−−−−
σσσσ−−−−σσσσ

xx
xx

(d) σσσσλλλλ−−−−σσσσ :).(|: yxxy

Lambda calculus II 19

(c) For all we haveT∈∈∈∈σσσσ

)(:).(| σσσσ→→→→σσσσλλλλ−−−− xx

Indeed

)(:).(|
:|:

σσσσ→→→→σσσσλλλλ−−−−
σσσσ−−−−σσσσ

xx
xx

(d) σσσσλλλλ−−−−σσσσ :).(|: yxxy

It follows from (c) and Elimination rule that

σσσσλλλλ−−−−σσσσ
σσσσ→→→→σσσσλλλλ−−−−

:).(|:
)(:).(|

yxxy
xx

Lambda calculus II 20

Properties of -Curry →→→→λλλλ

Several properties of type assignment in are valid. First, we analyse
how much of a basis is necessary in order to derive a type assignment.

→→→→λλλλ

Definition.

(i) Let be a basis. We consider Γ as a partial
function from the set of term variables to the set of types.

}:,,:{ nn11 xx σσσσσσσσ====ΓΓΓΓ K

(ii) Then dom(Γ) = is the domain of Γ and we write },,{ n1 xx K

iix σσσσ====ΓΓΓΓ)(for the value of Γ i.e. The type which is assigned to the
variable .ix

(iii) Let be a set of term variables, the restriction of Γ to

is defined as follows

'V 'V
)}.('&|:{'| xVxxV ΓΓΓΓ====σσσσ∈∈∈∈σσσσ====ΓΓΓΓ

Lambda calculus II 17

(c) For all we haveT∈∈∈∈σσσσ

)(:).(| σσσσ→→→→σσσσλλλλ−−−− xx

Indeed

)(:).(|
:|:

σσσσ→→→→σσσσλλλλ−−−−
σσσσ−−−−σσσσ

xx
xx

Lambda calculus II 18

(c) For all we haveT∈∈∈∈σσσσ

)(:).(| σσσσ→→→→σσσσλλλλ−−−− xx

Indeed

)(:).(|
:|:

σσσσ→→→→σσσσλλλλ−−−−
σσσσ−−−−σσσσ

xx
xx

(d) σσσσλλλλ−−−−σσσσ :).(|: yxxy

Lambda calculus II 19

(c) For all we haveT∈∈∈∈σσσσ

)(:).(| σσσσ→→→→σσσσλλλλ−−−− xx

Indeed

)(:).(|
:|:

σσσσ→→→→σσσσλλλλ−−−−
σσσσ−−−−σσσσ

xx
xx

(d) σσσσλλλλ−−−−σσσσ :).(|: yxxy

It follows from (c) and Elimination rule that

σσσσλλλλ−−−−σσσσ
σσσσ→→→→σσσσλλλλ−−−−

:).(|:
)(:).(|

yxxy
xx

Lambda calculus II 20

Properties of -Curry →→→→λλλλ

Several properties of type assignment in are valid. First, we analyse
how much of a basis is necessary in order to derive a type assignment.

→→→→λλλλ

Definition.

(i) Let be a basis. We consider Γ as a partial
function from the set of term variables to the set of types.

}:,,:{ nn11 xx σσσσσσσσ====ΓΓΓΓ K

(ii) Then dom(Γ) = is the domain of Γ and we write },,{ n1 xx K

iix σσσσ====ΓΓΓΓ)(for the value of Γ i.e. The type which is assigned to the
variable .ix

(iii) Let be a set of term variables, the restriction of Γ to

is defined as follows

'V 'V
)}.('&|:{'| xVxxV ΓΓΓΓ====σσσσ∈∈∈∈σσσσ====ΓΓΓΓ

Lambda calculus II 17

(c) For all we haveT∈∈∈∈σσσσ

)(:).(| σσσσ→→→→σσσσλλλλ−−−− xx

Indeed

)(:).(|
:|:

σσσσ→→→→σσσσλλλλ−−−−
σσσσ−−−−σσσσ

xx
xx

Lambda calculus II 18

(c) For all we haveT∈∈∈∈σσσσ

)(:).(| σσσσ→→→→σσσσλλλλ−−−− xx

Indeed

)(:).(|
:|:

σσσσ→→→→σσσσλλλλ−−−−
σσσσ−−−−σσσσ

xx
xx

(d) σσσσλλλλ−−−−σσσσ :).(|: yxxy

Lambda calculus II 19

(c) For all we haveT∈∈∈∈σσσσ

)(:).(| σσσσ→→→→σσσσλλλλ−−−− xx

Indeed

)(:).(|
:|:

σσσσ→→→→σσσσλλλλ−−−−
σσσσ−−−−σσσσ

xx
xx

(d) σσσσλλλλ−−−−σσσσ :).(|: yxxy

It follows from (c) and Elimination rule that

σσσσλλλλ−−−−σσσσ
σσσσ→→→→σσσσλλλλ−−−−

:).(|:
)(:).(|

yxxy
xx

Lambda calculus II 20

Properties of -Curry →→→→λλλλ

Several properties of type assignment in are valid. First, we analyse
how much of a basis is necessary in order to derive a type assignment.

→→→→λλλλ

Definition.

(i) Let be a basis. We consider Γ as a partial
function from the set of term variables to the set of types.

}:,,:{ nn11 xx σσσσσσσσ====ΓΓΓΓ K

(ii) Then dom(Γ) = is the domain of Γ and we write },,{ n1 xx K

iix σσσσ====ΓΓΓΓ)(for the value of Γ i.e. The type which is assigned to the
variable .ix

(iii) Let be a set of term variables, the restriction of Γ to

is defined as follows

'V 'V
)}.('&|:{'| xVxxV ΓΓΓΓ====σσσσ∈∈∈∈σσσσ====ΓΓΓΓ

Lambda calculus II 21

(iv) For types and a type variable α, the substitution of τ
for α in σ is denoted by

,T, ∈∈∈∈ττττσσσσ
].:[ττττ====αααασσσσ

Basis lemma for -Curry→→→→λλλλ

Let Γ be a basis.

(i) If is another basis, then

(ii)

(iii)

',' ΓΓΓΓ⊆⊆⊆⊆ΓΓΓΓΓΓΓΓ .:|':| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

).()(:| ΓΓΓΓ⊆⊆⊆⊆⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ domMFVM

.:|)(|:| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MMFVM

Lambda calculus II 22

Proof.

Since such proofs will occur frequently, we produce it in full only for the
first statement in order to be briefer later on.

(i) We proceed by induction on the derivation of

Case 1. M : σ is x : σ and this declaration is an element of Γ. Then also

.:| σσσσ−−−−ΓΓΓΓ M

': ΓΓΓΓ∈∈∈∈σσσσx and thus .:|' σσσσ−−−−ΓΓΓΓ M

Case 2. M : σ is and it follows directly from two
assignments and for some τ. By
the Induction Hypothesis one has
and Thus

σσσσ:)(21MM
)(: σσσσ→→→→ττττ1M ττττ:2M

)(:|' σσσσ→→→→ττττ−−−−ΓΓΓΓ 1M
.:|' ττττ−−−−ΓΓΓΓ 2M .:)(|' σσσσ−−−−ΓΓΓΓ 21MM

Lambda calculus II 23

(ii) By induction on derivation of M : σ. We prove only the case
that M : σ is and follows directly from
the assumption

)(:).(211Mx σσσσ→→→→σσσσλλλλ
.:|:, 211 Mx σσσσ−−−−σσσσΓΓΓΓ

Let then and By
the Induction Hypothesis one has and
hence

),.(1MxFVy λλλλ∈∈∈∈)(1MFVy ∈∈∈∈ .xy ≡≡≡≡////
):,(1xdomy σσσσΓΓΓΓ∈∈∈∈

.ΓΓΓΓ∈∈∈∈ domy

Case 3. M : σ is and it follows directly
from by the convention concerning
bounded variables, one may assume that the variable x does not
occur in the domain of Therefore by the Induction
Hypothesis one has and thus

)(:).(211Mx σσσσ→→→→σσσσλλλλ
.:|:, 211 Mx σσσσ−−−−σσσσΓΓΓΓ

'.ΓΓΓΓ
211 Mx σσσσ−−−−σσσσΓΓΓΓ :|:,'

).(:).(|' 211Mx σσσσ→→→→σσσσλλλλ−−−−ΓΓΓΓ

Lambda calculus II 24

(iii) By induction on the derivation of M :σ. We only treat the case
that M :σ is and follows directly from σσσσ:)(21 MM

and
for some Γ, τ. By the Induction Hypothesis one has

)(:| σσσσ→→→→ττττ−−−−ΓΓΓΓ 1M ττττ−−−−ΓΓΓΓ :| 2M

)(:|)(| σσσσ→→→→ττττ−−−−ΓΓΓΓ 11 MMFV and .:|)(| ττττ−−−−ΓΓΓΓ 22 MMFV

As by (i) one has that),()()(2121 MFVMFVMMFV ∪∪∪∪====

)(:|)(| σσσσ→→→→ττττ−−−−ΓΓΓΓ 121 MMMFV and ττττ−−−−ΓΓΓΓ :|)(| 221 MMMFV

and hence .:)(|)(| σσσσ−−−−ΓΓΓΓ 2121 MMMMFV

Lambda calculus II 21

(iv) For types and a type variable α, the substitution of τ
for α in σ is denoted by

,T, ∈∈∈∈ττττσσσσ
].:[ττττ====αααασσσσ

Basis lemma for -Curry→→→→λλλλ

Let Γ be a basis.

(i) If is another basis, then

(ii)

(iii)

',' ΓΓΓΓ⊆⊆⊆⊆ΓΓΓΓΓΓΓΓ .:|':| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

).()(:| ΓΓΓΓ⊆⊆⊆⊆⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ domMFVM

.:|)(|:| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MMFVM

Lambda calculus II 22

Proof.

Since such proofs will occur frequently, we produce it in full only for the
first statement in order to be briefer later on.

(i) We proceed by induction on the derivation of

Case 1. M : σ is x : σ and this declaration is an element of Γ. Then also

.:| σσσσ−−−−ΓΓΓΓ M

': ΓΓΓΓ∈∈∈∈σσσσx and thus .:|' σσσσ−−−−ΓΓΓΓ M

Case 2. M : σ is and it follows directly from two
assignments and for some τ. By
the Induction Hypothesis one has
and Thus

σσσσ:)(21MM
)(: σσσσ→→→→ττττ1M ττττ:2M

)(:|' σσσσ→→→→ττττ−−−−ΓΓΓΓ 1M
.:|' ττττ−−−−ΓΓΓΓ 2M .:)(|' σσσσ−−−−ΓΓΓΓ 21MM

Lambda calculus II 23

(ii) By induction on derivation of M : σ. We prove only the case
that M : σ is and follows directly from
the assumption

)(:).(211Mx σσσσ→→→→σσσσλλλλ
.:|:, 211 Mx σσσσ−−−−σσσσΓΓΓΓ

Let then and By
the Induction Hypothesis one has and
hence

),.(1MxFVy λλλλ∈∈∈∈)(1MFVy ∈∈∈∈ .xy ≡≡≡≡////
):,(1xdomy σσσσΓΓΓΓ∈∈∈∈

.ΓΓΓΓ∈∈∈∈ domy

Case 3. M : σ is and it follows directly
from by the convention concerning
bounded variables, one may assume that the variable x does not
occur in the domain of Therefore by the Induction
Hypothesis one has and thus

)(:).(211Mx σσσσ→→→→σσσσλλλλ
.:|:, 211 Mx σσσσ−−−−σσσσΓΓΓΓ

'.ΓΓΓΓ
211 Mx σσσσ−−−−σσσσΓΓΓΓ :|:,'

).(:).(|' 211Mx σσσσ→→→→σσσσλλλλ−−−−ΓΓΓΓ

Lambda calculus II 24

(iii) By induction on the derivation of M :σ. We only treat the case
that M :σ is and follows directly from σσσσ:)(21 MM

and
for some Γ, τ. By the Induction Hypothesis one has

)(:| σσσσ→→→→ττττ−−−−ΓΓΓΓ 1M ττττ−−−−ΓΓΓΓ :| 2M

)(:|)(| σσσσ→→→→ττττ−−−−ΓΓΓΓ 11 MMFV and .:|)(| ττττ−−−−ΓΓΓΓ 22 MMFV

As by (i) one has that),()()(2121 MFVMFVMMFV ∪∪∪∪====

)(:|)(| σσσσ→→→→ττττ−−−−ΓΓΓΓ 121 MMMFV and ττττ−−−−ΓΓΓΓ :|)(| 221 MMMFV

and hence .:)(|)(| σσσσ−−−−ΓΓΓΓ 2121 MMMMFV

Lambda calculus II 21

(iv) For types and a type variable α, the substitution of τ
for α in σ is denoted by

,T, ∈∈∈∈ττττσσσσ
].:[ττττ====αααασσσσ

Basis lemma for -Curry→→→→λλλλ

Let Γ be a basis.

(i) If is another basis, then

(ii)

(iii)

',' ΓΓΓΓ⊆⊆⊆⊆ΓΓΓΓΓΓΓΓ .:|':| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

).()(:| ΓΓΓΓ⊆⊆⊆⊆⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ domMFVM

.:|)(|:| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MMFVM

Lambda calculus II 22

Proof.

Since such proofs will occur frequently, we produce it in full only for the
first statement in order to be briefer later on.

(i) We proceed by induction on the derivation of

Case 1. M : σ is x : σ and this declaration is an element of Γ. Then also

.:| σσσσ−−−−ΓΓΓΓ M

': ΓΓΓΓ∈∈∈∈σσσσx and thus .:|' σσσσ−−−−ΓΓΓΓ M

Case 2. M : σ is and it follows directly from two
assignments and for some τ. By
the Induction Hypothesis one has
and Thus

σσσσ:)(21MM
)(: σσσσ→→→→ττττ1M ττττ:2M

)(:|' σσσσ→→→→ττττ−−−−ΓΓΓΓ 1M
.:|' ττττ−−−−ΓΓΓΓ 2M .:)(|' σσσσ−−−−ΓΓΓΓ 21MM

Lambda calculus II 23

(ii) By induction on derivation of M : σ. We prove only the case
that M : σ is and follows directly from
the assumption

)(:).(211Mx σσσσ→→→→σσσσλλλλ
.:|:, 211 Mx σσσσ−−−−σσσσΓΓΓΓ

Let then and By
the Induction Hypothesis one has and
hence

),.(1MxFVy λλλλ∈∈∈∈)(1MFVy ∈∈∈∈ .xy ≡≡≡≡////
):,(1xdomy σσσσΓΓΓΓ∈∈∈∈

.ΓΓΓΓ∈∈∈∈ domy

Case 3. M : σ is and it follows directly
from by the convention concerning
bounded variables, one may assume that the variable x does not
occur in the domain of Therefore by the Induction
Hypothesis one has and thus

)(:).(211Mx σσσσ→→→→σσσσλλλλ
.:|:, 211 Mx σσσσ−−−−σσσσΓΓΓΓ

'.ΓΓΓΓ
211 Mx σσσσ−−−−σσσσΓΓΓΓ :|:,'

).(:).(|' 211Mx σσσσ→→→→σσσσλλλλ−−−−ΓΓΓΓ

Lambda calculus II 24

(iii) By induction on the derivation of M :σ. We only treat the case
that M :σ is and follows directly from σσσσ:)(21 MM

and
for some Γ, τ. By the Induction Hypothesis one has

)(:| σσσσ→→→→ττττ−−−−ΓΓΓΓ 1M ττττ−−−−ΓΓΓΓ :| 2M

)(:|)(| σσσσ→→→→ττττ−−−−ΓΓΓΓ 11 MMFV and .:|)(| ττττ−−−−ΓΓΓΓ 22 MMFV

As by (i) one has that),()()(2121 MFVMFVMMFV ∪∪∪∪====

)(:|)(| σσσσ→→→→ττττ−−−−ΓΓΓΓ 121 MMMFV and ττττ−−−−ΓΓΓΓ :|)(| 221 MMMFV

and hence .:)(|)(| σσσσ−−−−ΓΓΓΓ 2121 MMMMFV

Lambda calculus II 21

(iv) For types and a type variable α, the substitution of τ
for α in σ is denoted by

,T, ∈∈∈∈ττττσσσσ
].:[ττττ====αααασσσσ

Basis lemma for -Curry→→→→λλλλ

Let Γ be a basis.

(i) If is another basis, then

(ii)

(iii)

',' ΓΓΓΓ⊆⊆⊆⊆ΓΓΓΓΓΓΓΓ .:|':| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

).()(:| ΓΓΓΓ⊆⊆⊆⊆⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ domMFVM

.:|)(|:| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MMFVM

Lambda calculus II 22

Proof.

Since such proofs will occur frequently, we produce it in full only for the
first statement in order to be briefer later on.

(i) We proceed by induction on the derivation of

Case 1. M : σ is x : σ and this declaration is an element of Γ. Then also

.:| σσσσ−−−−ΓΓΓΓ M

': ΓΓΓΓ∈∈∈∈σσσσx and thus .:|' σσσσ−−−−ΓΓΓΓ M

Case 2. M : σ is and it follows directly from two
assignments and for some τ. By
the Induction Hypothesis one has
and Thus

σσσσ:)(21MM
)(: σσσσ→→→→ττττ1M ττττ:2M

)(:|' σσσσ→→→→ττττ−−−−ΓΓΓΓ 1M
.:|' ττττ−−−−ΓΓΓΓ 2M .:)(|' σσσσ−−−−ΓΓΓΓ 21MM

Lambda calculus II 23

(ii) By induction on derivation of M : σ. We prove only the case
that M : σ is and follows directly from
the assumption

)(:).(211Mx σσσσ→→→→σσσσλλλλ
.:|:, 211 Mx σσσσ−−−−σσσσΓΓΓΓ

Let then and By
the Induction Hypothesis one has and
hence

),.(1MxFVy λλλλ∈∈∈∈)(1MFVy ∈∈∈∈ .xy ≡≡≡≡////
):,(1xdomy σσσσΓΓΓΓ∈∈∈∈

.ΓΓΓΓ∈∈∈∈ domy

Case 3. M : σ is and it follows directly
from by the convention concerning
bounded variables, one may assume that the variable x does not
occur in the domain of Therefore by the Induction
Hypothesis one has and thus

)(:).(211Mx σσσσ→→→→σσσσλλλλ
.:|:, 211 Mx σσσσ−−−−σσσσΓΓΓΓ

'.ΓΓΓΓ
211 Mx σσσσ−−−−σσσσΓΓΓΓ :|:,'

).(:).(|' 211Mx σσσσ→→→→σσσσλλλλ−−−−ΓΓΓΓ

Lambda calculus II 24

(iii) By induction on the derivation of M :σ. We only treat the case
that M :σ is and follows directly from σσσσ:)(21 MM

and
for some Γ, τ. By the Induction Hypothesis one has

)(:| σσσσ→→→→ττττ−−−−ΓΓΓΓ 1M ττττ−−−−ΓΓΓΓ :| 2M

)(:|)(| σσσσ→→→→ττττ−−−−ΓΓΓΓ 11 MMFV and .:|)(| ττττ−−−−ΓΓΓΓ 22 MMFV

As by (i) one has that),()()(2121 MFVMFVMMFV ∪∪∪∪====

)(:|)(| σσσσ→→→→ττττ−−−−ΓΓΓΓ 121 MMMFV and ττττ−−−−ΓΓΓΓ :|)(| 221 MMMFV

and hence .:)(|)(| σσσσ−−−−ΓΓΓΓ 2121 MMMMFV

Lambda calculus II 25

Now we show how terms of a certain form get typed. It
gives us new insight, among other things we can show
that certain terms have no types.

Generation lemma for -Curry→→→→λλλλ

(i) ΓΓΓΓ∈∈∈∈σσσσ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ):(:| xx

(ii)]:|&)(:|[:)(| σσσσ−−−−ΓΓΓΓττττ→→→→σσσσ−−−−ΓΓΓΓσσσσ∃∃∃∃⇒⇒⇒⇒ττττ−−−−ΓΓΓΓ NMMN

(iii))](&:|:,[,:).(| ττττ→→→→σσσσ≡≡≡≡ρρρρττττ−−−−σσσσΓΓΓΓττττσσσσ∃∃∃∃⇒⇒⇒⇒ρρρρλλλλ−−−−ΓΓΓΓ MxMx

Proof. By induction on the length of derivation.

Lambda calculus II 26

Typability of subterms in -Curry→→→→λλλλ

Let be a subterm of M. Then 'M

':'|':| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

for some '.and σσσσΓΓΓΓ'

In other words: if M has a type which means that for some
` then every subterm has a type as well. Note
that the subterm may be typed from a different basis.

MM of'

Proof. By induction on the complexity of M.

σσσσ−−−−ΓΓΓΓ :| M

Lambda calculus II 27

Substitution lemma for -Curry.→→→→λλλλ

]:[:|]:[:| ττττ====αααασσσσ−−−−ττττ====ααααΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM(i)

where α is a type variable.

(ii) If and thenττττ−−−−σσσσΓΓΓΓ :|:, Mx ,:| σσσσ−−−−ΓΓΓΓ N ττττ====−−−−ΓΓΓΓ :]:[| NxM

Proof.

(i) By induction on derivation of .:| σσσσ−−−−ΓΓΓΓ M

(ii) By induction on generation of ττττ−−−−σσσσΓΓΓΓ :|:, Mx

Lambda calculus II 28

Subject reduction theorem for -Curry→→→→λλλλ

Let Then'.MM ββββ→>→>→>→>

.:'|:| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

Proof.

By induction on generation of using Generation lemma and
Substitution lemma. We shall treat the prime case
Assume that

ββββ→>→>→>→>

'.MM ββββ→→→→
and]:[',).(QxPMQPxM ====≡≡≡≡λλλλ≡≡≡≡

σσσσλλλλ−−−−ΓΓΓΓ :).(| QPx

Then it follows by the Generation lemma that for some τ one has

ττττ−−−−ΓΓΓΓσσσσ→→→→ττττλλλλ−−−−ΓΓΓΓ :|)(:).(| QPx and

Lambda calculus II 25

Now we show how terms of a certain form get typed. It
gives us new insight, among other things we can show
that certain terms have no types.

Generation lemma for -Curry→→→→λλλλ

(i) ΓΓΓΓ∈∈∈∈σσσσ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ):(:| xx

(ii)]:|&)(:|[:)(| σσσσ−−−−ΓΓΓΓττττ→→→→σσσσ−−−−ΓΓΓΓσσσσ∃∃∃∃⇒⇒⇒⇒ττττ−−−−ΓΓΓΓ NMMN

(iii))](&:|:,[,:).(| ττττ→→→→σσσσ≡≡≡≡ρρρρττττ−−−−σσσσΓΓΓΓττττσσσσ∃∃∃∃⇒⇒⇒⇒ρρρρλλλλ−−−−ΓΓΓΓ MxMx

Proof. By induction on the length of derivation.

Lambda calculus II 26

Typability of subterms in -Curry→→→→λλλλ

Let be a subterm of M. Then 'M

':'|':| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

for some '.and σσσσΓΓΓΓ'

In other words: if M has a type which means that for some
` then every subterm has a type as well. Note
that the subterm may be typed from a different basis.

MM of'

Proof. By induction on the complexity of M.

σσσσ−−−−ΓΓΓΓ :| M

Lambda calculus II 27

Substitution lemma for -Curry.→→→→λλλλ

]:[:|]:[:| ττττ====αααασσσσ−−−−ττττ====ααααΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM(i)

where α is a type variable.

(ii) If and thenττττ−−−−σσσσΓΓΓΓ :|:, Mx ,:| σσσσ−−−−ΓΓΓΓ N ττττ====−−−−ΓΓΓΓ :]:[| NxM

Proof.

(i) By induction on derivation of .:| σσσσ−−−−ΓΓΓΓ M

(ii) By induction on generation of ττττ−−−−σσσσΓΓΓΓ :|:, Mx

Lambda calculus II 28

Subject reduction theorem for -Curry→→→→λλλλ

Let Then'.MM ββββ→>→>→>→>

.:'|:| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

Proof.

By induction on generation of using Generation lemma and
Substitution lemma. We shall treat the prime case
Assume that

ββββ→>→>→>→>

'.MM ββββ→→→→
and]:[',).(QxPMQPxM ====≡≡≡≡λλλλ≡≡≡≡

σσσσλλλλ−−−−ΓΓΓΓ :).(| QPx

Then it follows by the Generation lemma that for some τ one has

ττττ−−−−ΓΓΓΓσσσσ→→→→ττττλλλλ−−−−ΓΓΓΓ :|)(:).(| QPx and

Lambda calculus II 25

Now we show how terms of a certain form get typed. It
gives us new insight, among other things we can show
that certain terms have no types.

Generation lemma for -Curry→→→→λλλλ

(i) ΓΓΓΓ∈∈∈∈σσσσ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ):(:| xx

(ii)]:|&)(:|[:)(| σσσσ−−−−ΓΓΓΓττττ→→→→σσσσ−−−−ΓΓΓΓσσσσ∃∃∃∃⇒⇒⇒⇒ττττ−−−−ΓΓΓΓ NMMN

(iii))](&:|:,[,:).(| ττττ→→→→σσσσ≡≡≡≡ρρρρττττ−−−−σσσσΓΓΓΓττττσσσσ∃∃∃∃⇒⇒⇒⇒ρρρρλλλλ−−−−ΓΓΓΓ MxMx

Proof. By induction on the length of derivation.

Lambda calculus II 26

Typability of subterms in -Curry→→→→λλλλ

Let be a subterm of M. Then 'M

':'|':| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

for some '.and σσσσΓΓΓΓ'

In other words: if M has a type which means that for some
` then every subterm has a type as well. Note
that the subterm may be typed from a different basis.

MM of'

Proof. By induction on the complexity of M.

σσσσ−−−−ΓΓΓΓ :| M

Lambda calculus II 27

Substitution lemma for -Curry.→→→→λλλλ

]:[:|]:[:| ττττ====αααασσσσ−−−−ττττ====ααααΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM(i)

where α is a type variable.

(ii) If and thenττττ−−−−σσσσΓΓΓΓ :|:, Mx ,:| σσσσ−−−−ΓΓΓΓ N ττττ====−−−−ΓΓΓΓ :]:[| NxM

Proof.

(i) By induction on derivation of .:| σσσσ−−−−ΓΓΓΓ M

(ii) By induction on generation of ττττ−−−−σσσσΓΓΓΓ :|:, Mx

Lambda calculus II 28

Subject reduction theorem for -Curry→→→→λλλλ

Let Then'.MM ββββ→>→>→>→>

.:'|:| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

Proof.

By induction on generation of using Generation lemma and
Substitution lemma. We shall treat the prime case
Assume that

ββββ→>→>→>→>

'.MM ββββ→→→→
and]:[',).(QxPMQPxM ====≡≡≡≡λλλλ≡≡≡≡

σσσσλλλλ−−−−ΓΓΓΓ :).(| QPx

Then it follows by the Generation lemma that for some τ one has

ττττ−−−−ΓΓΓΓσσσσ→→→→ττττλλλλ−−−−ΓΓΓΓ :|)(:).(| QPx and

Lambda calculus II 25

Now we show how terms of a certain form get typed. It
gives us new insight, among other things we can show
that certain terms have no types.

Generation lemma for -Curry→→→→λλλλ

(i) ΓΓΓΓ∈∈∈∈σσσσ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ):(:| xx

(ii)]:|&)(:|[:)(| σσσσ−−−−ΓΓΓΓττττ→→→→σσσσ−−−−ΓΓΓΓσσσσ∃∃∃∃⇒⇒⇒⇒ττττ−−−−ΓΓΓΓ NMMN

(iii))](&:|:,[,:).(| ττττ→→→→σσσσ≡≡≡≡ρρρρττττ−−−−σσσσΓΓΓΓττττσσσσ∃∃∃∃⇒⇒⇒⇒ρρρρλλλλ−−−−ΓΓΓΓ MxMx

Proof. By induction on the length of derivation.

Lambda calculus II 26

Typability of subterms in -Curry→→→→λλλλ

Let be a subterm of M. Then 'M

':'|':| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

for some '.and σσσσΓΓΓΓ'

In other words: if M has a type which means that for some
` then every subterm has a type as well. Note
that the subterm may be typed from a different basis.

MM of'

Proof. By induction on the complexity of M.

σσσσ−−−−ΓΓΓΓ :| M

Lambda calculus II 27

Substitution lemma for -Curry.→→→→λλλλ

]:[:|]:[:| ττττ====αααασσσσ−−−−ττττ====ααααΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM(i)

where α is a type variable.

(ii) If and thenττττ−−−−σσσσΓΓΓΓ :|:, Mx ,:| σσσσ−−−−ΓΓΓΓ N ττττ====−−−−ΓΓΓΓ :]:[| NxM

Proof.

(i) By induction on derivation of .:| σσσσ−−−−ΓΓΓΓ M

(ii) By induction on generation of ττττ−−−−σσσσΓΓΓΓ :|:, Mx

Lambda calculus II 28

Subject reduction theorem for -Curry→→→→λλλλ

Let Then'.MM ββββ→>→>→>→>

.:'|:| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

Proof.

By induction on generation of using Generation lemma and
Substitution lemma. We shall treat the prime case
Assume that

ββββ→>→>→>→>

'.MM ββββ→→→→
and]:[',).(QxPMQPxM ====≡≡≡≡λλλλ≡≡≡≡

σσσσλλλλ−−−−ΓΓΓΓ :).(| QPx

Then it follows by the Generation lemma that for some τ one has

ττττ−−−−ΓΓΓΓσσσσ→→→→ττττλλλλ−−−−ΓΓΓΓ :|)(:).(| QPx and

Lambda calculus II 29

Using once more the Generation lemma, we get

ττττ−−−−ΓΓΓΓσσσσ−−−−ττττΓΓΓΓ :|:|:, QPx and
And therefore by the Substitution lemma, we have

σσσσ====−−−−ΓΓΓΓ :]:[| QxP

Lambda calculus II 30

Using once more the Generation lemma, we get

ττττ−−−−ΓΓΓΓσσσσ−−−−ττττΓΓΓΓ :|:|:, QPx and
and therefore by the Substitution lemma, we have

σσσσ====−−−−ΓΓΓΓ :]:[| QxP

Exercises.
)).(.(S).(K),.(I yzxyxyzxxyxx λλλλ====λλλλ====λλλλ==== andLet

has one,,allforthatShow ,T∈∈∈∈ρρρρττττσσσσ

)(:KI|)(
)(:SK|)(

)()()(:S|)(

σσσσ→→→→σσσσ→→→→ττττ−−−−
σσσσ→→→→σσσσ→→→→ττττ→→→→σσσσ−−−−

ρρρρ→→→→σσσσ→→→→ττττ→→→→σσσσ→→→→ρρρρ→→→→ττττ→→→→σσσσ−−−−

c
b
a

Lambda calculus II 31

3

2

1

123

yzxzxyz
yzxzyz

yzxzz
yzxz

xzyz
zyx

)()()(:))(.(
)()(:))(.(

)(:))(.(
:))((

)(:)(:)(
:)(:)(:

ρρρρ→→→→σσσσ→→→→ττττ→→→→σσσσ→→→→ρρρρ→→→→ττττ→→→→σσσσλλλλ
ρρρρ→→→→σσσσ→→→→ττττ→→→→σσσσλλλλ

ρρρρ→→→→σσσσλλλλ
ρρρρ

ρρρρ→→→→ττττττττ
σσσσττττ→→→→σσσσρρρρ→→→→ττττ→→→→σσσσ

)(.S yzxzxyzλλλλ≡≡≡≡

Type assignments.

(a)

Lambda calculus II 32

(b)).))((.().))((.(SK uuvyzxzxyzxxyyzxzxyz λλλλλλλλ≡≡≡≡λλλλλλλλ≡≡≡≡

We have

2

1

12

uv
uv

vu

)(:
)(:.
::

σσσσ→→→→ττττ→→→→σσσσλλλλ
σσσσ→→→→ττττλλλλ

ττττσσσσ

Hence

)(:.-K| σσσσ→→→→ττττ→→→→σσσσλλλλ≡≡≡≡ xxy

by introduction −−−−→→→→

It follows from (a) and elimination that −−−−→→→→

.)(:-SK| σσσσ→→→→σσσσ→→→→ττττ→→→→σσσσ

Lambda calculus II 29

Using once more the Generation lemma, we get

ττττ−−−−ΓΓΓΓσσσσ−−−−ττττΓΓΓΓ :|:|:, QPx and
And therefore by the Substitution lemma, we have

σσσσ====−−−−ΓΓΓΓ :]:[| QxP

Lambda calculus II 30

Using once more the Generation lemma, we get

ττττ−−−−ΓΓΓΓσσσσ−−−−ττττΓΓΓΓ :|:|:, QPx and
and therefore by the Substitution lemma, we have

σσσσ====−−−−ΓΓΓΓ :]:[| QxP

Exercises.
)).(.(S).(K),.(I yzxyxyzxxyxx λλλλ====λλλλ====λλλλ==== andLet

has one,,allforthatShow ,T∈∈∈∈ρρρρττττσσσσ

)(:KI|)(
)(:SK|)(

)()()(:S|)(

σσσσ→→→→σσσσ→→→→ττττ−−−−
σσσσ→→→→σσσσ→→→→ττττ→→→→σσσσ−−−−

ρρρρ→→→→σσσσ→→→→ττττ→→→→σσσσ→→→→ρρρρ→→→→ττττ→→→→σσσσ−−−−

c
b
a

Lambda calculus II 31

3

2

1

123

yzxzxyz
yzxzyz

yzxzz
yzxz

xzyz
zyx

)()()(:))(.(
)()(:))(.(

)(:))(.(
:))((

)(:)(:)(
:)(:)(:

ρρρρ→→→→σσσσ→→→→ττττ→→→→σσσσ→→→→ρρρρ→→→→ττττ→→→→σσσσλλλλ
ρρρρ→→→→σσσσ→→→→ττττ→→→→σσσσλλλλ

ρρρρ→→→→σσσσλλλλ
ρρρρ

ρρρρ→→→→ττττττττ
σσσσττττ→→→→σσσσρρρρ→→→→ττττ→→→→σσσσ

)(.S yzxzxyzλλλλ≡≡≡≡

Type assignments.

(a)

Lambda calculus II 32

(b)).))((.().))((.(SK uuvyzxzxyzxxyyzxzxyz λλλλλλλλ≡≡≡≡λλλλλλλλ≡≡≡≡

We have

2

1

12

uv
uv

vu

)(:
)(:.
::

σσσσ→→→→ττττ→→→→σσσσλλλλ
σσσσ→→→→ττττλλλλ

ττττσσσσ

Hence

)(:.-K| σσσσ→→→→ττττ→→→→σσσσλλλλ≡≡≡≡ xxy

by introduction −−−−→→→→

It follows from (a) and elimination that −−−−→→→→

.)(:-SK| σσσσ→→→→σσσσ→→→→ττττ→→→→σσσσ

Lambda calculus II 29

Using once more the Generation lemma, we get

ττττ−−−−ΓΓΓΓσσσσ−−−−ττττΓΓΓΓ :|:|:, QPx and
And therefore by the Substitution lemma, we have

σσσσ====−−−−ΓΓΓΓ :]:[| QxP

Lambda calculus II 30

Using once more the Generation lemma, we get

ττττ−−−−ΓΓΓΓσσσσ−−−−ττττΓΓΓΓ :|:|:, QPx and
and therefore by the Substitution lemma, we have

σσσσ====−−−−ΓΓΓΓ :]:[| QxP

Exercises.
)).(.(S).(K),.(I yzxyxyzxxyxx λλλλ====λλλλ====λλλλ==== andLet

has one,,allforthatShow ,T∈∈∈∈ρρρρττττσσσσ

)(:KI|)(
)(:SK|)(

)()()(:S|)(

σσσσ→→→→σσσσ→→→→ττττ−−−−
σσσσ→→→→σσσσ→→→→ττττ→→→→σσσσ−−−−

ρρρρ→→→→σσσσ→→→→ττττ→→→→σσσσ→→→→ρρρρ→→→→ττττ→→→→σσσσ−−−−

c
b
a

Lambda calculus II 31

3

2

1

123

yzxzxyz
yzxzyz

yzxzz
yzxz

xzyz
zyx

)()()(:))(.(
)()(:))(.(

)(:))(.(
:))((

)(:)(:)(
:)(:)(:

ρρρρ→→→→σσσσ→→→→ττττ→→→→σσσσ→→→→ρρρρ→→→→ττττ→→→→σσσσλλλλ
ρρρρ→→→→σσσσ→→→→ττττ→→→→σσσσλλλλ

ρρρρ→→→→σσσσλλλλ
ρρρρ

ρρρρ→→→→ττττττττ
σσσσττττ→→→→σσσσρρρρ→→→→ττττ→→→→σσσσ

)(.S yzxzxyzλλλλ≡≡≡≡

Type assignments.

(a)

Lambda calculus II 32

(b)).))((.().))((.(SK uuvyzxzxyzxxyyzxzxyz λλλλλλλλ≡≡≡≡λλλλλλλλ≡≡≡≡

We have

2

1

12

uv
uv

vu

)(:
)(:.
::

σσσσ→→→→ττττ→→→→σσσσλλλλ
σσσσ→→→→ττττλλλλ

ττττσσσσ

Hence

)(:.-K| σσσσ→→→→ττττ→→→→σσσσλλλλ≡≡≡≡ xxy

by introduction −−−−→→→→

It follows from (a) and elimination that −−−−→→→→

.)(:-SK| σσσσ→→→→σσσσ→→→→ττττ→→→→σσσσ

Lambda calculus II 29

Using once more the Generation lemma, we get

ττττ−−−−ΓΓΓΓσσσσ−−−−ττττΓΓΓΓ :|:|:, QPx and
And therefore by the Substitution lemma, we have

σσσσ====−−−−ΓΓΓΓ :]:[| QxP

Lambda calculus II 30

Using once more the Generation lemma, we get

ττττ−−−−ΓΓΓΓσσσσ−−−−ττττΓΓΓΓ :|:|:, QPx and
and therefore by the Substitution lemma, we have

σσσσ====−−−−ΓΓΓΓ :]:[| QxP

Exercises.
)).(.(S).(K),.(I yzxyxyzxxyxx λλλλ====λλλλ====λλλλ==== andLet

has one,,allforthatShow ,T∈∈∈∈ρρρρττττσσσσ

)(:KI|)(
)(:SK|)(

)()()(:S|)(

σσσσ→→→→σσσσ→→→→ττττ−−−−
σσσσ→→→→σσσσ→→→→ττττ→→→→σσσσ−−−−

ρρρρ→→→→σσσσ→→→→ττττ→→→→σσσσ→→→→ρρρρ→→→→ττττ→→→→σσσσ−−−−

c
b
a

Lambda calculus II 31

3

2

1

123

yzxzxyz
yzxzyz

yzxzz
yzxz

xzyz
zyx

)()()(:))(.(
)()(:))(.(

)(:))(.(
:))((

)(:)(:)(
:)(:)(:

ρρρρ→→→→σσσσ→→→→ττττ→→→→σσσσ→→→→ρρρρ→→→→ττττ→→→→σσσσλλλλ
ρρρρ→→→→σσσσ→→→→ττττ→→→→σσσσλλλλ

ρρρρ→→→→σσσσλλλλ
ρρρρ

ρρρρ→→→→ττττττττ
σσσσττττ→→→→σσσσρρρρ→→→→ττττ→→→→σσσσ

)(.S yzxzxyzλλλλ≡≡≡≡

Type assignments.

(a)

Lambda calculus II 32

(b)).))((.().))((.(SK uuvyzxzxyzxxyyzxzxyz λλλλλλλλ≡≡≡≡λλλλλλλλ≡≡≡≡

We have

2

1

12

uv
uv

vu

)(:
)(:.
::

σσσσ→→→→ττττ→→→→σσσσλλλλ
σσσσ→→→→ττττλλλλ

ττττσσσσ

Hence

)(:.-K| σσσσ→→→→ττττ→→→→σσσσλλλλ≡≡≡≡ xxy

by introduction −−−−→→→→

It follows from (a) and elimination that −−−−→→→→

.)(:-SK| σσσσ→→→→σσσσ→→→→ττττ→→→→σσσσ

Lambda calculus II 33

The set of Typable terms is not closed under expansion.

A stronger failure of subject expansion has shown van Bakel.

and

 such that and are There 'T',', MMMM ββββ→>→>→>→>∈∈∈∈σσσσσσσσΛΛΛΛ∈∈∈∈

.:'|

,':'|
,:|

σσσσ−−−−////

σσσσ−−−−
σσσσ−−−−

M

M
M

but

We have).(:).(KI|),(:I| σσσσ→→→→σσσσλλλλ−−−−////σσσσ→→→→σσσσ−−−− xxxbut

Observation. (van Bakel 1991)

Lambda calculus II 34

Proof.
).()('

)(,SK',.
ββββ→→→→ββββ→→→→αααα→→→→ββββ≡≡≡≡σσσσ

ββββ→→→→ββββ→→→→αααα≡≡≡≡σσσσ≡≡≡≡λλλλ≡≡≡≡

and Take MyxyM

).(:SK| ββββ→→→→ββββ→→→→αααα−−−−//// fact that theuseThen

.).(KI).(
)(:SK|

→→→→λλλλλλλλλλλλ
ττττσσσσσσσσ→→→→σσσσ→→→→ττττ−−−−////

in typeno have and (b)
.,allfor (a)

xxxxxx

Exercises.
 thatShow

Lambda calculus II 35

Proof.

(a) If)(:).))((.(-SK| σσσσ→→→→σσσσ→→→→ττττλλλλλλλλ≡≡≡≡ xxyyzxzxyz

Then by the generation lemma

]:).(|)&()(&:))(.(|
:[

]:).(|&)(:))(.([|

ρρρρλλλλ−−−−νννν→→→→µµµµ≡≡≡≡σσσσ→→→→σσσσ→→→→ττττ→→→→ρρρρννννλλλλ−−−−
µµµµννννµµµµ∃∃∃∃ρρρρ∃∃∃∃

ρρρρλλλλ−−−−σσσσ→→→→σσσσ→→→→ττττ→→→→ρρρρλλλλ−−−−ρρρρ∃∃∃∃

xxyyzxzyz
x

xxyyzxzxyz

,
obtain weagain, lemma Generation theusing

Lambda calculus II 36

]:).(|)&()(&:))(. ρρρρλλλλ−−−−σσσσ→→→→σσσσ→→→→ττττ≡≡≡≡ϕϕϕϕ→→→→εεεεϕϕϕϕλλλλ
εεεερρρρϕϕϕϕεεεε∃∃∃∃ρρρρ∃∃∃∃

xxyyzxzz-(|
:y,:[x,

have we,repeatedly lemma Generation theusing

].:).:))(.(|: ρρρρλλλλσσσσ→→→→σσσσ→→→→ττττλλλλ−−−−ρρρρρρρρ∃∃∃∃

σσσσ→→→→σσσσ→→→→ττττ≡≡≡≡υυυυρρρρ≡≡≡≡µµµµ

xxyyzxzyzx -(|)&([
hence

)(&
 thatfollowsIt

Lambda calculus II 33

The set of Typable terms is not closed under expansion.

A stronger failure of subject expansion has shown van Bakel.

and

 such that and are There 'T',', MMMM ββββ→>→>→>→>∈∈∈∈σσσσσσσσΛΛΛΛ∈∈∈∈

.:'|

,':'|
,:|

σσσσ−−−−////

σσσσ−−−−
σσσσ−−−−

M

M
M

but

We have).(:).(KI|),(:I| σσσσ→→→→σσσσλλλλ−−−−////σσσσ→→→→σσσσ−−−− xxxbut

Observation. (van Bakel 1991)

Lambda calculus II 34

Proof.
).()('

)(,SK',.
ββββ→→→→ββββ→→→→αααα→→→→ββββ≡≡≡≡σσσσ

ββββ→→→→ββββ→→→→αααα≡≡≡≡σσσσ≡≡≡≡λλλλ≡≡≡≡

and Take MyxyM

).(:SK| ββββ→→→→ββββ→→→→αααα−−−−//// fact that theuseThen

.).(KI).(
)(:SK|

→→→→λλλλλλλλλλλλ
ττττσσσσσσσσ→→→→σσσσ→→→→ττττ−−−−////

in typeno have and (b)
.,allfor (a)

xxxxxx

Exercises.
 thatShow

Lambda calculus II 35

Proof.

(a) If)(:).))((.(-SK| σσσσ→→→→σσσσ→→→→ττττλλλλλλλλ≡≡≡≡ xxyyzxzxyz

Then by the generation lemma

]:).(|)&()(&:))(.(|
:[

]:).(|&)(:))(.([|

ρρρρλλλλ−−−−νννν→→→→µµµµ≡≡≡≡σσσσ→→→→σσσσ→→→→ττττ→→→→ρρρρννννλλλλ−−−−
µµµµννννµµµµ∃∃∃∃ρρρρ∃∃∃∃

ρρρρλλλλ−−−−σσσσ→→→→σσσσ→→→→ττττ→→→→ρρρρλλλλ−−−−ρρρρ∃∃∃∃

xxyyzxzyz
x

xxyyzxzxyz

,
obtain weagain, lemma Generation theusing

Lambda calculus II 36

]:).(|)&()(&:))(. ρρρρλλλλ−−−−σσσσ→→→→σσσσ→→→→ττττ≡≡≡≡ϕϕϕϕ→→→→εεεεϕϕϕϕλλλλ
εεεερρρρϕϕϕϕεεεε∃∃∃∃ρρρρ∃∃∃∃

xxyyzxzz-(|
:y,:[x,

have we,repeatedly lemma Generation theusing

].:).:))(.(|: ρρρρλλλλσσσσ→→→→σσσσ→→→→ττττλλλλ−−−−ρρρρρρρρ∃∃∃∃

σσσσ→→→→σσσσ→→→→ττττ≡≡≡≡υυυυρρρρ≡≡≡≡µµµµ

xxyyzxzyzx -(|)&([
hence

)(&
 thatfollowsIt

Lambda calculus II 33

The set of Typable terms is not closed under expansion.

A stronger failure of subject expansion has shown van Bakel.

and

 such that and are There 'T',', MMMM ββββ→>→>→>→>∈∈∈∈σσσσσσσσΛΛΛΛ∈∈∈∈

.:'|

,':'|
,:|

σσσσ−−−−////

σσσσ−−−−
σσσσ−−−−

M

M
M

but

We have).(:).(KI|),(:I| σσσσ→→→→σσσσλλλλ−−−−////σσσσ→→→→σσσσ−−−− xxxbut

Observation. (van Bakel 1991)

Lambda calculus II 34

Proof.
).()('

)(,SK',.
ββββ→→→→ββββ→→→→αααα→→→→ββββ≡≡≡≡σσσσ

ββββ→→→→ββββ→→→→αααα≡≡≡≡σσσσ≡≡≡≡λλλλ≡≡≡≡

and Take MyxyM

).(:SK| ββββ→→→→ββββ→→→→αααα−−−−//// fact that theuseThen

.).(KI).(
)(:SK|

→→→→λλλλλλλλλλλλ
ττττσσσσσσσσ→→→→σσσσ→→→→ττττ−−−−////

in typeno have and (b)
.,allfor (a)

xxxxxx

Exercises.
 thatShow

Lambda calculus II 35

Proof.

(a) If)(:).))((.(-SK| σσσσ→→→→σσσσ→→→→ττττλλλλλλλλ≡≡≡≡ xxyyzxzxyz

Then by the generation lemma

]:).(|)&()(&:))(.(|
:[

]:).(|&)(:))(.([|

ρρρρλλλλ−−−−νννν→→→→µµµµ≡≡≡≡σσσσ→→→→σσσσ→→→→ττττ→→→→ρρρρννννλλλλ−−−−
µµµµννννµµµµ∃∃∃∃ρρρρ∃∃∃∃

ρρρρλλλλ−−−−σσσσ→→→→σσσσ→→→→ττττ→→→→ρρρρλλλλ−−−−ρρρρ∃∃∃∃

xxyyzxzyz
x

xxyyzxzxyz

,
obtain weagain, lemma Generation theusing

Lambda calculus II 36

]:).(|)&()(&:))(. ρρρρλλλλ−−−−σσσσ→→→→σσσσ→→→→ττττ≡≡≡≡ϕϕϕϕ→→→→εεεεϕϕϕϕλλλλ
εεεερρρρϕϕϕϕεεεε∃∃∃∃ρρρρ∃∃∃∃

xxyyzxzz-(|
:y,:[x,

have we,repeatedly lemma Generation theusing

].:).:))(.(|: ρρρρλλλλσσσσ→→→→σσσσ→→→→ττττλλλλ−−−−ρρρρρρρρ∃∃∃∃

σσσσ→→→→σσσσ→→→→ττττ≡≡≡≡υυυυρρρρ≡≡≡≡µµµµ

xxyyzxzyzx -(|)&([
hence

)(&
 thatfollowsIt

Lambda calculus II 33

The set of Typable terms is not closed under expansion.

A stronger failure of subject expansion has shown van Bakel.

and

 such that and are There 'T',', MMMM ββββ→>→>→>→>∈∈∈∈σσσσσσσσΛΛΛΛ∈∈∈∈

.:'|

,':'|
,:|

σσσσ−−−−////

σσσσ−−−−
σσσσ−−−−

M

M
M

but

We have).(:).(KI|),(:I| σσσσ→→→→σσσσλλλλ−−−−////σσσσ→→→→σσσσ−−−− xxxbut

Observation. (van Bakel 1991)

Lambda calculus II 34

Proof.
).()('

)(,SK',.
ββββ→→→→ββββ→→→→αααα→→→→ββββ≡≡≡≡σσσσ

ββββ→→→→ββββ→→→→αααα≡≡≡≡σσσσ≡≡≡≡λλλλ≡≡≡≡

and Take MyxyM

).(:SK| ββββ→→→→ββββ→→→→αααα−−−−//// fact that theuseThen

.).(KI).(
)(:SK|

→→→→λλλλλλλλλλλλ
ττττσσσσσσσσ→→→→σσσσ→→→→ττττ−−−−////

in typeno have and (b)
.,allfor (a)

xxxxxx

Exercises.
 thatShow

Lambda calculus II 35

Proof.

(a) If)(:).))((.(-SK| σσσσ→→→→σσσσ→→→→ττττλλλλλλλλ≡≡≡≡ xxyyzxzxyz

Then by the generation lemma

]:).(|)&()(&:))(.(|
:[

]:).(|&)(:))(.([|

ρρρρλλλλ−−−−νννν→→→→µµµµ≡≡≡≡σσσσ→→→→σσσσ→→→→ττττ→→→→ρρρρννννλλλλ−−−−
µµµµννννµµµµ∃∃∃∃ρρρρ∃∃∃∃

ρρρρλλλλ−−−−σσσσ→→→→σσσσ→→→→ττττ→→→→ρρρρλλλλ−−−−ρρρρ∃∃∃∃

xxyyzxzyz
x

xxyyzxzxyz

,
obtain weagain, lemma Generation theusing

Lambda calculus II 36

]:).(|)&()(&:))(. ρρρρλλλλ−−−−σσσσ→→→→σσσσ→→→→ττττ≡≡≡≡ϕϕϕϕ→→→→εεεεϕϕϕϕλλλλ
εεεερρρρϕϕϕϕεεεε∃∃∃∃ρρρρ∃∃∃∃

xxyyzxzz-(|
:y,:[x,

have we,repeatedly lemma Generation theusing

].:).:))(.(|: ρρρρλλλλσσσσ→→→→σσσσ→→→→ττττλλλλ−−−−ρρρρρρρρ∃∃∃∃

σσσσ→→→→σσσσ→→→→ττττ≡≡≡≡υυυυρρρρ≡≡≡≡µµµµ

xxyyzxzyzx -(|)&([
hence

)(&
 thatfollowsIt

Lambda calculus II 37

have wehence,

thus
σσσσ→→→→σσσσ≡≡≡≡ϕϕϕϕττττ≡≡≡≡εεεε &

ion.contradict a

now
)](:).(|&:))(.(|:,:[

]:).(|&:))(.(|:,:[

ρρρρ→→→→ττττ→→→→ρρρρλλλλ−−−−ττττλλλλ−−−−ττττρρρρρρρρ∃∃∃∃

ρρρρλλλλ−−−−ττττλλλλ−−−−ττττρρρρρρρρ∃∃∃∃

xxyyzxzzyx

xxyyzxzzyx

 thatlemma Generation the
from followsIt holds somefor that Assume(b) .:).(|,, σσσσλλλλ−−−−ΓΓΓΓσσσσΓΓΓΓ xxx

]:&)(:&:|:,[,

])(&:|:,[,

ζζζζττττ→→→→ζζζζττττ−−−−ρρρρΓΓΓΓζζζζ∃∃∃∃ττττρρρρ∃∃∃∃

σσσσ≡≡≡≡ττττ→→→→ρρρρττττ−−−−ρρρρΓΓΓΓττττρρρρ∃∃∃∃

xxxxx

xxx
then

Snímek 40

Lambda calculus II 38

hence

])(&)(:|:,[, σσσσ≡≡≡≡ττττ→→→→ρρρρττττ→→→→ρρρρ−−−−ρρρρΓΓΓΓττττρρρρ∃∃∃∃ xx

)](:|:,[, ττττ→→→→ρρρρ−−−−ρρρρΓΓΓΓττττρρρρ∃∃∃∃ xx

])(&:&)(:|:,[, σσσσ≡≡≡≡ττττ→→→→ρρρρζζζζττττ→→→→ζζζζ−−−−ρρρρΓΓΓΓζζζζ∃∃∃∃ττττρρρρ∃∃∃∃ xxx

a contradiction. Thus has no type in).(xxxλλλλ Curry.−−−−→→→→λλλλ

lemma. subterms of Typability by the typeno has).(KI xxxλλλλ

Lambda calculus II 39

The system A digression.Church−−−−→→→→λλλλ

At the first sight, the main difference between the Curry systems of
type assignment and Church typing systems consists in the fact that
in the Curry system, the bounded variables are typed implicitely by
the system while in the Church typing system, the bounded
variables are typed explicitely.

But there is in it more than that:

).(:).:(|

,)(:).(|

σσσσ→→→→σσσσσσσσλλλλ−−−−

σσσσσσσσ→→→→σσσσλλλλ−−−−

xx

xx

Church

Curry

while

 every typefor
has one

Lambda calculus II 40

The term (λx.x) is annotated in the Church sustem by �:σ�, in fact it is
not a lambda term in the strict sense.

The intuitive meaning is that (λx:σ.x) takes the argument x from the
domain of the type σ. The explicit mention of types in terms make it
possible the type checking i.e. to decide whether a term has a certain type.
For some Curry systems this question is undecidable.

Definition. (pseudoterms)

Let T be some set of types. The set of T-annotated λ-terms (also called
pseudoterms), denoted by is defined as follows: ,TΛΛΛΛ

TTTT T:|| ΛΛΛΛλλλλΛΛΛΛΛΛΛΛ====ΛΛΛΛ xV

where V is the set of term variables.

Lambda calculus II 37

have wehence,

thus
σσσσ→→→→σσσσ≡≡≡≡ϕϕϕϕττττ≡≡≡≡εεεε &

ion.contradict a

now
)](:).(|&:))(.(|:,:[

]:).(|&:))(.(|:,:[

ρρρρ→→→→ττττ→→→→ρρρρλλλλ−−−−ττττλλλλ−−−−ττττρρρρρρρρ∃∃∃∃

ρρρρλλλλ−−−−ττττλλλλ−−−−ττττρρρρρρρρ∃∃∃∃

xxyyzxzzyx

xxyyzxzzyx

 thatlemma Generation the
from followsIt holds somefor that Assume(b) .:).(|,, σσσσλλλλ−−−−ΓΓΓΓσσσσΓΓΓΓ xxx

]:&)(:&:|:,[,

])(&:|:,[,

ζζζζττττ→→→→ζζζζττττ−−−−ρρρρΓΓΓΓζζζζ∃∃∃∃ττττρρρρ∃∃∃∃

σσσσ≡≡≡≡ττττ→→→→ρρρρττττ−−−−ρρρρΓΓΓΓττττρρρρ∃∃∃∃

xxxxx

xxx
then

Snímek 40

Lambda calculus II 38

hence

])(&)(:|:,[, σσσσ≡≡≡≡ττττ→→→→ρρρρττττ→→→→ρρρρ−−−−ρρρρΓΓΓΓττττρρρρ∃∃∃∃ xx

)](:|:,[, ττττ→→→→ρρρρ−−−−ρρρρΓΓΓΓττττρρρρ∃∃∃∃ xx

])(&:&)(:|:,[, σσσσ≡≡≡≡ττττ→→→→ρρρρζζζζττττ→→→→ζζζζ−−−−ρρρρΓΓΓΓζζζζ∃∃∃∃ττττρρρρ∃∃∃∃ xxx

a contradiction. Thus has no type in).(xxxλλλλ Curry.−−−−→→→→λλλλ

lemma. subterms of Typability by the typeno has).(KI xxxλλλλ

Lambda calculus II 39

The system A digression.Church−−−−→→→→λλλλ

At the first sight, the main difference between the Curry systems of
type assignment and Church typing systems consists in the fact that
in the Curry system, the bounded variables are typed implicitely by
the system while in the Church typing system, the bounded
variables are typed explicitely.

But there is in it more than that:

).(:).:(|

,)(:).(|

σσσσ→→→→σσσσσσσσλλλλ−−−−

σσσσσσσσ→→→→σσσσλλλλ−−−−

xx

xx

Church

Curry

while

 every typefor
has one

Lambda calculus II 40

The term (λx.x) is annotated in the Church sustem by �:σ�, in fact it is
not a lambda term in the strict sense.

The intuitive meaning is that (λx:σ.x) takes the argument x from the
domain of the type σ. The explicit mention of types in terms make it
possible the type checking i.e. to decide whether a term has a certain type.
For some Curry systems this question is undecidable.

Definition. (pseudoterms)

Let T be some set of types. The set of T-annotated λ-terms (also called
pseudoterms), denoted by is defined as follows: ,TΛΛΛΛ

TTTT T:|| ΛΛΛΛλλλλΛΛΛΛΛΛΛΛ====ΛΛΛΛ xV

where V is the set of term variables.

Lambda calculus II 37

have wehence,

thus
σσσσ→→→→σσσσ≡≡≡≡ϕϕϕϕττττ≡≡≡≡εεεε &

ion.contradict a

now
)](:).(|&:))(.(|:,:[

]:).(|&:))(.(|:,:[

ρρρρ→→→→ττττ→→→→ρρρρλλλλ−−−−ττττλλλλ−−−−ττττρρρρρρρρ∃∃∃∃

ρρρρλλλλ−−−−ττττλλλλ−−−−ττττρρρρρρρρ∃∃∃∃

xxyyzxzzyx

xxyyzxzzyx

 thatlemma Generation the
from followsIt holds somefor that Assume(b) .:).(|,, σσσσλλλλ−−−−ΓΓΓΓσσσσΓΓΓΓ xxx

]:&)(:&:|:,[,

])(&:|:,[,

ζζζζττττ→→→→ζζζζττττ−−−−ρρρρΓΓΓΓζζζζ∃∃∃∃ττττρρρρ∃∃∃∃

σσσσ≡≡≡≡ττττ→→→→ρρρρττττ−−−−ρρρρΓΓΓΓττττρρρρ∃∃∃∃

xxxxx

xxx
then

Snímek 40

Lambda calculus II 38

hence

])(&)(:|:,[, σσσσ≡≡≡≡ττττ→→→→ρρρρττττ→→→→ρρρρ−−−−ρρρρΓΓΓΓττττρρρρ∃∃∃∃ xx

)](:|:,[, ττττ→→→→ρρρρ−−−−ρρρρΓΓΓΓττττρρρρ∃∃∃∃ xx

])(&:&)(:|:,[, σσσσ≡≡≡≡ττττ→→→→ρρρρζζζζττττ→→→→ζζζζ−−−−ρρρρΓΓΓΓζζζζ∃∃∃∃ττττρρρρ∃∃∃∃ xxx

a contradiction. Thus has no type in).(xxxλλλλ Curry.−−−−→→→→λλλλ

lemma. subterms of Typability by the typeno has).(KI xxxλλλλ

Lambda calculus II 39

The system A digression.Church−−−−→→→→λλλλ

At the first sight, the main difference between the Curry systems of
type assignment and Church typing systems consists in the fact that
in the Curry system, the bounded variables are typed implicitely by
the system while in the Church typing system, the bounded
variables are typed explicitely.

But there is in it more than that:

).(:).:(|

,)(:).(|

σσσσ→→→→σσσσσσσσλλλλ−−−−

σσσσσσσσ→→→→σσσσλλλλ−−−−

xx

xx

Church

Curry

while

 every typefor
has one

Lambda calculus II 40

The term (λx.x) is annotated in the Church sustem by �:σ�, in fact it is
not a lambda term in the strict sense.

The intuitive meaning is that (λx:σ.x) takes the argument x from the
domain of the type σ. The explicit mention of types in terms make it
possible the type checking i.e. to decide whether a term has a certain type.
For some Curry systems this question is undecidable.

Definition. (pseudoterms)

Let T be some set of types. The set of T-annotated λ-terms (also called
pseudoterms), denoted by is defined as follows: ,TΛΛΛΛ

TTTT T:|| ΛΛΛΛλλλλΛΛΛΛΛΛΛΛ====ΛΛΛΛ xV

where V is the set of term variables.

Lambda calculus II 37

have wehence,

thus
σσσσ→→→→σσσσ≡≡≡≡ϕϕϕϕττττ≡≡≡≡εεεε &

ion.contradict a

now
)](:).(|&:))(.(|:,:[

]:).(|&:))(.(|:,:[

ρρρρ→→→→ττττ→→→→ρρρρλλλλ−−−−ττττλλλλ−−−−ττττρρρρρρρρ∃∃∃∃

ρρρρλλλλ−−−−ττττλλλλ−−−−ττττρρρρρρρρ∃∃∃∃

xxyyzxzzyx

xxyyzxzzyx

 thatlemma Generation the
from followsIt holds somefor that Assume(b) .:).(|,, σσσσλλλλ−−−−ΓΓΓΓσσσσΓΓΓΓ xxx

]:&)(:&:|:,[,

])(&:|:,[,

ζζζζττττ→→→→ζζζζττττ−−−−ρρρρΓΓΓΓζζζζ∃∃∃∃ττττρρρρ∃∃∃∃

σσσσ≡≡≡≡ττττ→→→→ρρρρττττ−−−−ρρρρΓΓΓΓττττρρρρ∃∃∃∃

xxxxx

xxx
then

Snímek 40

Lambda calculus II 38

hence

])(&)(:|:,[, σσσσ≡≡≡≡ττττ→→→→ρρρρττττ→→→→ρρρρ−−−−ρρρρΓΓΓΓττττρρρρ∃∃∃∃ xx

)](:|:,[, ττττ→→→→ρρρρ−−−−ρρρρΓΓΓΓττττρρρρ∃∃∃∃ xx

])(&:&)(:|:,[, σσσσ≡≡≡≡ττττ→→→→ρρρρζζζζττττ→→→→ζζζζ−−−−ρρρρΓΓΓΓζζζζ∃∃∃∃ττττρρρρ∃∃∃∃ xxx

a contradiction. Thus has no type in).(xxxλλλλ Curry.−−−−→→→→λλλλ

lemma. subterms of Typability by the typeno has).(KI xxxλλλλ

Lambda calculus II 39

The system A digression.Church−−−−→→→→λλλλ

At the first sight, the main difference between the Curry systems of
type assignment and Church typing systems consists in the fact that
in the Curry system, the bounded variables are typed implicitely by
the system while in the Church typing system, the bounded
variables are typed explicitely.

But there is in it more than that:

).(:).:(|

,)(:).(|

σσσσ→→→→σσσσσσσσλλλλ−−−−

σσσσσσσσ→→→→σσσσλλλλ−−−−

xx

xx

Church

Curry

while

 every typefor
has one

Lambda calculus II 40

The term (λx.x) is annotated in the Church sustem by �:σ�, in fact it is
not a lambda term in the strict sense.

The intuitive meaning is that (λx:σ.x) takes the argument x from the
domain of the type σ. The explicit mention of types in terms make it
possible the type checking i.e. to decide whether a term has a certain type.
For some Curry systems this question is undecidable.

Definition. (pseudoterms)

Let T be some set of types. The set of T-annotated λ-terms (also called
pseudoterms), denoted by is defined as follows: ,TΛΛΛΛ

TTTT T:|| ΛΛΛΛλλλλΛΛΛΛΛΛΛΛ====ΛΛΛΛ xV

where V is the set of term variables.

Lambda calculus II 41

The same syntactic conventions are used for as for e.g. TΛΛΛΛ ,ΛΛΛΛ

))).:(:(:(.:: LLL Mnnx22x11xMnnx11x σσσσλλλλσσσσλλλλσσσσλλλλ≡≡≡≡σσσσλλλλσσσσλλλλ

Mx .: σσσσλλλλ≡≡≡≡ rr

Remark.

Several systems of typed λ-calculi `a la Church resemble to the
Curry systems of type assignments since they consist of a choice of
the set T of types and of an assignment of types to termsT∈∈∈∈σσσσ

.TΛΛΛΛ∈∈∈∈M

However, this is not the case in all systems `a la Church. In some
such systems the sets of terms and types are defined simultaneous-
ly.

Lambda calculus II 42

Anyway, for the separate definition of the sets of types
and and (pseudo)terms is possible and one may have the same set of
types as for

Church−−−−→→→→λλλλ

)(T →→→→λλλλ==== Type Curry.−−−−→→→→λλλλ

Definition.
The typed lambda calculus consists ofChurch−−−−→→→→λλλλ

(i) the set of types defined by)(T →→→→λλλλ==== Type
TT|VT →→→→====

where V is the set of type variables.

(ii) statements of the form T.: T ∈∈∈∈σσσσΛΛΛΛ∈∈∈∈σσσσ andwith MM

Lambda calculus II 43

(iii) bases which are again sets of statements with only distinct
(term) variables as subjects.

(iv) axioms and rules Church−−−−→→→→λλλλ

(axiom) ΓΓΓΓ∈∈∈∈σσσσσσσσ−−−−ΓΓΓΓ):(:| xx if

ττττΓΓΓΓ
σσσσΓΓΓΓττττ→→→→σσσσΓΓΓΓ→→→→

:(MN)-|
:N-|)(:M-| on)-eliminati(

)
:,

ττττ→→→→σσσσσσσσλλλλΓΓΓΓ
ττττσσσσΓΓΓΓ→→→→

(:M).:x(-|
:M-| ion)-introduct(x

Definition.
A statement M :σ is derivable from the basis Γ, notation Γ |- M :σ,
if M :σ can be produced using the above axioms and rules.

Lambda calculus II 44

As we have seen, derivations can be given in several styles. We will not
repeat it here, although we slightly prefere the Gentzen (natural deduct-
ion) style.

Definition.
The set of legal by defined is (by denoted terms,),→→→→λλλλΛΛΛΛ−−−−→→→→λλλλ

}.:|,|{) T σσσσ−−−−ΓΓΓΓσσσσΓΓΓΓ∃∃∃∃ΛΛΛΛ∈∈∈∈====→→→→λλλλΛΛΛΛ MM(

To refer specifically to one uses the notation Church,−−−−→→→→λλλλ

.:| σσσσ−−−−ΓΓΓΓ −−−−→→→→λλλλ MChurch

If there is little danger of ambiguity one uses also

.||,| −−−−−−−−−−−− →→→→λλλλ or Church

Lambda calculus II 41

The same syntactic conventions are used for as for e.g. TΛΛΛΛ ,ΛΛΛΛ

))).:(:(:(.:: LLL Mnnx22x11xMnnx11x σσσσλλλλσσσσλλλλσσσσλλλλ≡≡≡≡σσσσλλλλσσσσλλλλ

Mx .: σσσσλλλλ≡≡≡≡ rr

Remark.

Several systems of typed λ-calculi `a la Church resemble to the
Curry systems of type assignments since they consist of a choice of
the set T of types and of an assignment of types to termsT∈∈∈∈σσσσ

.TΛΛΛΛ∈∈∈∈M

However, this is not the case in all systems `a la Church. In some
such systems the sets of terms and types are defined simultaneous-
ly.

Lambda calculus II 42

Anyway, for the separate definition of the sets of types
and and (pseudo)terms is possible and one may have the same set of
types as for

Church−−−−→→→→λλλλ

)(T →→→→λλλλ==== Type Curry.−−−−→→→→λλλλ

Definition.
The typed lambda calculus consists ofChurch−−−−→→→→λλλλ

(i) the set of types defined by)(T →→→→λλλλ==== Type
TT|VT →→→→====

where V is the set of type variables.

(ii) statements of the form T.: T ∈∈∈∈σσσσΛΛΛΛ∈∈∈∈σσσσ andwith MM

Lambda calculus II 43

(iii) bases which are again sets of statements with only distinct
(term) variables as subjects.

(iv) axioms and rules Church−−−−→→→→λλλλ

(axiom) ΓΓΓΓ∈∈∈∈σσσσσσσσ−−−−ΓΓΓΓ):(:| xx if

ττττΓΓΓΓ
σσσσΓΓΓΓττττ→→→→σσσσΓΓΓΓ→→→→

:(MN)-|
:N-|)(:M-| on)-eliminati(

)
:,

ττττ→→→→σσσσσσσσλλλλΓΓΓΓ
ττττσσσσΓΓΓΓ→→→→

(:M).:x(-|
:M-| ion)-introduct(x

Definition.
A statement M :σ is derivable from the basis Γ, notation Γ |- M :σ,
if M :σ can be produced using the above axioms and rules.

Lambda calculus II 44

As we have seen, derivations can be given in several styles. We will not
repeat it here, although we slightly prefere the Gentzen (natural deduct-
ion) style.

Definition.
The set of legal by defined is (by denoted terms,),→→→→λλλλΛΛΛΛ−−−−→→→→λλλλ

}.:|,|{) T σσσσ−−−−ΓΓΓΓσσσσΓΓΓΓ∃∃∃∃ΛΛΛΛ∈∈∈∈====→→→→λλλλΛΛΛΛ MM(

To refer specifically to one uses the notation Church,−−−−→→→→λλλλ

.:| σσσσ−−−−ΓΓΓΓ −−−−→→→→λλλλ MChurch

If there is little danger of ambiguity one uses also

.||,| −−−−−−−−−−−− →→→→λλλλ or Church

Lambda calculus II 41

The same syntactic conventions are used for as for e.g. TΛΛΛΛ ,ΛΛΛΛ

))).:(:(:(.:: LLL Mnnx22x11xMnnx11x σσσσλλλλσσσσλλλλσσσσλλλλ≡≡≡≡σσσσλλλλσσσσλλλλ

Mx .: σσσσλλλλ≡≡≡≡ rr

Remark.

Several systems of typed λ-calculi `a la Church resemble to the
Curry systems of type assignments since they consist of a choice of
the set T of types and of an assignment of types to termsT∈∈∈∈σσσσ

.TΛΛΛΛ∈∈∈∈M

However, this is not the case in all systems `a la Church. In some
such systems the sets of terms and types are defined simultaneous-
ly.

Lambda calculus II 42

Anyway, for the separate definition of the sets of types
and and (pseudo)terms is possible and one may have the same set of
types as for

Church−−−−→→→→λλλλ

)(T →→→→λλλλ==== Type Curry.−−−−→→→→λλλλ

Definition.
The typed lambda calculus consists ofChurch−−−−→→→→λλλλ

(i) the set of types defined by)(T →→→→λλλλ==== Type
TT|VT →→→→====

where V is the set of type variables.

(ii) statements of the form T.: T ∈∈∈∈σσσσΛΛΛΛ∈∈∈∈σσσσ andwith MM

Lambda calculus II 43

(iii) bases which are again sets of statements with only distinct
(term) variables as subjects.

(iv) axioms and rules Church−−−−→→→→λλλλ

(axiom) ΓΓΓΓ∈∈∈∈σσσσσσσσ−−−−ΓΓΓΓ):(:| xx if

ττττΓΓΓΓ
σσσσΓΓΓΓττττ→→→→σσσσΓΓΓΓ→→→→

:(MN)-|
:N-|)(:M-| on)-eliminati(

)
:,

ττττ→→→→σσσσσσσσλλλλΓΓΓΓ
ττττσσσσΓΓΓΓ→→→→

(:M).:x(-|
:M-| ion)-introduct(x

Definition.
A statement M :σ is derivable from the basis Γ, notation Γ |- M :σ,
if M :σ can be produced using the above axioms and rules.

Lambda calculus II 44

As we have seen, derivations can be given in several styles. We will not
repeat it here, although we slightly prefere the Gentzen (natural deduct-
ion) style.

Definition.
The set of legal by defined is (by denoted terms,),→→→→λλλλΛΛΛΛ−−−−→→→→λλλλ

}.:|,|{) T σσσσ−−−−ΓΓΓΓσσσσΓΓΓΓ∃∃∃∃ΛΛΛΛ∈∈∈∈====→→→→λλλλΛΛΛΛ MM(

To refer specifically to one uses the notation Church,−−−−→→→→λλλλ

.:| σσσσ−−−−ΓΓΓΓ −−−−→→→→λλλλ MChurch

If there is little danger of ambiguity one uses also

.||,| −−−−−−−−−−−− →→→→λλλλ or Church

Lambda calculus II 41

The same syntactic conventions are used for as for e.g. TΛΛΛΛ ,ΛΛΛΛ

))).:(:(:(.:: LLL Mnnx22x11xMnnx11x σσσσλλλλσσσσλλλλσσσσλλλλ≡≡≡≡σσσσλλλλσσσσλλλλ

Mx .: σσσσλλλλ≡≡≡≡ rr

Remark.

Several systems of typed λ-calculi `a la Church resemble to the
Curry systems of type assignments since they consist of a choice of
the set T of types and of an assignment of types to termsT∈∈∈∈σσσσ

.TΛΛΛΛ∈∈∈∈M

However, this is not the case in all systems `a la Church. In some
such systems the sets of terms and types are defined simultaneous-
ly.

Lambda calculus II 42

Anyway, for the separate definition of the sets of types
and and (pseudo)terms is possible and one may have the same set of
types as for

Church−−−−→→→→λλλλ

)(T →→→→λλλλ==== Type Curry.−−−−→→→→λλλλ

Definition.
The typed lambda calculus consists ofChurch−−−−→→→→λλλλ

(i) the set of types defined by)(T →→→→λλλλ==== Type
TT|VT →→→→====

where V is the set of type variables.

(ii) statements of the form T.: T ∈∈∈∈σσσσΛΛΛΛ∈∈∈∈σσσσ andwith MM

Lambda calculus II 43

(iii) bases which are again sets of statements with only distinct
(term) variables as subjects.

(iv) axioms and rules Church−−−−→→→→λλλλ

(axiom) ΓΓΓΓ∈∈∈∈σσσσσσσσ−−−−ΓΓΓΓ):(:| xx if

ττττΓΓΓΓ
σσσσΓΓΓΓττττ→→→→σσσσΓΓΓΓ→→→→

:(MN)-|
:N-|)(:M-| on)-eliminati(

)
:,

ττττ→→→→σσσσσσσσλλλλΓΓΓΓ
ττττσσσσΓΓΓΓ→→→→

(:M).:x(-|
:M-| ion)-introduct(x

Definition.
A statement M :σ is derivable from the basis Γ, notation Γ |- M :σ,
if M :σ can be produced using the above axioms and rules.

Lambda calculus II 44

As we have seen, derivations can be given in several styles. We will not
repeat it here, although we slightly prefere the Gentzen (natural deduct-
ion) style.

Definition.
The set of legal by defined is (by denoted terms,),→→→→λλλλΛΛΛΛ−−−−→→→→λλλλ

}.:|,|{) T σσσσ−−−−ΓΓΓΓσσσσΓΓΓΓ∃∃∃∃ΛΛΛΛ∈∈∈∈====→→→→λλλλΛΛΛΛ MM(

To refer specifically to one uses the notation Church,−−−−→→→→λλλλ

.:| σσσσ−−−−ΓΓΓΓ −−−−→→→→λλλλ MChurch

If there is little danger of ambiguity one uses also

.||,| −−−−−−−−−−−− →→→→λλλλ or Church

Lambda calculus II 45

Exercises.

)(:).:(| σσσσ→→→→σσσσσσσσλλλλ−−−− xx (a)

)(:).::(| σσσσ→→→→ττττ→→→→σσσσττττλλλλσσσσλλλλ−−−− xyx (b)

)(:).:(| σσσσ→→→→ττττττττλλλλ−−−− xy (c)

Similarly as for the type-free theory, one can define reduction and
conversion on the set of pseudoterms .TΛΛΛΛ

Definition.

The binary relations denoting one-step
β-reduction, many-steps β-reduction and β-convertibility on
respectively, are generated by the contraction rule

,, ββββββββββββ ====→>→>→>→>→→→→ and

].:[).:(NxMNMx ====→→→→σσσσλλλλ

.TΛΛΛΛ

Lambda calculus II 46

Examples.

).:().:)(.:(yyyyyyxx ττττλλλλ→→→→ττττλλλλσσσσλλλλ ββββ (a)

).:().:)(.::()(yyzzxyyx ττττλλλλ→>→>→>→>ππππλλλλττττλλλλσσσσλλλλ ββββ b

)().:)(.::(zzzzzzyyx ββββ→>→>→>→>ππππλλλλττττλλλλσσσσλλλλ (c)

Remarks.

(i) It can be shown that the Church-Rosser theorem for also
holds on

ββββ→>→>→>→>
.TΛΛΛΛ

(ii) The following results for are essentially the
same as the corresponding propositions for

Church−−−−→→→→λλλλ
Curry.−−−−→→→→λλλλ

Lambda calculus II 47

Basis lemma for

Let Γ be a basis, we have

Church.−−−−→→→→λλλλ

(i) If is another basis, then´´, ΓΓΓΓ⊆⊆⊆⊆ΓΓΓΓΓΓΓΓ .:´|:| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

(ii)).()(:| ΓΓΓΓ⊆⊆⊆⊆⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ dom MFVM
(iii) .:|)(|:| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MMFVM

Generation lemma for Church.−−−−→→→→λλλλ

(i) .):(:| ΓΓΓΓ∈∈∈∈σσσσ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ xx

(ii)].:|&)(:|[:| σσσσ−−−−ΓΓΓΓττττ→→→→σσσσ−−−−ΓΓΓΓσσσσ∃∃∃∃⇒⇒⇒⇒ττττ−−−−ΓΓΓΓ NMMN

(iii)].:|:,&)([:).:(| ττττ−−−−σσσσΓΓΓΓττττ→→→→σσσσ====ρρρρττττ∃∃∃∃⇒⇒⇒⇒ρρρρσσσσλλλλ−−−−ΓΓΓΓ MxMx

Lambda calculus II 48

Typability of subterms in Church.−−−−→→→→λλλλ
If M´ is a subterm of M and M has a type i.e. if

for some then M´ has a type as well, i.e.

for some

σσσσ−−−−ΓΓΓΓ :| MChurch

´´:´| σσσσ−−−−ΓΓΓΓ MChurch

´.´ σσσσΓΓΓΓ and

,σσσσΓΓΓΓ and

Substitution lemma for Church.−−−−→→→→λλλλ
(i)].:[:]:[|]:[:| ττττ====αααασσσσττττ====αααα−−−−ττττ====ααααΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

(ii) Suppose and .:|:|:, σσσσ−−−−ΓΓΓΓττττ−−−−σσσσΓΓΓΓ NMx
,:]:[| ττττ====−−−−ΓΓΓΓ NxM Then

where α, x are a type and a term variable respectively and σ, τ are
types.

Lambda calculus II 45

Exercises.

)(:).:(| σσσσ→→→→σσσσσσσσλλλλ−−−− xx (a)

)(:).::(| σσσσ→→→→ττττ→→→→σσσσττττλλλλσσσσλλλλ−−−− xyx (b)

)(:).:(| σσσσ→→→→ττττττττλλλλ−−−− xy (c)

Similarly as for the type-free theory, one can define reduction and
conversion on the set of pseudoterms .TΛΛΛΛ

Definition.

The binary relations denoting one-step
β-reduction, many-steps β-reduction and β-convertibility on
respectively, are generated by the contraction rule

,, ββββββββββββ ====→>→>→>→>→→→→ and

].:[).:(NxMNMx ====→→→→σσσσλλλλ

.TΛΛΛΛ

Lambda calculus II 46

Examples.

).:().:)(.:(yyyyyyxx ττττλλλλ→→→→ττττλλλλσσσσλλλλ ββββ (a)

).:().:)(.::()(yyzzxyyx ττττλλλλ→>→>→>→>ππππλλλλττττλλλλσσσσλλλλ ββββ b

)().:)(.::(zzzzzzyyx ββββ→>→>→>→>ππππλλλλττττλλλλσσσσλλλλ (c)

Remarks.

(i) It can be shown that the Church-Rosser theorem for also
holds on

ββββ→>→>→>→>
.TΛΛΛΛ

(ii) The following results for are essentially the
same as the corresponding propositions for

Church−−−−→→→→λλλλ
Curry.−−−−→→→→λλλλ

Lambda calculus II 47

Basis lemma for

Let Γ be a basis, we have

Church.−−−−→→→→λλλλ

(i) If is another basis, then´´, ΓΓΓΓ⊆⊆⊆⊆ΓΓΓΓΓΓΓΓ .:´|:| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

(ii)).()(:| ΓΓΓΓ⊆⊆⊆⊆⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ dom MFVM
(iii) .:|)(|:| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MMFVM

Generation lemma for Church.−−−−→→→→λλλλ

(i) .):(:| ΓΓΓΓ∈∈∈∈σσσσ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ xx

(ii)].:|&)(:|[:| σσσσ−−−−ΓΓΓΓττττ→→→→σσσσ−−−−ΓΓΓΓσσσσ∃∃∃∃⇒⇒⇒⇒ττττ−−−−ΓΓΓΓ NMMN

(iii)].:|:,&)([:).:(| ττττ−−−−σσσσΓΓΓΓττττ→→→→σσσσ====ρρρρττττ∃∃∃∃⇒⇒⇒⇒ρρρρσσσσλλλλ−−−−ΓΓΓΓ MxMx

Lambda calculus II 48

Typability of subterms in Church.−−−−→→→→λλλλ
If M´ is a subterm of M and M has a type i.e. if

for some then M´ has a type as well, i.e.

for some

σσσσ−−−−ΓΓΓΓ :| MChurch

´´:´| σσσσ−−−−ΓΓΓΓ MChurch

´.´ σσσσΓΓΓΓ and

,σσσσΓΓΓΓ and

Substitution lemma for Church.−−−−→→→→λλλλ
(i)].:[:]:[|]:[:| ττττ====αααασσσσττττ====αααα−−−−ττττ====ααααΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

(ii) Suppose and .:|:|:, σσσσ−−−−ΓΓΓΓττττ−−−−σσσσΓΓΓΓ NMx
,:]:[| ττττ====−−−−ΓΓΓΓ NxM Then

where α, x are a type and a term variable respectively and σ, τ are
types.

Lambda calculus II 45

Exercises.

)(:).:(| σσσσ→→→→σσσσσσσσλλλλ−−−− xx (a)

)(:).::(| σσσσ→→→→ττττ→→→→σσσσττττλλλλσσσσλλλλ−−−− xyx (b)

)(:).:(| σσσσ→→→→ττττττττλλλλ−−−− xy (c)

Similarly as for the type-free theory, one can define reduction and
conversion on the set of pseudoterms .TΛΛΛΛ

Definition.

The binary relations denoting one-step
β-reduction, many-steps β-reduction and β-convertibility on
respectively, are generated by the contraction rule

,, ββββββββββββ ====→>→>→>→>→→→→ and

].:[).:(NxMNMx ====→→→→σσσσλλλλ

.TΛΛΛΛ

Lambda calculus II 46

Examples.

).:().:)(.:(yyyyyyxx ττττλλλλ→→→→ττττλλλλσσσσλλλλ ββββ (a)

).:().:)(.::()(yyzzxyyx ττττλλλλ→>→>→>→>ππππλλλλττττλλλλσσσσλλλλ ββββ b

)().:)(.::(zzzzzzyyx ββββ→>→>→>→>ππππλλλλττττλλλλσσσσλλλλ (c)

Remarks.

(i) It can be shown that the Church-Rosser theorem for also
holds on

ββββ→>→>→>→>
.TΛΛΛΛ

(ii) The following results for are essentially the
same as the corresponding propositions for

Church−−−−→→→→λλλλ
Curry.−−−−→→→→λλλλ

Lambda calculus II 47

Basis lemma for

Let Γ be a basis, we have

Church.−−−−→→→→λλλλ

(i) If is another basis, then´´, ΓΓΓΓ⊆⊆⊆⊆ΓΓΓΓΓΓΓΓ .:´|:| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

(ii)).()(:| ΓΓΓΓ⊆⊆⊆⊆⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ dom MFVM
(iii) .:|)(|:| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MMFVM

Generation lemma for Church.−−−−→→→→λλλλ

(i) .):(:| ΓΓΓΓ∈∈∈∈σσσσ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ xx

(ii)].:|&)(:|[:| σσσσ−−−−ΓΓΓΓττττ→→→→σσσσ−−−−ΓΓΓΓσσσσ∃∃∃∃⇒⇒⇒⇒ττττ−−−−ΓΓΓΓ NMMN

(iii)].:|:,&)([:).:(| ττττ−−−−σσσσΓΓΓΓττττ→→→→σσσσ====ρρρρττττ∃∃∃∃⇒⇒⇒⇒ρρρρσσσσλλλλ−−−−ΓΓΓΓ MxMx

Lambda calculus II 48

Typability of subterms in Church.−−−−→→→→λλλλ
If M´ is a subterm of M and M has a type i.e. if

for some then M´ has a type as well, i.e.

for some

σσσσ−−−−ΓΓΓΓ :| MChurch

´´:´| σσσσ−−−−ΓΓΓΓ MChurch

´.´ σσσσΓΓΓΓ and

,σσσσΓΓΓΓ and

Substitution lemma for Church.−−−−→→→→λλλλ
(i)].:[:]:[|]:[:| ττττ====αααασσσσττττ====αααα−−−−ττττ====ααααΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

(ii) Suppose and .:|:|:, σσσσ−−−−ΓΓΓΓττττ−−−−σσσσΓΓΓΓ NMx
,:]:[| ττττ====−−−−ΓΓΓΓ NxM Then

where α, x are a type and a term variable respectively and σ, τ are
types.

Lambda calculus II 45

Exercises.

)(:).:(| σσσσ→→→→σσσσσσσσλλλλ−−−− xx (a)

)(:).::(| σσσσ→→→→ττττ→→→→σσσσττττλλλλσσσσλλλλ−−−− xyx (b)

)(:).:(| σσσσ→→→→ττττττττλλλλ−−−− xy (c)

Similarly as for the type-free theory, one can define reduction and
conversion on the set of pseudoterms .TΛΛΛΛ

Definition.

The binary relations denoting one-step
β-reduction, many-steps β-reduction and β-convertibility on
respectively, are generated by the contraction rule

,, ββββββββββββ ====→>→>→>→>→→→→ and

].:[).:(NxMNMx ====→→→→σσσσλλλλ

.TΛΛΛΛ

Lambda calculus II 46

Examples.

).:().:)(.:(yyyyyyxx ττττλλλλ→→→→ττττλλλλσσσσλλλλ ββββ (a)

).:().:)(.::()(yyzzxyyx ττττλλλλ→>→>→>→>ππππλλλλττττλλλλσσσσλλλλ ββββ b

)().:)(.::(zzzzzzyyx ββββ→>→>→>→>ππππλλλλττττλλλλσσσσλλλλ (c)

Remarks.

(i) It can be shown that the Church-Rosser theorem for also
holds on

ββββ→>→>→>→>
.TΛΛΛΛ

(ii) The following results for are essentially the
same as the corresponding propositions for

Church−−−−→→→→λλλλ
Curry.−−−−→→→→λλλλ

Lambda calculus II 47

Basis lemma for

Let Γ be a basis, we have

Church.−−−−→→→→λλλλ

(i) If is another basis, then´´, ΓΓΓΓ⊆⊆⊆⊆ΓΓΓΓΓΓΓΓ .:´|:| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

(ii)).()(:| ΓΓΓΓ⊆⊆⊆⊆⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ dom MFVM
(iii) .:|)(|:| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MMFVM

Generation lemma for Church.−−−−→→→→λλλλ

(i) .):(:| ΓΓΓΓ∈∈∈∈σσσσ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ xx

(ii)].:|&)(:|[:| σσσσ−−−−ΓΓΓΓττττ→→→→σσσσ−−−−ΓΓΓΓσσσσ∃∃∃∃⇒⇒⇒⇒ττττ−−−−ΓΓΓΓ NMMN

(iii)].:|:,&)([:).:(| ττττ−−−−σσσσΓΓΓΓττττ→→→→σσσσ====ρρρρττττ∃∃∃∃⇒⇒⇒⇒ρρρρσσσσλλλλ−−−−ΓΓΓΓ MxMx

Lambda calculus II 48

Typability of subterms in Church.−−−−→→→→λλλλ
If M´ is a subterm of M and M has a type i.e. if

for some then M´ has a type as well, i.e.

for some

σσσσ−−−−ΓΓΓΓ :| MChurch

´´:´| σσσσ−−−−ΓΓΓΓ MChurch

´.´ σσσσΓΓΓΓ and

,σσσσΓΓΓΓ and

Substitution lemma for Church.−−−−→→→→λλλλ
(i)].:[:]:[|]:[:| ττττ====αααασσσσττττ====αααα−−−−ττττ====ααααΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

(ii) Suppose and .:|:|:, σσσσ−−−−ΓΓΓΓττττ−−−−σσσσΓΓΓΓ NMx
,:]:[| ττττ====−−−−ΓΓΓΓ NxM Then

where α, x are a type and a term variable respectively and σ, τ are
types.

Lambda calculus II 49

Subject reduction Theorem for Church.−−−−→→→→λλλλ

Let Then´.MM ββββ→>→>→>→> .´:|:| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

Remark.

This theorem implies that the set of legal expressions is closed under
reduction. It is not closed under expansion and conversion.

Take annotated with appropriate types. It follows from
the Typability of subterms lemma that has no type.

ΩΩΩΩ====ββββ KII
ΩΩΩΩKI

On the other hand convertible legal terms have the same type with
respect to a given basis.

Lambda calculus II 50

Lemma on uniqueness of types for Church.−−−−→→→→λλλλ

(i) Let ´.´.:|:| σσσσ≡≡≡≡σσσσσσσσ−−−−ΓΓΓΓσσσσ−−−−ΓΓΓΓ Then and MM

(ii) Let ´.´.´´:|,:| σσσσ====σσσσ====σσσσ−−−−ΓΓΓΓσσσσ−−−−ΓΓΓΓ ββββ Then and MMMM

Proof.
(i) By induction on the structure of M.

(ii) Use the Church-Rosser Theorem for the subject
reduction theorem for

,TΛΛΛΛ
(i). and Church,−−−−→→→→λλλλ

We have seen that this proposition does not hold for Curry.−−−−→→→→λλλλ

Lambda calculus II 51

Relating the Curry and Church systems

For typed lambda calculi that can be described in both ways á la Curry
and á la Church, often a simple relations can be defined between the
two versions. We shall show it for the simplest calculus .→→→→λλλλ

Definition

There is a �forgetful� mapping defined as followsΛΛΛΛ→→→→ΛΛΛΛ T:.

xx ≡≡≡≡
NMMN ≡≡≡≡

MxMx ..: λλλλ≡≡≡≡σσσσλλλλ

The mapping just erases all annotations of a term in .TΛΛΛΛ

Lambda calculus II 52

The following results show that legal pseudoterms in the Church
version of ´project´ to legal terms in the Curry version of →→→→λλλλ

.→→→→λλλλ
On the other hand, legal terms in can be
´lifted´ to legal terms in

Curry−−−−→→→→λλλλ
Church.−−−−→→→→λλλλ

Theorem.
(i) (projection) Let Then .TΛΛΛΛ∈∈∈∈M

.:|:| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM CurryChurch

(ii) (lifting) Let Then .ΛΛΛΛ∈∈∈∈M

].´&´:|[´:| T MMMMM ChurchCurry ≡≡≡≡σσσσ−−−−ΓΓΓΓΛΛΛΛ∈∈∈∈∃∃∃∃⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ

Proof.
By induction on the derivation of the respective type assignment.

Lambda calculus II 49

Subject reduction Theorem for Church.−−−−→→→→λλλλ

Let Then´.MM ββββ→>→>→>→> .´:|:| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

Remark.

This theorem implies that the set of legal expressions is closed under
reduction. It is not closed under expansion and conversion.

Take annotated with appropriate types. It follows from
the Typability of subterms lemma that has no type.

ΩΩΩΩ====ββββ KII
ΩΩΩΩKI

On the other hand convertible legal terms have the same type with
respect to a given basis.

Lambda calculus II 50

Lemma on uniqueness of types for Church.−−−−→→→→λλλλ

(i) Let ´.´.:|:| σσσσ≡≡≡≡σσσσσσσσ−−−−ΓΓΓΓσσσσ−−−−ΓΓΓΓ Then and MM

(ii) Let ´.´.´´:|,:| σσσσ====σσσσ====σσσσ−−−−ΓΓΓΓσσσσ−−−−ΓΓΓΓ ββββ Then and MMMM

Proof.
(i) By induction on the structure of M.

(ii) Use the Church-Rosser Theorem for the subject
reduction theorem for

,TΛΛΛΛ
(i). and Church,−−−−→→→→λλλλ

We have seen that this proposition does not hold for Curry.−−−−→→→→λλλλ

Lambda calculus II 51

Relating the Curry and Church systems

For typed lambda calculi that can be described in both ways á la Curry
and á la Church, often a simple relations can be defined between the
two versions. We shall show it for the simplest calculus .→→→→λλλλ

Definition

There is a �forgetful� mapping defined as followsΛΛΛΛ→→→→ΛΛΛΛ T:.

xx ≡≡≡≡
NMMN ≡≡≡≡

MxMx ..: λλλλ≡≡≡≡σσσσλλλλ

The mapping just erases all annotations of a term in .TΛΛΛΛ

Lambda calculus II 52

The following results show that legal pseudoterms in the Church
version of ´project´ to legal terms in the Curry version of →→→→λλλλ

.→→→→λλλλ
On the other hand, legal terms in can be
´lifted´ to legal terms in

Curry−−−−→→→→λλλλ
Church.−−−−→→→→λλλλ

Theorem.
(i) (projection) Let Then .TΛΛΛΛ∈∈∈∈M

.:|:| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM CurryChurch

(ii) (lifting) Let Then .ΛΛΛΛ∈∈∈∈M

].´&´:|[´:| T MMMMM ChurchCurry ≡≡≡≡σσσσ−−−−ΓΓΓΓΛΛΛΛ∈∈∈∈∃∃∃∃⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ

Proof.
By induction on the derivation of the respective type assignment.

Lambda calculus II 49

Subject reduction Theorem for Church.−−−−→→→→λλλλ

Let Then´.MM ββββ→>→>→>→> .´:|:| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

Remark.

This theorem implies that the set of legal expressions is closed under
reduction. It is not closed under expansion and conversion.

Take annotated with appropriate types. It follows from
the Typability of subterms lemma that has no type.

ΩΩΩΩ====ββββ KII
ΩΩΩΩKI

On the other hand convertible legal terms have the same type with
respect to a given basis.

Lambda calculus II 50

Lemma on uniqueness of types for Church.−−−−→→→→λλλλ

(i) Let ´.´.:|:| σσσσ≡≡≡≡σσσσσσσσ−−−−ΓΓΓΓσσσσ−−−−ΓΓΓΓ Then and MM

(ii) Let ´.´.´´:|,:| σσσσ====σσσσ====σσσσ−−−−ΓΓΓΓσσσσ−−−−ΓΓΓΓ ββββ Then and MMMM

Proof.
(i) By induction on the structure of M.

(ii) Use the Church-Rosser Theorem for the subject
reduction theorem for

,TΛΛΛΛ
(i). and Church,−−−−→→→→λλλλ

We have seen that this proposition does not hold for Curry.−−−−→→→→λλλλ

Lambda calculus II 51

Relating the Curry and Church systems

For typed lambda calculi that can be described in both ways á la Curry
and á la Church, often a simple relations can be defined between the
two versions. We shall show it for the simplest calculus .→→→→λλλλ

Definition

There is a �forgetful� mapping defined as followsΛΛΛΛ→→→→ΛΛΛΛ T:.

xx ≡≡≡≡
NMMN ≡≡≡≡

MxMx ..: λλλλ≡≡≡≡σσσσλλλλ

The mapping just erases all annotations of a term in .TΛΛΛΛ

Lambda calculus II 52

The following results show that legal pseudoterms in the Church
version of ´project´ to legal terms in the Curry version of →→→→λλλλ

.→→→→λλλλ
On the other hand, legal terms in can be
´lifted´ to legal terms in

Curry−−−−→→→→λλλλ
Church.−−−−→→→→λλλλ

Theorem.
(i) (projection) Let Then .TΛΛΛΛ∈∈∈∈M

.:|:| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM CurryChurch

(ii) (lifting) Let Then .ΛΛΛΛ∈∈∈∈M

].´&´:|[´:| T MMMMM ChurchCurry ≡≡≡≡σσσσ−−−−ΓΓΓΓΛΛΛΛ∈∈∈∈∃∃∃∃⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ

Proof.
By induction on the derivation of the respective type assignment.

Lambda calculus II 49

Subject reduction Theorem for Church.−−−−→→→→λλλλ

Let Then´.MM ββββ→>→>→>→> .´:|:| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

Remark.

This theorem implies that the set of legal expressions is closed under
reduction. It is not closed under expansion and conversion.

Take annotated with appropriate types. It follows from
the Typability of subterms lemma that has no type.

ΩΩΩΩ====ββββ KII
ΩΩΩΩKI

On the other hand convertible legal terms have the same type with
respect to a given basis.

Lambda calculus II 50

Lemma on uniqueness of types for Church.−−−−→→→→λλλλ

(i) Let ´.´.:|:| σσσσ≡≡≡≡σσσσσσσσ−−−−ΓΓΓΓσσσσ−−−−ΓΓΓΓ Then and MM

(ii) Let ´.´.´´:|,:| σσσσ====σσσσ====σσσσ−−−−ΓΓΓΓσσσσ−−−−ΓΓΓΓ ββββ Then and MMMM

Proof.
(i) By induction on the structure of M.

(ii) Use the Church-Rosser Theorem for the subject
reduction theorem for

,TΛΛΛΛ
(i). and Church,−−−−→→→→λλλλ

We have seen that this proposition does not hold for Curry.−−−−→→→→λλλλ

Lambda calculus II 51

Relating the Curry and Church systems

For typed lambda calculi that can be described in both ways á la Curry
and á la Church, often a simple relations can be defined between the
two versions. We shall show it for the simplest calculus .→→→→λλλλ

Definition

There is a �forgetful� mapping defined as followsΛΛΛΛ→→→→ΛΛΛΛ T:.

xx ≡≡≡≡
NMMN ≡≡≡≡

MxMx ..: λλλλ≡≡≡≡σσσσλλλλ

The mapping just erases all annotations of a term in .TΛΛΛΛ

Lambda calculus II 52

The following results show that legal pseudoterms in the Church
version of ´project´ to legal terms in the Curry version of →→→→λλλλ

.→→→→λλλλ
On the other hand, legal terms in can be
´lifted´ to legal terms in

Curry−−−−→→→→λλλλ
Church.−−−−→→→→λλλλ

Theorem.
(i) (projection) Let Then .TΛΛΛΛ∈∈∈∈M

.:|:| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM CurryChurch

(ii) (lifting) Let Then .ΛΛΛΛ∈∈∈∈M

].´&´:|[´:| T MMMMM ChurchCurry ≡≡≡≡σσσσ−−−−ΓΓΓΓΛΛΛΛ∈∈∈∈∃∃∃∃⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ

Proof.
By induction on the derivation of the respective type assignment.

Lambda calculus II 53

Corollary.

For an arbitrary type have we,T∈∈∈∈σσσσ

-Church. in inhabited is in inhabited is →→→→λλλλσσσσ⇔⇔⇔⇔−−−−→→→→λλλλσσσσ Curry

Lambda calculus II 54

Bőhm trees and Approximation. A digression.

To the rule A we need to introduce Bőhm trees which are
a kind of ´infinite normal forms´.

Lemma.
Each is in one of the following forms. ΛΛΛΛ∈∈∈∈M

 variable.a and with (i) y0mnNyNxxM m1n1 ,,,. ≥≥≥≥λλλλ≡≡≡≡ KK

.,,)..(1m0nNNNyxxM m10n1 ≥≥≥≥≥≥≥≥λλλλλλλλ≡≡≡≡ with (ii) KK

Lambda calculus II 55

Proof.

By the definition a λ-term is either a variable, or of the form of application
PQ or an abstraction λx.P. We have to analyze three cases:

(a) if M is a variable, then M is of the form (i) with n = m = 0.

(b) if M is an application, then

nabstractioan or (i)) (giving variablea is on whether depending with
(ii)or (i) form theof is Then n.applicatioan not with

0

0m10

P0n
MPPPPM

,====
≡≡≡≡ K

giving (ii).

Lambda calculus II 56

(c) if and Q is not
an abstraction. Then Q is a variable or an application and it follows
from the Induction hypothesis that Q is in one of forms (i) or (ii)
for n = 0. Adding the prefix does not change the
form.

0kQxxxPPxM k21 ≥≥≥≥λλλλλλλλλλλλ≡≡≡≡λλλλ≡≡≡≡ ,.. K where,

k21 xxxx λλλλλλλλλλλλλλλλ K

Lambda calculus II 53

Corollary.

For an arbitrary type have we,T∈∈∈∈σσσσ

-Church. in inhabited is in inhabited is →→→→λλλλσσσσ⇔⇔⇔⇔−−−−→→→→λλλλσσσσ Curry

Lambda calculus II 54

Bőhm trees and Approximation. A digression.

To the rule A we need to introduce Bőhm trees which are
a kind of ´infinite normal forms´.

Lemma.
Each is in one of the following forms. ΛΛΛΛ∈∈∈∈M

 variable.a and with (i) y0mnNyNxxM m1n1 ,,,. ≥≥≥≥λλλλ≡≡≡≡ KK

.,,)..(1m0nNNNyxxM m10n1 ≥≥≥≥≥≥≥≥λλλλλλλλ≡≡≡≡ with (ii) KK

Lambda calculus II 55

Proof.

By the definition a λ-term is either a variable, or of the form of application
PQ or an abstraction λx.P. We have to analyze three cases:

(a) if M is a variable, then M is of the form (i) with n = m = 0.

(b) if M is an application, then

nabstractioan or (i)) (giving variablea is on whether depending with
(ii)or (i) form theof is Then n.applicatioan not with

0

0m10

P0n
MPPPPM

,====
≡≡≡≡ K

giving (ii).

Lambda calculus II 56

(c) if and Q is not
an abstraction. Then Q is a variable or an application and it follows
from the Induction hypothesis that Q is in one of forms (i) or (ii)
for n = 0. Adding the prefix does not change the
form.

0kQxxxPPxM k21 ≥≥≥≥λλλλλλλλλλλλ≡≡≡≡λλλλ≡≡≡≡ ,.. K where,

k21 xxxx λλλλλλλλλλλλλλλλ K

Lambda calculus II 53

Corollary.

For an arbitrary type have we,T∈∈∈∈σσσσ

-Church. in inhabited is in inhabited is →→→→λλλλσσσσ⇔⇔⇔⇔−−−−→→→→λλλλσσσσ Curry

Lambda calculus II 54

Bőhm trees and Approximation. A digression.

To the rule A we need to introduce Bőhm trees which are
a kind of ´infinite normal forms´.

Lemma.
Each is in one of the following forms. ΛΛΛΛ∈∈∈∈M

 variable.a and with (i) y0mnNyNxxM m1n1 ,,,. ≥≥≥≥λλλλ≡≡≡≡ KK

.,,)..(1m0nNNNyxxM m10n1 ≥≥≥≥≥≥≥≥λλλλλλλλ≡≡≡≡ with (ii) KK

Lambda calculus II 55

Proof.

By the definition a λ-term is either a variable, or of the form of application
PQ or an abstraction λx.P. We have to analyze three cases:

(a) if M is a variable, then M is of the form (i) with n = m = 0.

(b) if M is an application, then

nabstractioan or (i)) (giving variablea is on whether depending with
(ii)or (i) form theof is Then n.applicatioan not with

0

0m10

P0n
MPPPPM

,====
≡≡≡≡ K

giving (ii).

Lambda calculus II 56

(c) if and Q is not
an abstraction. Then Q is a variable or an application and it follows
from the Induction hypothesis that Q is in one of forms (i) or (ii)
for n = 0. Adding the prefix does not change the
form.

0kQxxxPPxM k21 ≥≥≥≥λλλλλλλλλλλλ≡≡≡≡λλλλ≡≡≡≡ ,.. K where,

k21 xxxx λλλλλλλλλλλλλλλλ K

Lambda calculus II 53

Corollary.

For an arbitrary type have we,T∈∈∈∈σσσσ

-Church. in inhabited is in inhabited is →→→→λλλλσσσσ⇔⇔⇔⇔−−−−→→→→λλλλσσσσ Curry

Lambda calculus II 54

Bőhm trees and Approximation. A digression.

To the rule A we need to introduce Bőhm trees which are
a kind of ´infinite normal forms´.

Lemma.
Each is in one of the following forms. ΛΛΛΛ∈∈∈∈M

 variable.a and with (i) y0mnNyNxxM m1n1 ,,,. ≥≥≥≥λλλλ≡≡≡≡ KK

.,,)..(1m0nNNNyxxM m10n1 ≥≥≥≥≥≥≥≥λλλλλλλλ≡≡≡≡ with (ii) KK

Lambda calculus II 55

Proof.

By the definition a λ-term is either a variable, or of the form of application
PQ or an abstraction λx.P. We have to analyze three cases:

(a) if M is a variable, then M is of the form (i) with n = m = 0.

(b) if M is an application, then

nabstractioan or (i)) (giving variablea is on whether depending with
(ii)or (i) form theof is Then n.applicatioan not with

0

0m10

P0n
MPPPPM

,====
≡≡≡≡ K

giving (ii).

Lambda calculus II 56

(c) if and Q is not
an abstraction. Then Q is a variable or an application and it follows
from the Induction hypothesis that Q is in one of forms (i) or (ii)
for n = 0. Adding the prefix does not change the
form.

0kQxxxPPxM k21 ≥≥≥≥λλλλλλλλλλλλ≡≡≡≡λλλλ≡≡≡≡ ,.. K where,

k21 xxxx λλλλλλλλλλλλλλλλ K

Lambda calculus II 57

Definition. (head normal form, head redex)

(i) A λ-term M is in head normal form (hnf) if M is in the form (i) of
the above lemma. In that case y is called the head variable of M.

The following definition deals with the two forms of λ-terms from the
above lemma.

(ii) We say that M has an head normal form if there is N in hnf such
that .NM ββββ====

(iii) If M is in the form (ii), we call the head redex of M.10 NNy).(λλλλ

Lambda calculus II 58

Lemma. (convertibility of head normal forms)

If and ´MM ββββ====

M has hnf ,. m1n11 NNyxxM KKλλλλ≡≡≡≡

M´ has hnf ´,´´.´ ´ m1n11 NNyxxM KKλλλλ≡≡≡≡

.´,,´´´,´, mm11 NNNNmmyynn ββββββββ ============≡≡≡≡==== K and then

Lambda calculus II 59

Proof.

By the Church-Rosser theorem have a common reduct
L. But then the only possibility is that

11 MM ´ and

´´´´ ´´´´´´. m1n1 NNyxxL KKλλλλ≡≡≡≡

where

K,´´´´´´´,´´´,´´ 111 NNNmmmyyynnn ββββββββ ================================ and

Lambda calculus II 60

calculus a digression.−−−−⊥⊥⊥⊥λλλλ

Definition.

calculus is the extension of the lambda calculus defined as
follows. One of the (term) variables is selected for use as a constant
and is given the name .⊥⊥⊥⊥

(i) two contraction rules are added:

⊥⊥⊥⊥→→→→⊥⊥⊥⊥
⊥⊥⊥⊥→→→→⊥⊥⊥⊥λλλλ

M
x.

(ii) A reduced. becannot it such that is −−−−⊥⊥⊥⊥ββββ−−−−⊥⊥⊥⊥ββββ form normal

−−−−⊥⊥⊥⊥λλλλ

Lambda calculus II 57

Definition. (head normal form, head redex)

(i) A λ-term M is in head normal form (hnf) if M is in the form (i) of
the above lemma. In that case y is called the head variable of M.

The following definition deals with the two forms of λ-terms from the
above lemma.

(ii) We say that M has an head normal form if there is N in hnf such
that .NM ββββ====

(iii) If M is in the form (ii), we call the head redex of M.10 NNy).(λλλλ

Lambda calculus II 58

Lemma. (convertibility of head normal forms)

If and ´MM ββββ====

M has hnf ,. m1n11 NNyxxM KKλλλλ≡≡≡≡

M´ has hnf ´,´´.´ ´ m1n11 NNyxxM KKλλλλ≡≡≡≡

.´,,´´´,´, mm11 NNNNmmyynn ββββββββ ============≡≡≡≡==== K and then

Lambda calculus II 59

Proof.

By the Church-Rosser theorem have a common reduct
L. But then the only possibility is that

11 MM ´ and

´´´´ ´´´´´´. m1n1 NNyxxL KKλλλλ≡≡≡≡

where

K,´´´´´´´,´´´,´´ 111 NNNmmmyyynnn ββββββββ ================================ and

Lambda calculus II 60

calculus a digression.−−−−⊥⊥⊥⊥λλλλ

Definition.

calculus is the extension of the lambda calculus defined as
follows. One of the (term) variables is selected for use as a constant
and is given the name .⊥⊥⊥⊥

(i) two contraction rules are added:

⊥⊥⊥⊥→→→→⊥⊥⊥⊥
⊥⊥⊥⊥→→→→⊥⊥⊥⊥λλλλ

M
x.

(ii) A reduced. becannot it such that is −−−−⊥⊥⊥⊥ββββ−−−−⊥⊥⊥⊥ββββ form normal

−−−−⊥⊥⊥⊥λλλλ

Lambda calculus II 57

Definition. (head normal form, head redex)

(i) A λ-term M is in head normal form (hnf) if M is in the form (i) of
the above lemma. In that case y is called the head variable of M.

The following definition deals with the two forms of λ-terms from the
above lemma.

(ii) We say that M has an head normal form if there is N in hnf such
that .NM ββββ====

(iii) If M is in the form (ii), we call the head redex of M.10 NNy).(λλλλ

Lambda calculus II 58

Lemma. (convertibility of head normal forms)

If and ´MM ββββ====

M has hnf ,. m1n11 NNyxxM KKλλλλ≡≡≡≡

M´ has hnf ´,´´.´ ´ m1n11 NNyxxM KKλλλλ≡≡≡≡

.´,,´´´,´, mm11 NNNNmmyynn ββββββββ ============≡≡≡≡==== K and then

Lambda calculus II 59

Proof.

By the Church-Rosser theorem have a common reduct
L. But then the only possibility is that

11 MM ´ and

´´´´ ´´´´´´. m1n1 NNyxxL KKλλλλ≡≡≡≡

where

K,´´´´´´´,´´´,´´ 111 NNNmmmyyynnn ββββββββ ================================ and

Lambda calculus II 60

calculus a digression.−−−−⊥⊥⊥⊥λλλλ

Definition.

calculus is the extension of the lambda calculus defined as
follows. One of the (term) variables is selected for use as a constant
and is given the name .⊥⊥⊥⊥

(i) two contraction rules are added:

⊥⊥⊥⊥→→→→⊥⊥⊥⊥
⊥⊥⊥⊥→→→→⊥⊥⊥⊥λλλλ

M
x.

(ii) A reduced. becannot it such that is −−−−⊥⊥⊥⊥ββββ−−−−⊥⊥⊥⊥ββββ form normal

−−−−⊥⊥⊥⊥λλλλ

Lambda calculus II 57

Definition. (head normal form, head redex)

(i) A λ-term M is in head normal form (hnf) if M is in the form (i) of
the above lemma. In that case y is called the head variable of M.

The following definition deals with the two forms of λ-terms from the
above lemma.

(ii) We say that M has an head normal form if there is N in hnf such
that .NM ββββ====

(iii) If M is in the form (ii), we call the head redex of M.10 NNy).(λλλλ

Lambda calculus II 58

Lemma. (convertibility of head normal forms)

If and ´MM ββββ====

M has hnf ,. m1n11 NNyxxM KKλλλλ≡≡≡≡

M´ has hnf ´,´´.´ ´ m1n11 NNyxxM KKλλλλ≡≡≡≡

.´,,´´´,´, mm11 NNNNmmyynn ββββββββ ============≡≡≡≡==== K and then

Lambda calculus II 59

Proof.

By the Church-Rosser theorem have a common reduct
L. But then the only possibility is that

11 MM ´ and

´´´´ ´´´´´´. m1n1 NNyxxL KKλλλλ≡≡≡≡

where

K,´´´´´´´,´´´,´´ 111 NNNmmmyyynnn ββββββββ ================================ and

Lambda calculus II 60

calculus a digression.−−−−⊥⊥⊥⊥λλλλ

Definition.

calculus is the extension of the lambda calculus defined as
follows. One of the (term) variables is selected for use as a constant
and is given the name .⊥⊥⊥⊥

(i) two contraction rules are added:

⊥⊥⊥⊥→→→→⊥⊥⊥⊥
⊥⊥⊥⊥→→→→⊥⊥⊥⊥λλλλ

M
x.

(ii) A reduced. becannot it such that is −−−−⊥⊥⊥⊥ββββ−−−−⊥⊥⊥⊥ββββ form normal

−−−−⊥⊥⊥⊥λλλλ

Lambda calculus II 61

We are going to introduce the notion of Böhm tree. The definition is not
complete, because it does not specify the ordering of the direct
successors of a node. However this ordering is displayed in the pictures
of the trees. This suffices for our purposes.

The precise definition of the order can be found in (Barendregt 1984).

Definition.

Let The Böhm tree of M, denoted by BT(M), is the
labelled tree defined as follows

.ΛΛΛΛ∈∈∈∈M

⊥⊥⊥⊥

λλλλ
λλλλ

====

hnf no has M if

is M of hnf theif

)()(
.

.

)(m1

m1n1

n1

NBTNBT
NyNxx

yxx

MBT K

KK

K

Lambda calculus II 62

Böhm trees for calculus are defined under condition
that a term

−−−−⊥⊥⊥⊥λλλλ
m1n1 NyNxx KK .λλλλ

is in only if or form normal head−−−−⊥⊥⊥⊥ββββ

Note that if M has β-hnf, then M has a
This is because an hnf m1n1 NyNxx KK .λλλλ
is also unless If it is the case, then.⊥⊥⊥⊥====y

⊥⊥⊥⊥→>→>→>→>λλλλ ⊥⊥⊥⊥ββββm1n1 NyNxx KK .

and hence M has a

.0mn ========

hnf−−−−⊥⊥⊥⊥ββββ

 too.hnf,−−−−⊥⊥⊥⊥ββββ

⊥⊥⊥⊥≡≡≡≡////y

hnf.−−−−⊥⊥⊥⊥ββββ

−−−−⊥⊥⊥⊥λλλλ

Lambda calculus II 63

Examples.

(a)

c

bc

aabcbcacabcBT .))(.(λλλλ====λλλλ

(b) ⊥⊥⊥⊥====λλλλλλλλ)).)(.((xxxxxxBT

Lambda calculus II 64

(c) Recall that the Fixed point operator Y is defined by
.))(.())(.(.Y

4342143421
ff

xxfxxxfxf
ωωωωωωωω

λλλλλλλλλλλλ≡≡≡≡

It follows that and we have)(..Y ffff fff ωωωωωωωωλλλλ====ωωωωωωωωλλλλ≡≡≡≡

)(

.)Y(

ffBT

ffBT

ωωωωωωωω

λλλλ====

Now)(ffff f ωωωωωωωω====ωωωωωωωω

M

f

fBT

ffBT

ff

ff

)(

)(

ωωωωωωωω

========ωωωωωωωωthus

Lambda calculus II 61

We are going to introduce the notion of Böhm tree. The definition is not
complete, because it does not specify the ordering of the direct
successors of a node. However this ordering is displayed in the pictures
of the trees. This suffices for our purposes.

The precise definition of the order can be found in (Barendregt 1984).

Definition.

Let The Böhm tree of M, denoted by BT(M), is the
labelled tree defined as follows

.ΛΛΛΛ∈∈∈∈M

⊥⊥⊥⊥

λλλλ
λλλλ

====

hnf no has M if

is M of hnf theif

)()(
.

.

)(m1

m1n1

n1

NBTNBT
NyNxx

yxx

MBT K

KK

K

Lambda calculus II 62

Böhm trees for calculus are defined under condition
that a term

−−−−⊥⊥⊥⊥λλλλ
m1n1 NyNxx KK .λλλλ

is in only if or form normal head−−−−⊥⊥⊥⊥ββββ

Note that if M has β-hnf, then M has a
This is because an hnf m1n1 NyNxx KK .λλλλ
is also unless If it is the case, then.⊥⊥⊥⊥====y

⊥⊥⊥⊥→>→>→>→>λλλλ ⊥⊥⊥⊥ββββm1n1 NyNxx KK .

and hence M has a

.0mn ========

hnf−−−−⊥⊥⊥⊥ββββ

 too.hnf,−−−−⊥⊥⊥⊥ββββ

⊥⊥⊥⊥≡≡≡≡////y

hnf.−−−−⊥⊥⊥⊥ββββ

−−−−⊥⊥⊥⊥λλλλ

Lambda calculus II 63

Examples.

(a)

c

bc

aabcbcacabcBT .))(.(λλλλ====λλλλ

(b) ⊥⊥⊥⊥====λλλλλλλλ)).)(.((xxxxxxBT

Lambda calculus II 64

(c) Recall that the Fixed point operator Y is defined by
.))(.())(.(.Y

4342143421
ff

xxfxxxfxf
ωωωωωωωω

λλλλλλλλλλλλ≡≡≡≡

It follows that and we have)(..Y ffff fff ωωωωωωωωλλλλ====ωωωωωωωωλλλλ≡≡≡≡

)(

.)Y(

ffBT

ffBT

ωωωωωωωω

λλλλ====

Now)(ffff f ωωωωωωωω====ωωωωωωωω

M

f

fBT

ffBT

ff

ff

)(

)(

ωωωωωωωω

========ωωωωωωωωthus

Lambda calculus II 61

We are going to introduce the notion of Böhm tree. The definition is not
complete, because it does not specify the ordering of the direct
successors of a node. However this ordering is displayed in the pictures
of the trees. This suffices for our purposes.

The precise definition of the order can be found in (Barendregt 1984).

Definition.

Let The Böhm tree of M, denoted by BT(M), is the
labelled tree defined as follows

.ΛΛΛΛ∈∈∈∈M

⊥⊥⊥⊥

λλλλ
λλλλ

====

hnf no has M if

is M of hnf theif

)()(
.

.

)(m1

m1n1

n1

NBTNBT
NyNxx

yxx

MBT K

KK

K

Lambda calculus II 62

Böhm trees for calculus are defined under condition
that a term

−−−−⊥⊥⊥⊥λλλλ
m1n1 NyNxx KK .λλλλ

is in only if or form normal head−−−−⊥⊥⊥⊥ββββ

Note that if M has β-hnf, then M has a
This is because an hnf m1n1 NyNxx KK .λλλλ
is also unless If it is the case, then.⊥⊥⊥⊥====y

⊥⊥⊥⊥→>→>→>→>λλλλ ⊥⊥⊥⊥ββββm1n1 NyNxx KK .

and hence M has a

.0mn ========

hnf−−−−⊥⊥⊥⊥ββββ

 too.hnf,−−−−⊥⊥⊥⊥ββββ

⊥⊥⊥⊥≡≡≡≡////y

hnf.−−−−⊥⊥⊥⊥ββββ

−−−−⊥⊥⊥⊥λλλλ

Lambda calculus II 63

Examples.

(a)

c

bc

aabcbcacabcBT .))(.(λλλλ====λλλλ

(b) ⊥⊥⊥⊥====λλλλλλλλ)).)(.((xxxxxxBT

Lambda calculus II 64

(c) Recall that the Fixed point operator Y is defined by
.))(.())(.(.Y

4342143421
ff

xxfxxxfxf
ωωωωωωωω

λλλλλλλλλλλλ≡≡≡≡

It follows that and we have)(..Y ffff fff ωωωωωωωωλλλλ====ωωωωωωωωλλλλ≡≡≡≡

)(

.)Y(

ffBT

ffBT

ωωωωωωωω

λλλλ====

Now)(ffff f ωωωωωωωω====ωωωωωωωω

M

f

fBT

ffBT

ff

ff

)(

)(

ωωωωωωωω

========ωωωωωωωωthus

Lambda calculus II 61

We are going to introduce the notion of Böhm tree. The definition is not
complete, because it does not specify the ordering of the direct
successors of a node. However this ordering is displayed in the pictures
of the trees. This suffices for our purposes.

The precise definition of the order can be found in (Barendregt 1984).

Definition.

Let The Böhm tree of M, denoted by BT(M), is the
labelled tree defined as follows

.ΛΛΛΛ∈∈∈∈M

⊥⊥⊥⊥

λλλλ
λλλλ

====

hnf no has M if

is M of hnf theif

)()(
.

.

)(m1

m1n1

n1

NBTNBT
NyNxx

yxx

MBT K

KK

K

Lambda calculus II 62

Böhm trees for calculus are defined under condition
that a term

−−−−⊥⊥⊥⊥λλλλ
m1n1 NyNxx KK .λλλλ

is in only if or form normal head−−−−⊥⊥⊥⊥ββββ

Note that if M has β-hnf, then M has a
This is because an hnf m1n1 NyNxx KK .λλλλ
is also unless If it is the case, then.⊥⊥⊥⊥====y

⊥⊥⊥⊥→>→>→>→>λλλλ ⊥⊥⊥⊥ββββm1n1 NyNxx KK .

and hence M has a

.0mn ========

hnf−−−−⊥⊥⊥⊥ββββ

 too.hnf,−−−−⊥⊥⊥⊥ββββ

⊥⊥⊥⊥≡≡≡≡////y

hnf.−−−−⊥⊥⊥⊥ββββ

−−−−⊥⊥⊥⊥λλλλ

Lambda calculus II 63

Examples.

(a)

c

bc

aabcbcacabcBT .))(.(λλλλ====λλλλ

(b) ⊥⊥⊥⊥====λλλλλλλλ)).)(.((xxxxxxBT

Lambda calculus II 64

(c) Recall that the Fixed point operator Y is defined by
.))(.())(.(.Y

4342143421
ff

xxfxxxfxf
ωωωωωωωω

λλλλλλλλλλλλ≡≡≡≡

It follows that and we have)(..Y ffff fff ωωωωωωωωλλλλ====ωωωωωωωωλλλλ≡≡≡≡

)(

.)Y(

ffBT

ffBT

ωωωωωωωω

λλλλ====

Now)(ffff f ωωωωωωωω====ωωωωωωωω

M

f

fBT

ffBT

ff

ff

)(

)(

ωωωωωωωω

========ωωωωωωωωthus

Lambda calculus II 65

Hence

M

f

f

f

ffBT .)Y(λλλλ====

Lambda calculus II 66

Remark.

The definition of the Böhm tree is not an inductive definition
of BT(M), although it seems to be according to presented
examples. The terms m1 NN ,,K
in the tail of an hnf of M may be more complex than the
term M itself. [Barendregt 1984, Chapter 10]

Lemma. (Correctnost of the definition of Böhm trees)
(i) Böhm trees are well defined,

(ii)).()(NBTMBTNM ====⇒⇒⇒⇒====ββββ

Proof.
The definition is correct as it is independent of the
choice of the head normal forms. This and (ii) follows
from the lemma on convertibility of hnfs.

Lambda calculus II 67

Definition. Approximate normal forms.

(i) Let A and B be Böhm trees of some terms. We
say that A is included in B and write if A
results from B by cutting of some subtrees, leaving an
empty subtree

,BA ⊆⊆⊆⊆

(ii) Let P, Q be terms. We say that P
approximates Q and write

−−−−⊥⊥⊥⊥λλλλ

).()(, QBTPBTQP ⊆⊆⊆⊆⊆⊆⊆⊆ if

(iii) Let P be a term. The set of approximate
normal forms (anf�s) of P, is defined as follows

nf}.a is −−−−⊥⊥⊥⊥ββββ⊆⊆⊆⊆==== QPQP |{)(A

−−−−⊥⊥⊥⊥λλλλ

.⊥⊥⊥⊥

−−−−⊥⊥⊥⊥λλλλ

Lambda calculus II 68

cc

bcb

bcacabcBTaabcaabc

⊥⊥⊥⊥

λλλλ====λλλλ⊆⊆⊆⊆λλλλ))(.(..

Example.

The set of approximate normal forms for the fixed point
operator Y is

},.,.,.,{)Y(K⊥⊥⊥⊥λλλλ⊥⊥⊥⊥λλλλ⊥⊥⊥⊥λλλλ⊥⊥⊥⊥==== 32 ffffffA

Lambda calculus II 65

Hence

M

f

f

f

ffBT .)Y(λλλλ====

Lambda calculus II 66

Remark.

The definition of the Böhm tree is not an inductive definition
of BT(M), although it seems to be according to presented
examples. The terms m1 NN ,,K
in the tail of an hnf of M may be more complex than the
term M itself. [Barendregt 1984, Chapter 10]

Lemma. (Correctnost of the definition of Böhm trees)
(i) Böhm trees are well defined,

(ii)).()(NBTMBTNM ====⇒⇒⇒⇒====ββββ

Proof.
The definition is correct as it is independent of the
choice of the head normal forms. This and (ii) follows
from the lemma on convertibility of hnfs.

Lambda calculus II 67

Definition. Approximate normal forms.

(i) Let A and B be Böhm trees of some terms. We
say that A is included in B and write if A
results from B by cutting of some subtrees, leaving an
empty subtree

,BA ⊆⊆⊆⊆

(ii) Let P, Q be terms. We say that P
approximates Q and write

−−−−⊥⊥⊥⊥λλλλ

).()(, QBTPBTQP ⊆⊆⊆⊆⊆⊆⊆⊆ if

(iii) Let P be a term. The set of approximate
normal forms (anf�s) of P, is defined as follows

nf}.a is −−−−⊥⊥⊥⊥ββββ⊆⊆⊆⊆==== QPQP |{)(A

−−−−⊥⊥⊥⊥λλλλ

.⊥⊥⊥⊥

−−−−⊥⊥⊥⊥λλλλ

Lambda calculus II 68

cc

bcb

bcacabcBTaabcaabc

⊥⊥⊥⊥

λλλλ====λλλλ⊆⊆⊆⊆λλλλ))(.(..

Example.

The set of approximate normal forms for the fixed point
operator Y is

},.,.,.,{)Y(K⊥⊥⊥⊥λλλλ⊥⊥⊥⊥λλλλ⊥⊥⊥⊥λλλλ⊥⊥⊥⊥==== 32 ffffffA

Lambda calculus II 65

Hence

M

f

f

f

ffBT .)Y(λλλλ====

Lambda calculus II 66

Remark.

The definition of the Böhm tree is not an inductive definition
of BT(M), although it seems to be according to presented
examples. The terms m1 NN ,,K
in the tail of an hnf of M may be more complex than the
term M itself. [Barendregt 1984, Chapter 10]

Lemma. (Correctnost of the definition of Böhm trees)
(i) Böhm trees are well defined,

(ii)).()(NBTMBTNM ====⇒⇒⇒⇒====ββββ

Proof.
The definition is correct as it is independent of the
choice of the head normal forms. This and (ii) follows
from the lemma on convertibility of hnfs.

Lambda calculus II 67

Definition. Approximate normal forms.

(i) Let A and B be Böhm trees of some terms. We
say that A is included in B and write if A
results from B by cutting of some subtrees, leaving an
empty subtree

,BA ⊆⊆⊆⊆

(ii) Let P, Q be terms. We say that P
approximates Q and write

−−−−⊥⊥⊥⊥λλλλ

).()(, QBTPBTQP ⊆⊆⊆⊆⊆⊆⊆⊆ if

(iii) Let P be a term. The set of approximate
normal forms (anf�s) of P, is defined as follows

nf}.a is −−−−⊥⊥⊥⊥ββββ⊆⊆⊆⊆==== QPQP |{)(A

−−−−⊥⊥⊥⊥λλλλ

.⊥⊥⊥⊥

−−−−⊥⊥⊥⊥λλλλ

Lambda calculus II 68

cc

bcb

bcacabcBTaabcaabc

⊥⊥⊥⊥

λλλλ====λλλλ⊆⊆⊆⊆λλλλ))(.(..

Example.

The set of approximate normal forms for the fixed point
operator Y is

},.,.,.,{)Y(K⊥⊥⊥⊥λλλλ⊥⊥⊥⊥λλλλ⊥⊥⊥⊥λλλλ⊥⊥⊥⊥==== 32 ffffffA

Lambda calculus II 65

Hence

M

f

f

f

ffBT .)Y(λλλλ====

Lambda calculus II 66

Remark.

The definition of the Böhm tree is not an inductive definition
of BT(M), although it seems to be according to presented
examples. The terms m1 NN ,,K
in the tail of an hnf of M may be more complex than the
term M itself. [Barendregt 1984, Chapter 10]

Lemma. (Correctnost of the definition of Böhm trees)
(i) Böhm trees are well defined,

(ii)).()(NBTMBTNM ====⇒⇒⇒⇒====ββββ

Proof.
The definition is correct as it is independent of the
choice of the head normal forms. This and (ii) follows
from the lemma on convertibility of hnfs.

Lambda calculus II 67

Definition. Approximate normal forms.

(i) Let A and B be Böhm trees of some terms. We
say that A is included in B and write if A
results from B by cutting of some subtrees, leaving an
empty subtree

,BA ⊆⊆⊆⊆

(ii) Let P, Q be terms. We say that P
approximates Q and write

−−−−⊥⊥⊥⊥λλλλ

).()(, QBTPBTQP ⊆⊆⊆⊆⊆⊆⊆⊆ if

(iii) Let P be a term. The set of approximate
normal forms (anf�s) of P, is defined as follows

nf}.a is −−−−⊥⊥⊥⊥ββββ⊆⊆⊆⊆==== QPQP |{)(A

−−−−⊥⊥⊥⊥λλλλ

.⊥⊥⊥⊥

−−−−⊥⊥⊥⊥λλλλ

Lambda calculus II 68

cc

bcb

bcacabcBTaabcaabc

⊥⊥⊥⊥

λλλλ====λλλλ⊆⊆⊆⊆λλλλ))(.(..

Example.

The set of approximate normal forms for the fixed point
operator Y is

},.,.,.,{)Y(K⊥⊥⊥⊥λλλλ⊥⊥⊥⊥λλλλ⊥⊥⊥⊥λλλλ⊥⊥⊥⊥==== 32 ffffffA

Lambda calculus II 69

Typing á la Curry

The basic system can be extended in
various ways to stronger systems by adding new types
and by adding new rules. Some of the new rules are
related to combinatorial properties of the trees
representing the terms.

Curry−−−−→→→→λλλλ

The systems to be discussed are
To each of these can be added one of the extra derivation
rules EQ and A.

. and ∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ ,, 2

Lambda calculus II 70

∩∩∩∩λλλλ
++++

λµλµλµλµ→→→→λλλλ
++++

λλλλ

A

EQ
2

The systems á la Curry

Lambda calculus II 71

Definition. Rules of equality (EQ) and approximation (A).

(i) The equality rule EQ

σσσσ
====σσσσ ββββ

:
:

N
NMM

(ii) The approximation rules A

σσσσ⊥⊥⊥⊥−−−−ΓΓΓΓ

σσσσ−−−−ΓΓΓΓ
∈∈∈∈σσσσ−−−−ΓΓΓΓ

:|

:|
)(:|

M
MP APallfor

Lambda calculus II 72

Remark. (Side conditions)

Note that in these rules the assumptions
are not type assignments. We call them side conditions. The
last rule states that has any type.

)(MPNM A∈∈∈∈====ββββ and

⊥⊥⊥⊥

Notation.

Let λ- be any of the systems
We denote by

.,, ∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ or 2

(i) EQ. rule by the extended system the −−−−λλλλ−−−−λλλλ ++++ ,

. rule by the extended system the AA −−−−λλλλ−−−−λλλλ ,(ii)

So for example
.AA ++++λµλµλµλµ====λµλµλµλµ++++λλλλ====λλλλ ++++ and EQ22

Lambda calculus II 69

Typing á la Curry

The basic system can be extended in
various ways to stronger systems by adding new types
and by adding new rules. Some of the new rules are
related to combinatorial properties of the trees
representing the terms.

Curry−−−−→→→→λλλλ

The systems to be discussed are
To each of these can be added one of the extra derivation
rules EQ and A.

. and ∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ ,, 2

Lambda calculus II 70

∩∩∩∩λλλλ
++++

λµλµλµλµ→→→→λλλλ
++++

λλλλ

A

EQ
2

The systems á la Curry

Lambda calculus II 71

Definition. Rules of equality (EQ) and approximation (A).

(i) The equality rule EQ

σσσσ
====σσσσ ββββ

:
:

N
NMM

(ii) The approximation rules A

σσσσ⊥⊥⊥⊥−−−−ΓΓΓΓ

σσσσ−−−−ΓΓΓΓ
∈∈∈∈σσσσ−−−−ΓΓΓΓ

:|

:|
)(:|

M
MP APallfor

Lambda calculus II 72

Remark. (Side conditions)

Note that in these rules the assumptions
are not type assignments. We call them side conditions. The
last rule states that has any type.

)(MPNM A∈∈∈∈====ββββ and

⊥⊥⊥⊥

Notation.

Let λ- be any of the systems
We denote by

.,, ∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ or 2

(i) EQ. rule by the extended system the −−−−λλλλ−−−−λλλλ ++++ ,

. rule by the extended system the AA −−−−λλλλ−−−−λλλλ ,(ii)

So for example
.AA ++++λµλµλµλµ====λµλµλµλµ++++λλλλ====λλλλ ++++ and EQ22

Lambda calculus II 69

Typing á la Curry

The basic system can be extended in
various ways to stronger systems by adding new types
and by adding new rules. Some of the new rules are
related to combinatorial properties of the trees
representing the terms.

Curry−−−−→→→→λλλλ

The systems to be discussed are
To each of these can be added one of the extra derivation
rules EQ and A.

. and ∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ ,, 2

Lambda calculus II 70

∩∩∩∩λλλλ
++++

λµλµλµλµ→→→→λλλλ
++++

λλλλ

A

EQ
2

The systems á la Curry

Lambda calculus II 71

Definition. Rules of equality (EQ) and approximation (A).

(i) The equality rule EQ

σσσσ
====σσσσ ββββ

:
:

N
NMM

(ii) The approximation rules A

σσσσ⊥⊥⊥⊥−−−−ΓΓΓΓ

σσσσ−−−−ΓΓΓΓ
∈∈∈∈σσσσ−−−−ΓΓΓΓ

:|

:|
)(:|

M
MP APallfor

Lambda calculus II 72

Remark. (Side conditions)

Note that in these rules the assumptions
are not type assignments. We call them side conditions. The
last rule states that has any type.

)(MPNM A∈∈∈∈====ββββ and

⊥⊥⊥⊥

Notation.

Let λ- be any of the systems
We denote by

.,, ∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ or 2

(i) EQ. rule by the extended system the −−−−λλλλ−−−−λλλλ ++++ ,

. rule by the extended system the AA −−−−λλλλ−−−−λλλλ ,(ii)

So for example
.AA ++++λµλµλµλµ====λµλµλµλµ++++λλλλ====λλλλ ++++ and EQ22

Lambda calculus II 69

Typing á la Curry

The basic system can be extended in
various ways to stronger systems by adding new types
and by adding new rules. Some of the new rules are
related to combinatorial properties of the trees
representing the terms.

Curry−−−−→→→→λλλλ

The systems to be discussed are
To each of these can be added one of the extra derivation
rules EQ and A.

. and ∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ ,, 2

Lambda calculus II 70

∩∩∩∩λλλλ
++++

λµλµλµλµ→→→→λλλλ
++++

λλλλ

A

EQ
2

The systems á la Curry

Lambda calculus II 71

Definition. Rules of equality (EQ) and approximation (A).

(i) The equality rule EQ

σσσσ
====σσσσ ββββ

:
:

N
NMM

(ii) The approximation rules A

σσσσ⊥⊥⊥⊥−−−−ΓΓΓΓ

σσσσ−−−−ΓΓΓΓ
∈∈∈∈σσσσ−−−−ΓΓΓΓ

:|

:|
)(:|

M
MP APallfor

Lambda calculus II 72

Remark. (Side conditions)

Note that in these rules the assumptions
are not type assignments. We call them side conditions. The
last rule states that has any type.

)(MPNM A∈∈∈∈====ββββ and

⊥⊥⊥⊥

Notation.

Let λ- be any of the systems
We denote by

.,, ∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ or 2

(i) EQ. rule by the extended system the −−−−λλλλ−−−−λλλλ ++++ ,

. rule by the extended system the AA −−−−λλλλ−−−−λλλλ ,(ii)

So for example
.AA ++++λµλµλµλµ====λµλµλµλµ++++λλλλ====λλλλ ++++ and EQ22

Lambda calculus II 73

Examples.

(a) One has

)(:)))(..((| σσσσ→→→→ττττ→→→→σσσσλλλλλλλλ−−−− ++++→→→→λλλλ
qpprpq

It follows from the equality
Note that this statement is not provable in general in
itself. The term has in only types of the form

as follows from the generation lemma.

ppqqpprpq .))(..(λλλλ====λλλλλλλλ

→→→→λλλλ
,)(σσσσ→→→→ττττ→→→→σσσσ→→→→σσσσ

→→→→λλλλ

Lambda calculus II 74

(b) Let be the fixed point
operator. Then

))(.))((..(Y xxfxxxfxf λλλλλλλλλλλλ≡≡≡≡

))((:Y| σσσσ→→→→σσσσ→→→→σσσσ−−−− →→→→λλλλ A

Indeed, the set of approximate normal forms of Y is

},.,.,.,{ KK ⊥⊥⊥⊥λλλλ⊥⊥⊥⊥λλλλ⊥⊥⊥⊥λλλλ⊥⊥⊥⊥ n2 ffffff

And all these terms have type Again, this
statement is not derivable in itself. (In all
typable terms have a normal form as we shall see later on.)

).)((σσσσ→→→→σσσσ→→→→σσσσ
→→→→λλλλ →→→→λλλλ

Lambda calculus II 75

We are going to show that the rule A is stronger than the rule EQ.

Proposition.

Let λ- be one of the systems of type
assignments. In all systems λ-A, we have

∩∩∩∩λλλλλµλµλµλµλλλλ or ,2

(i) σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒∈∈∈∈σσσσ−−−−ΓΓΓΓ :|)(:| PMPM A and

(ii) Let Then ´).()(MBTMBT ====

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ ´:|:| MM
(iii) Let Then ´.MM ββββ====

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ ´:|:| MM

Note that (iii) is the rule EQ.

Lambda calculus II 76

Proof.

(i) If P is an approximate normal form of M, then P
results from BT(M) by replacing some subtrees by and
writing the result as a λ-term by one of the rules A.
Therefore P has the same type as M. (see an Example
below).

⊥⊥⊥⊥

(ii) Suppose Then and,
consequently

 ´).()(MBTMBT ====)(MA ´),(MA====

∈∈∈∈∀∀∀∀⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ PM (:| (i),by],:|´))[()(σσσσ−−−−ΓΓΓΓ==== PMM AA

.,´:| A ruleby σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒ M

Lambda calculus II 73

Examples.

(a) One has

)(:)))(..((| σσσσ→→→→ττττ→→→→σσσσλλλλλλλλ−−−− ++++→→→→λλλλ
qpprpq

It follows from the equality
Note that this statement is not provable in general in
itself. The term has in only types of the form

as follows from the generation lemma.

ppqqpprpq .))(..(λλλλ====λλλλλλλλ

→→→→λλλλ
,)(σσσσ→→→→ττττ→→→→σσσσ→→→→σσσσ

→→→→λλλλ

Lambda calculus II 74

(b) Let be the fixed point
operator. Then

))(.))((..(Y xxfxxxfxf λλλλλλλλλλλλ≡≡≡≡

))((:Y| σσσσ→→→→σσσσ→→→→σσσσ−−−− →→→→λλλλ A

Indeed, the set of approximate normal forms of Y is

},.,.,.,{ KK ⊥⊥⊥⊥λλλλ⊥⊥⊥⊥λλλλ⊥⊥⊥⊥λλλλ⊥⊥⊥⊥ n2 ffffff

And all these terms have type Again, this
statement is not derivable in itself. (In all
typable terms have a normal form as we shall see later on.)

).)((σσσσ→→→→σσσσ→→→→σσσσ
→→→→λλλλ →→→→λλλλ

Lambda calculus II 75

We are going to show that the rule A is stronger than the rule EQ.

Proposition.

Let λ- be one of the systems of type
assignments. In all systems λ-A, we have

∩∩∩∩λλλλλµλµλµλµλλλλ or ,2

(i) σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒∈∈∈∈σσσσ−−−−ΓΓΓΓ :|)(:| PMPM A and

(ii) Let Then ´).()(MBTMBT ====

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ ´:|:| MM
(iii) Let Then ´.MM ββββ====

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ ´:|:| MM

Note that (iii) is the rule EQ.

Lambda calculus II 76

Proof.

(i) If P is an approximate normal form of M, then P
results from BT(M) by replacing some subtrees by and
writing the result as a λ-term by one of the rules A.
Therefore P has the same type as M. (see an Example
below).

⊥⊥⊥⊥

(ii) Suppose Then and,
consequently

 ´).()(MBTMBT ====)(MA ´),(MA====

∈∈∈∈∀∀∀∀⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ PM (:| (i),by],:|´))[()(σσσσ−−−−ΓΓΓΓ==== PMM AA

.,´:| A ruleby σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒ M

Lambda calculus II 73

Examples.

(a) One has

)(:)))(..((| σσσσ→→→→ττττ→→→→σσσσλλλλλλλλ−−−− ++++→→→→λλλλ
qpprpq

It follows from the equality
Note that this statement is not provable in general in
itself. The term has in only types of the form

as follows from the generation lemma.

ppqqpprpq .))(..(λλλλ====λλλλλλλλ

→→→→λλλλ
,)(σσσσ→→→→ττττ→→→→σσσσ→→→→σσσσ

→→→→λλλλ

Lambda calculus II 74

(b) Let be the fixed point
operator. Then

))(.))((..(Y xxfxxxfxf λλλλλλλλλλλλ≡≡≡≡

))((:Y| σσσσ→→→→σσσσ→→→→σσσσ−−−− →→→→λλλλ A

Indeed, the set of approximate normal forms of Y is

},.,.,.,{ KK ⊥⊥⊥⊥λλλλ⊥⊥⊥⊥λλλλ⊥⊥⊥⊥λλλλ⊥⊥⊥⊥ n2 ffffff

And all these terms have type Again, this
statement is not derivable in itself. (In all
typable terms have a normal form as we shall see later on.)

).)((σσσσ→→→→σσσσ→→→→σσσσ
→→→→λλλλ →→→→λλλλ

Lambda calculus II 75

We are going to show that the rule A is stronger than the rule EQ.

Proposition.

Let λ- be one of the systems of type
assignments. In all systems λ-A, we have

∩∩∩∩λλλλλµλµλµλµλλλλ or ,2

(i) σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒∈∈∈∈σσσσ−−−−ΓΓΓΓ :|)(:| PMPM A and

(ii) Let Then ´).()(MBTMBT ====

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ ´:|:| MM
(iii) Let Then ´.MM ββββ====

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ ´:|:| MM

Note that (iii) is the rule EQ.

Lambda calculus II 76

Proof.

(i) If P is an approximate normal form of M, then P
results from BT(M) by replacing some subtrees by and
writing the result as a λ-term by one of the rules A.
Therefore P has the same type as M. (see an Example
below).

⊥⊥⊥⊥

(ii) Suppose Then and,
consequently

 ´).()(MBTMBT ====)(MA ´),(MA====

∈∈∈∈∀∀∀∀⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ PM (:| (i),by],:|´))[()(σσσσ−−−−ΓΓΓΓ==== PMM AA

.,´:| A ruleby σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒ M

Lambda calculus II 73

Examples.

(a) One has

)(:)))(..((| σσσσ→→→→ττττ→→→→σσσσλλλλλλλλ−−−− ++++→→→→λλλλ
qpprpq

It follows from the equality
Note that this statement is not provable in general in
itself. The term has in only types of the form

as follows from the generation lemma.

ppqqpprpq .))(..(λλλλ====λλλλλλλλ

→→→→λλλλ
,)(σσσσ→→→→ττττ→→→→σσσσ→→→→σσσσ

→→→→λλλλ

Lambda calculus II 74

(b) Let be the fixed point
operator. Then

))(.))((..(Y xxfxxxfxf λλλλλλλλλλλλ≡≡≡≡

))((:Y| σσσσ→→→→σσσσ→→→→σσσσ−−−− →→→→λλλλ A

Indeed, the set of approximate normal forms of Y is

},.,.,.,{ KK ⊥⊥⊥⊥λλλλ⊥⊥⊥⊥λλλλ⊥⊥⊥⊥λλλλ⊥⊥⊥⊥ n2 ffffff

And all these terms have type Again, this
statement is not derivable in itself. (In all
typable terms have a normal form as we shall see later on.)

).)((σσσσ→→→→σσσσ→→→→σσσσ
→→→→λλλλ →→→→λλλλ

Lambda calculus II 75

We are going to show that the rule A is stronger than the rule EQ.

Proposition.

Let λ- be one of the systems of type
assignments. In all systems λ-A, we have

∩∩∩∩λλλλλµλµλµλµλλλλ or ,2

(i) σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒∈∈∈∈σσσσ−−−−ΓΓΓΓ :|)(:| PMPM A and

(ii) Let Then ´).()(MBTMBT ====

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ ´:|:| MM
(iii) Let Then ´.MM ββββ====

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ ´:|:| MM

Note that (iii) is the rule EQ.

Lambda calculus II 76

Proof.

(i) If P is an approximate normal form of M, then P
results from BT(M) by replacing some subtrees by and
writing the result as a λ-term by one of the rules A.
Therefore P has the same type as M. (see an Example
below).

⊥⊥⊥⊥

(ii) Suppose Then and,
consequently

 ´).()(MBTMBT ====)(MA ´),(MA====

∈∈∈∈∀∀∀∀⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ PM (:| (i),by],:|´))[()(σσσσ−−−−ΓΓΓΓ==== PMM AA

.,´:| A ruleby σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒ M

Lambda calculus II 77

(iii) If by the
lemma on the correctness of the definition of Böhm
trees. The result then follows by (ii).

´),()(´, MBTMBTMM ========ββββ then

Example.
)(., ⊥⊥⊥⊥λλλλ≡≡≡≡≡≡≡≡ fffPM let and combinatorpoint fixed theLet Y

be an approximant. We have
σσσσ→→→→σσσσ→→→→σσσσ−−−−)(:| Y

By choosing σ as a type for one obtains ,⊥⊥⊥⊥

σσσσ→→→→σσσσ→→→→σσσσ−−−−)(:| P

Lambda calculus II 78

System λ2

� Polymorphic typed lambda calculus
� Second-order typed lambda calculus
� Second-order polymorphic typed λ-calculus
� System F

� Girard (1972)
� Reynolds (1974)

Lambda calculus II 79

Motivation.

(i) Usually these names refer to λ2-Church, we shall
introduce the Curry version of λ2 to discuss the Church
version later.

(ii) The idea of polymorphism: while in we have

for arbitrary (type) variable α (and for arbitrary type σ as

well), one stipulates in λ2

to indicate that has all types or that the type

of depends uniformly on α.

→→→→λλλλ
)(:).(αααα→→→→ααααλλλλ xx

)).((:).(αααα→→→→αααααααα∀∀∀∀λλλλ xx
σσσσ→→→→σσσσ

As we shall see later, the mechanism is rather powerful.

xx.λλλλ
xx.λλλλ

Lambda calculus II 80

Definition. The set of types of λ2.
The set T = Type() is defined by the following
abstract grammar

λ2

TV|TT|VT ∀∀∀∀→→→→====
Notation.

(i) The parentheses by quantifiers cumulate to the right, so
we have))))(((KK σσσσαααα∀∀∀∀αααα∀∀∀∀αααα∀∀∀∀ n21(

(ii) If there are no parentheses, .han strongly t more binds →→→→∀∀∀∀

Hence
).(.,)(ττττ→→→→σσσσαααα∀∀∀∀≡≡≡≡ττττ→→→→σσσσαααα∀∀∀∀ττττ→→→→σσσσαααα∀∀∀∀≡≡≡≡ττττ→→→→σσσσαααα∀∀∀∀ but

for shorthand a as σσσσαααααααα∀∀∀∀ .n1 K

Lambda calculus II 77

(iii) If by the
lemma on the correctness of the definition of Böhm
trees. The result then follows by (ii).

´),()(´, MBTMBTMM ========ββββ then

Example.
)(., ⊥⊥⊥⊥λλλλ≡≡≡≡≡≡≡≡ fffPM let and combinatorpoint fixed theLet Y

be an approximant. We have
σσσσ→→→→σσσσ→→→→σσσσ−−−−)(:| Y

By choosing σ as a type for one obtains ,⊥⊥⊥⊥

σσσσ→→→→σσσσ→→→→σσσσ−−−−)(:| P

Lambda calculus II 78

System λ2

� Polymorphic typed lambda calculus
� Second-order typed lambda calculus
� Second-order polymorphic typed λ-calculus
� System F

� Girard (1972)
� Reynolds (1974)

Lambda calculus II 79

Motivation.

(i) Usually these names refer to λ2-Church, we shall
introduce the Curry version of λ2 to discuss the Church
version later.

(ii) The idea of polymorphism: while in we have

for arbitrary (type) variable α (and for arbitrary type σ as

well), one stipulates in λ2

to indicate that has all types or that the type

of depends uniformly on α.

→→→→λλλλ
)(:).(αααα→→→→ααααλλλλ xx

)).((:).(αααα→→→→αααααααα∀∀∀∀λλλλ xx
σσσσ→→→→σσσσ

As we shall see later, the mechanism is rather powerful.

xx.λλλλ
xx.λλλλ

Lambda calculus II 80

Definition. The set of types of λ2.
The set T = Type() is defined by the following
abstract grammar

λ2

TV|TT|VT ∀∀∀∀→→→→====
Notation.

(i) The parentheses by quantifiers cumulate to the right, so
we have))))(((KK σσσσαααα∀∀∀∀αααα∀∀∀∀αααα∀∀∀∀ n21(

(ii) If there are no parentheses, .han strongly t more binds →→→→∀∀∀∀

Hence
).(.,)(ττττ→→→→σσσσαααα∀∀∀∀≡≡≡≡ττττ→→→→σσσσαααα∀∀∀∀ττττ→→→→σσσσαααα∀∀∀∀≡≡≡≡ττττ→→→→σσσσαααα∀∀∀∀ but

for shorthand a as σσσσαααααααα∀∀∀∀ .n1 K

Lambda calculus II 77

(iii) If by the
lemma on the correctness of the definition of Böhm
trees. The result then follows by (ii).

´),()(´, MBTMBTMM ========ββββ then

Example.
)(., ⊥⊥⊥⊥λλλλ≡≡≡≡≡≡≡≡ fffPM let and combinatorpoint fixed theLet Y

be an approximant. We have
σσσσ→→→→σσσσ→→→→σσσσ−−−−)(:| Y

By choosing σ as a type for one obtains ,⊥⊥⊥⊥

σσσσ→→→→σσσσ→→→→σσσσ−−−−)(:| P

Lambda calculus II 78

System λ2

� Polymorphic typed lambda calculus
� Second-order typed lambda calculus
� Second-order polymorphic typed λ-calculus
� System F

� Girard (1972)
� Reynolds (1974)

Lambda calculus II 79

Motivation.

(i) Usually these names refer to λ2-Church, we shall
introduce the Curry version of λ2 to discuss the Church
version later.

(ii) The idea of polymorphism: while in we have

for arbitrary (type) variable α (and for arbitrary type σ as

well), one stipulates in λ2

to indicate that has all types or that the type

of depends uniformly on α.

→→→→λλλλ
)(:).(αααα→→→→ααααλλλλ xx

)).((:).(αααα→→→→αααααααα∀∀∀∀λλλλ xx
σσσσ→→→→σσσσ

As we shall see later, the mechanism is rather powerful.

xx.λλλλ
xx.λλλλ

Lambda calculus II 80

Definition. The set of types of λ2.
The set T = Type() is defined by the following
abstract grammar

λ2

TV|TT|VT ∀∀∀∀→→→→====
Notation.

(i) The parentheses by quantifiers cumulate to the right, so
we have))))(((KK σσσσαααα∀∀∀∀αααα∀∀∀∀αααα∀∀∀∀ n21(

(ii) If there are no parentheses, .han strongly t more binds →→→→∀∀∀∀

Hence
).(.,)(ττττ→→→→σσσσαααα∀∀∀∀≡≡≡≡ττττ→→→→σσσσαααα∀∀∀∀ττττ→→→→σσσσαααα∀∀∀∀≡≡≡≡ττττ→→→→σσσσαααα∀∀∀∀ but

for shorthand a as σσσσαααααααα∀∀∀∀ .n1 K

Lambda calculus II 77

(iii) If by the
lemma on the correctness of the definition of Böhm
trees. The result then follows by (ii).

´),()(´, MBTMBTMM ========ββββ then

Example.
)(., ⊥⊥⊥⊥λλλλ≡≡≡≡≡≡≡≡ fffPM let and combinatorpoint fixed theLet Y

be an approximant. We have
σσσσ→→→→σσσσ→→→→σσσσ−−−−)(:| Y

By choosing σ as a type for one obtains ,⊥⊥⊥⊥

σσσσ→→→→σσσσ→→→→σσσσ−−−−)(:| P

Lambda calculus II 78

System λ2

� Polymorphic typed lambda calculus
� Second-order typed lambda calculus
� Second-order polymorphic typed λ-calculus
� System F

� Girard (1972)
� Reynolds (1974)

Lambda calculus II 79

Motivation.

(i) Usually these names refer to λ2-Church, we shall
introduce the Curry version of λ2 to discuss the Church
version later.

(ii) The idea of polymorphism: while in we have

for arbitrary (type) variable α (and for arbitrary type σ as

well), one stipulates in λ2

to indicate that has all types or that the type

of depends uniformly on α.

→→→→λλλλ
)(:).(αααα→→→→ααααλλλλ xx

)).((:).(αααα→→→→αααααααα∀∀∀∀λλλλ xx
σσσσ→→→→σσσσ

As we shall see later, the mechanism is rather powerful.

xx.λλλλ
xx.λλλλ

Lambda calculus II 80

Definition. The set of types of λ2.
The set T = Type() is defined by the following
abstract grammar

λ2

TV|TT|VT ∀∀∀∀→→→→====
Notation.

(i) The parentheses by quantifiers cumulate to the right, so
we have))))(((KK σσσσαααα∀∀∀∀αααα∀∀∀∀αααα∀∀∀∀ n21(

(ii) If there are no parentheses, .han strongly t more binds →→→→∀∀∀∀

Hence
).(.,)(ττττ→→→→σσσσαααα∀∀∀∀≡≡≡≡ττττ→→→→σσσσαααα∀∀∀∀ττττ→→→→σσσσαααα∀∀∀∀≡≡≡≡ττττ→→→→σσσσαααα∀∀∀∀ but

for shorthand a as σσσσαααααααα∀∀∀∀ .n1 K

Lambda calculus II 81

Definition. Type assignment in λ2-Curry.

λ2

(start rule)
σσσσ−−−−ΓΓΓΓ
ΓΓΓΓ∈∈∈∈σσσσ

:|
):(
x

x

n)eliminatio→(
ττττ−−−−ΓΓΓΓ

σσσσ−−−−ΓΓΓΓττττ→→→→σσσσ−−−−ΓΓΓΓ
:)(|

:|)(:|
MN

NM

on)introducti→()(:).(|
:|:,

ττττ→→→→σσσσλλλλ−−−−ΓΓΓΓ
ττττ−−−−σσσσΓΓΓΓ

Mx
Mx

)(neliminatio−∀
]):[(:|

)(:|
ττττ====αααασσσσ−−−−ΓΓΓΓ

σσσσαααα∀∀∀∀−−−−ΓΓΓΓ
M

M

)(onintroducti−∀).(:|
:|

σσσσαααα∀∀∀∀−−−−ΓΓΓΓ
σσσσ−−−−ΓΓΓΓ

M
M

Lambda calculus II 82

Exercises.
).(:).(αααα→→→→αααααααα∀∀∀∀λλλλ xx-| (a)

).(:).(αααα→→→→ββββ→→→→αααααβαβαβαβ∀∀∀∀λλλλ yxy-| (b)

).(| xffx nλλλλ−−−− (c))).((: αααα→→→→αααα→→→→αααα→→→→αααααααα∀∀∀∀

).(xxxλλλλ-| (d)

).(| xxxλλλλ−−−− (e)

).(: ββββ→→→→αααααααα∀∀∀∀ββββ∀∀∀∀

))(.(: ββββ→→→→ββββ→→→→αααααααα∀∀∀∀ββββ∀∀∀∀

).(| xxxλλλλ−−−− (f))()(: αααααααα∀∀∀∀→→→→αααααααα∀∀∀∀

Lambda calculus II 83

Remarks.
(i) Exercise (c) shows that the Church numerals

have type which
is sometimes called �polynat�.

).(xffx n
n c λλλλ≡≡≡≡)).((αααα→→→→αααα→→→→αααα→→→→αααααααα∀∀∀∀

(ii) One reason for the strength of λ2 is that the Church
numerals may be used as iterators for functions of types
for arbitrary and not only for functions of a fixed type

σσσσ→→→→σσσσ

.αααα→→→→αααα

(iii) We shall show later that the typable terms in λ2 have
a normal form, in fact they are strongly normalizing.

σσσσ

Lambda calculus II 84

The system λµ

� It is the system of recursive types.
� The recursive types come together with an equivalence

relation .
� The type assignment rules consist of the rules of

and the following rule

≈≈≈≈
→→→→λλλλ

´:|
´:|

σσσσ−−−−ΓΓΓΓ
σσσσ≈≈≈≈σσσσσσσσ−−−−ΓΓΓΓ

M
M

Lambda calculus II 81

Definition. Type assignment in λ2-Curry.

λ2

(start rule)
σσσσ−−−−ΓΓΓΓ
ΓΓΓΓ∈∈∈∈σσσσ

:|
):(
x

x

n)eliminatio→(
ττττ−−−−ΓΓΓΓ

σσσσ−−−−ΓΓΓΓττττ→→→→σσσσ−−−−ΓΓΓΓ
:)(|

:|)(:|
MN

NM

on)introducti→()(:).(|
:|:,

ττττ→→→→σσσσλλλλ−−−−ΓΓΓΓ
ττττ−−−−σσσσΓΓΓΓ

Mx
Mx

)(neliminatio−∀
]):[(:|

)(:|
ττττ====αααασσσσ−−−−ΓΓΓΓ

σσσσαααα∀∀∀∀−−−−ΓΓΓΓ
M

M

)(onintroducti−∀).(:|
:|

σσσσαααα∀∀∀∀−−−−ΓΓΓΓ
σσσσ−−−−ΓΓΓΓ

M
M

Lambda calculus II 82

Exercises.
).(:).(αααα→→→→αααααααα∀∀∀∀λλλλ xx-| (a)

).(:).(αααα→→→→ββββ→→→→αααααβαβαβαβ∀∀∀∀λλλλ yxy-| (b)

).(| xffx nλλλλ−−−− (c))).((: αααα→→→→αααα→→→→αααα→→→→αααααααα∀∀∀∀

).(xxxλλλλ-| (d)

).(| xxxλλλλ−−−− (e)

).(: ββββ→→→→αααααααα∀∀∀∀ββββ∀∀∀∀

))(.(: ββββ→→→→ββββ→→→→αααααααα∀∀∀∀ββββ∀∀∀∀

).(| xxxλλλλ−−−− (f))()(: αααααααα∀∀∀∀→→→→αααααααα∀∀∀∀

Lambda calculus II 83

Remarks.
(i) Exercise (c) shows that the Church numerals

have type which
is sometimes called �polynat�.

).(xffx n
n c λλλλ≡≡≡≡)).((αααα→→→→αααα→→→→αααα→→→→αααααααα∀∀∀∀

(ii) One reason for the strength of λ2 is that the Church
numerals may be used as iterators for functions of types
for arbitrary and not only for functions of a fixed type

σσσσ→→→→σσσσ

.αααα→→→→αααα

(iii) We shall show later that the typable terms in λ2 have
a normal form, in fact they are strongly normalizing.

σσσσ

Lambda calculus II 84

The system λµ

� It is the system of recursive types.
� The recursive types come together with an equivalence

relation .
� The type assignment rules consist of the rules of

and the following rule

≈≈≈≈
→→→→λλλλ

´:|
´:|

σσσσ−−−−ΓΓΓΓ
σσσσ≈≈≈≈σσσσσσσσ−−−−ΓΓΓΓ

M
M

Lambda calculus II 81

Definition. Type assignment in λ2-Curry.

λ2

(start rule)
σσσσ−−−−ΓΓΓΓ
ΓΓΓΓ∈∈∈∈σσσσ

:|
):(
x

x

n)eliminatio→(
ττττ−−−−ΓΓΓΓ

σσσσ−−−−ΓΓΓΓττττ→→→→σσσσ−−−−ΓΓΓΓ
:)(|

:|)(:|
MN

NM

on)introducti→()(:).(|
:|:,

ττττ→→→→σσσσλλλλ−−−−ΓΓΓΓ
ττττ−−−−σσσσΓΓΓΓ

Mx
Mx

)(neliminatio−∀
]):[(:|

)(:|
ττττ====αααασσσσ−−−−ΓΓΓΓ

σσσσαααα∀∀∀∀−−−−ΓΓΓΓ
M

M

)(onintroducti−∀).(:|
:|

σσσσαααα∀∀∀∀−−−−ΓΓΓΓ
σσσσ−−−−ΓΓΓΓ

M
M

Lambda calculus II 82

Exercises.
).(:).(αααα→→→→αααααααα∀∀∀∀λλλλ xx-| (a)

).(:).(αααα→→→→ββββ→→→→αααααβαβαβαβ∀∀∀∀λλλλ yxy-| (b)

).(| xffx nλλλλ−−−− (c))).((: αααα→→→→αααα→→→→αααα→→→→αααααααα∀∀∀∀

).(xxxλλλλ-| (d)

).(| xxxλλλλ−−−− (e)

).(: ββββ→→→→αααααααα∀∀∀∀ββββ∀∀∀∀

))(.(: ββββ→→→→ββββ→→→→αααααααα∀∀∀∀ββββ∀∀∀∀

).(| xxxλλλλ−−−− (f))()(: αααααααα∀∀∀∀→→→→αααααααα∀∀∀∀

Lambda calculus II 83

Remarks.
(i) Exercise (c) shows that the Church numerals

have type which
is sometimes called �polynat�.

).(xffx n
n c λλλλ≡≡≡≡)).((αααα→→→→αααα→→→→αααα→→→→αααααααα∀∀∀∀

(ii) One reason for the strength of λ2 is that the Church
numerals may be used as iterators for functions of types
for arbitrary and not only for functions of a fixed type

σσσσ→→→→σσσσ

.αααα→→→→αααα

(iii) We shall show later that the typable terms in λ2 have
a normal form, in fact they are strongly normalizing.

σσσσ

Lambda calculus II 84

The system λµ

� It is the system of recursive types.
� The recursive types come together with an equivalence

relation .
� The type assignment rules consist of the rules of

and the following rule

≈≈≈≈
→→→→λλλλ

´:|
´:|

σσσσ−−−−ΓΓΓΓ
σσσσ≈≈≈≈σσσσσσσσ−−−−ΓΓΓΓ

M
M

Lambda calculus II 81

Definition. Type assignment in λ2-Curry.

λ2

(start rule)
σσσσ−−−−ΓΓΓΓ
ΓΓΓΓ∈∈∈∈σσσσ

:|
):(
x

x

n)eliminatio→(
ττττ−−−−ΓΓΓΓ

σσσσ−−−−ΓΓΓΓττττ→→→→σσσσ−−−−ΓΓΓΓ
:)(|

:|)(:|
MN

NM

on)introducti→()(:).(|
:|:,

ττττ→→→→σσσσλλλλ−−−−ΓΓΓΓ
ττττ−−−−σσσσΓΓΓΓ

Mx
Mx

)(neliminatio−∀
]):[(:|

)(:|
ττττ====αααασσσσ−−−−ΓΓΓΓ

σσσσαααα∀∀∀∀−−−−ΓΓΓΓ
M

M

)(onintroducti−∀).(:|
:|

σσσσαααα∀∀∀∀−−−−ΓΓΓΓ
σσσσ−−−−ΓΓΓΓ

M
M

Lambda calculus II 82

Exercises.
).(:).(αααα→→→→αααααααα∀∀∀∀λλλλ xx-| (a)

).(:).(αααα→→→→ββββ→→→→αααααβαβαβαβ∀∀∀∀λλλλ yxy-| (b)

).(| xffx nλλλλ−−−− (c))).((: αααα→→→→αααα→→→→αααα→→→→αααααααα∀∀∀∀

).(xxxλλλλ-| (d)

).(| xxxλλλλ−−−− (e)

).(: ββββ→→→→αααααααα∀∀∀∀ββββ∀∀∀∀

))(.(: ββββ→→→→ββββ→→→→αααααααα∀∀∀∀ββββ∀∀∀∀

).(| xxxλλλλ−−−− (f))()(: αααααααα∀∀∀∀→→→→αααααααα∀∀∀∀

Lambda calculus II 83

Remarks.
(i) Exercise (c) shows that the Church numerals

have type which
is sometimes called �polynat�.

).(xffx n
n c λλλλ≡≡≡≡)).((αααα→→→→αααα→→→→αααα→→→→αααααααα∀∀∀∀

(ii) One reason for the strength of λ2 is that the Church
numerals may be used as iterators for functions of types
for arbitrary and not only for functions of a fixed type

σσσσ→→→→σσσσ

.αααα→→→→αααα

(iii) We shall show later that the typable terms in λ2 have
a normal form, in fact they are strongly normalizing.

σσσσ

Lambda calculus II 84

The system λµ

� It is the system of recursive types.
� The recursive types come together with an equivalence

relation .
� The type assignment rules consist of the rules of

and the following rule

≈≈≈≈
→→→→λλλλ

´:|
´:|

σσσσ−−−−ΓΓΓΓ
σσσσ≈≈≈≈σσσσσσσσ−−−−ΓΓΓΓ

M
M

Lambda calculus II 85

Motivation

A typical example of a recursive type is a type 0σσσσ

(1) 000 σσσσ→→→→σσσσ≈≈≈≈σσσσ

This particular type can be used to type arbitrary terms
As an example, we shall show that
has as a type

.ΛΛΛΛ∈∈∈∈M
).)(.(xxxxxx λλλλλλλλ≡≡≡≡ΩΩΩΩ

00 xxx σσσσ−−−−σσσσ :|:
000 xx σσσσ→→→→σσσσ−−−−σσσσ :|:

00xxx σσσσ→→→→σσσσλλλλ−−−− :.|

0xxx σσσσλλλλ−−−− :.|

0xxxxxx σσσσλλλλλλλλ−−−−
ΩΩΩΩ

:).)(.(|
44 344 21

 0σσσσ

Lambda calculus II 86

Here is the proof of the same statement in a natural
deduction setting

000

1
0

xx
x

σσσσσσσσ→→→→σσσσ
σσσσ

::
:

1
xxx

xx
00

0

σσσσ→→→→σσσσλλλλ
σσσσ

:).(
:)(

0

000

xxxxxx
xxxxxx

σσσσλλλλλλλλ
σσσσλλλλσσσσ→→→→σσσσλλλλ

ΩΩΩΩ

:).)(.(
:).(:).(

44 344 21

Lambda calculus II 87

Remarks.

(i) The equation (1) is similar to a recursive domain equation

][DDD →→→→≅≅≅≅

that enables to interpret elements of Λ in denotational
semantics.

(ii) In order to construct a type satisfying (1), there is an
operator µ such that putting implies (1).

0σσσσ
αααα→→→→ααααµαµαµαµα≡≡≡≡σσσσ .0

Lambda calculus II 88

Definition. The set T=Type(λµ), trees of types of λµ.

(i) The set of types of λµ, T = Type(λµ), is defined by the following
abstract grammar.

V.T|TT|VT µµµµ→→→→====

where V is the set of type variables.

Lambda calculus II 85

Motivation

A typical example of a recursive type is a type 0σσσσ

(1) 000 σσσσ→→→→σσσσ≈≈≈≈σσσσ

This particular type can be used to type arbitrary terms
As an example, we shall show that
has as a type

.ΛΛΛΛ∈∈∈∈M
).)(.(xxxxxx λλλλλλλλ≡≡≡≡ΩΩΩΩ

00 xxx σσσσ−−−−σσσσ :|:
000 xx σσσσ→→→→σσσσ−−−−σσσσ :|:

00xxx σσσσ→→→→σσσσλλλλ−−−− :.|

0xxx σσσσλλλλ−−−− :.|

0xxxxxx σσσσλλλλλλλλ−−−−
ΩΩΩΩ

:).)(.(|
44 344 21

 0σσσσ

Lambda calculus II 86

Here is the proof of the same statement in a natural
deduction setting

000

1
0

xx
x

σσσσσσσσ→→→→σσσσ
σσσσ

::
:

1
xxx

xx
00

0

σσσσ→→→→σσσσλλλλ
σσσσ

:).(
:)(

0

000

xxxxxx
xxxxxx

σσσσλλλλλλλλ
σσσσλλλλσσσσ→→→→σσσσλλλλ

ΩΩΩΩ

:).)(.(
:).(:).(

44 344 21

Lambda calculus II 87

Remarks.

(i) The equation (1) is similar to a recursive domain equation

][DDD →→→→≅≅≅≅

that enables to interpret elements of Λ in denotational
semantics.

(ii) In order to construct a type satisfying (1), there is an
operator µ such that putting implies (1).

0σσσσ
αααα→→→→ααααµαµαµαµα≡≡≡≡σσσσ .0

Lambda calculus II 88

Definition. The set T=Type(λµ), trees of types of λµ.

(i) The set of types of λµ, T = Type(λµ), is defined by the following
abstract grammar.

V.T|TT|VT µµµµ→→→→====

where V is the set of type variables.

Lambda calculus II 85

Motivation

A typical example of a recursive type is a type 0σσσσ

(1) 000 σσσσ→→→→σσσσ≈≈≈≈σσσσ

This particular type can be used to type arbitrary terms
As an example, we shall show that
has as a type

.ΛΛΛΛ∈∈∈∈M
).)(.(xxxxxx λλλλλλλλ≡≡≡≡ΩΩΩΩ

00 xxx σσσσ−−−−σσσσ :|:
000 xx σσσσ→→→→σσσσ−−−−σσσσ :|:

00xxx σσσσ→→→→σσσσλλλλ−−−− :.|

0xxx σσσσλλλλ−−−− :.|

0xxxxxx σσσσλλλλλλλλ−−−−
ΩΩΩΩ

:).)(.(|
44 344 21

 0σσσσ

Lambda calculus II 86

Here is the proof of the same statement in a natural
deduction setting

000

1
0

xx
x

σσσσσσσσ→→→→σσσσ
σσσσ

::
:

1
xxx

xx
00

0

σσσσ→→→→σσσσλλλλ
σσσσ

:).(
:)(

0

000

xxxxxx
xxxxxx

σσσσλλλλλλλλ
σσσσλλλλσσσσ→→→→σσσσλλλλ

ΩΩΩΩ

:).)(.(
:).(:).(

44 344 21

Lambda calculus II 87

Remarks.

(i) The equation (1) is similar to a recursive domain equation

][DDD →→→→≅≅≅≅

that enables to interpret elements of Λ in denotational
semantics.

(ii) In order to construct a type satisfying (1), there is an
operator µ such that putting implies (1).

0σσσσ
αααα→→→→ααααµαµαµαµα≡≡≡≡σσσσ .0

Lambda calculus II 88

Definition. The set T=Type(λµ), trees of types of λµ.

(i) The set of types of λµ, T = Type(λµ), is defined by the following
abstract grammar.

V.T|TT|VT µµµµ→→→→====

where V is the set of type variables.

Lambda calculus II 85

Motivation

A typical example of a recursive type is a type 0σσσσ

(1) 000 σσσσ→→→→σσσσ≈≈≈≈σσσσ

This particular type can be used to type arbitrary terms
As an example, we shall show that
has as a type

.ΛΛΛΛ∈∈∈∈M
).)(.(xxxxxx λλλλλλλλ≡≡≡≡ΩΩΩΩ

00 xxx σσσσ−−−−σσσσ :|:
000 xx σσσσ→→→→σσσσ−−−−σσσσ :|:

00xxx σσσσ→→→→σσσσλλλλ−−−− :.|

0xxx σσσσλλλλ−−−− :.|

0xxxxxx σσσσλλλλλλλλ−−−−
ΩΩΩΩ

:).)(.(|
44 344 21

 0σσσσ

Lambda calculus II 86

Here is the proof of the same statement in a natural
deduction setting

000

1
0

xx
x

σσσσσσσσ→→→→σσσσ
σσσσ

::
:

1
xxx

xx
00

0

σσσσ→→→→σσσσλλλλ
σσσσ

:).(
:)(

0

000

xxxxxx
xxxxxx

σσσσλλλλλλλλ
σσσσλλλλσσσσ→→→→σσσσλλλλ

ΩΩΩΩ

:).)(.(
:).(:).(

44 344 21

Lambda calculus II 87

Remarks.

(i) The equation (1) is similar to a recursive domain equation

][DDD →→→→≅≅≅≅

that enables to interpret elements of Λ in denotational
semantics.

(ii) In order to construct a type satisfying (1), there is an
operator µ such that putting implies (1).

0σσσσ
αααα→→→→ααααµαµαµαµα≡≡≡≡σσσσ .0

Lambda calculus II 88

Definition. The set T=Type(λµ), trees of types of λµ.

(i) The set of types of λµ, T = Type(λµ), is defined by the following
abstract grammar.

V.T|TT|VT µµµµ→→→→====

where V is the set of type variables.

Lambda calculus II 89

(ii) Let be a type. The tree of σ, T(σ) is defined by
induction on the structure of σ as follows:

T∈∈∈∈σσσσ

====αααα)(T αααα
====ττττ→→→→σσσσ)(T

)()(ττττσσσσ

→→→→

TT

σσσσµαµαµαµα====αααασσσσ

⊥⊥⊥⊥
====σσσσµαµαµαµα

]).:[(
).(

T
T

if is a type variableαααα

If for
some

ααααββββµβµβµβµβ≡≡≡≡σσσσ .n1K

0n ≥≥≥≥

else

Lambda calculus II 90

(iii) The equivalence relation on trees is defined as follows:≈≈≈≈
)()(ττττ====σσσσ⇔⇔⇔⇔ττττ≈≈≈≈σσσσ TT

Exercises.

(a) Assume then ,. γγγγ→→→→ααααµαµαµαµα≡≡≡≡ττττ

γγγγ

γγγγ→→→→

γγγγ→→→→γγγγττττ

→→→→====→→→→====ττττ

K

)(

)(

T

T

Lambda calculus II 91

γγγγ

γγγγ→→→→

⊥⊥⊥⊥→→→→

→→→→====ττττ

K

)(T

(b) Assume then,.).(ββββµδµβµδµβµδµβµδµβ→→→→γγγγ→→→→ααααµαµαµαµα≡≡≡≡ττττ

Lambda calculus II 92

(c)).)(().(γγγγ→→→→γγγγ→→→→ααααµαµαµαµα≈≈≈≈γγγγ→→→→ααααµαµαµαµα

(d) for all σ, even if α.].:[. σσσσµαµαµαµα====αααασσσσ≈≈≈≈σσσσµαµαµαµα .ββββµµµµ≡≡≡≡σσσσ

Definition.

The type assignment system λµ is defined by the natural
deduction system presented in the following picture

Lambda calculus II 89

(ii) Let be a type. The tree of σ, T(σ) is defined by
induction on the structure of σ as follows:

T∈∈∈∈σσσσ

====αααα)(T αααα
====ττττ→→→→σσσσ)(T

)()(ττττσσσσ

→→→→

TT

σσσσµαµαµαµα====αααασσσσ

⊥⊥⊥⊥
====σσσσµαµαµαµα

]).:[(
).(

T
T

if is a type variableαααα

If for
some

ααααββββµβµβµβµβ≡≡≡≡σσσσ .n1K

0n ≥≥≥≥

else

Lambda calculus II 90

(iii) The equivalence relation on trees is defined as follows:≈≈≈≈
)()(ττττ====σσσσ⇔⇔⇔⇔ττττ≈≈≈≈σσσσ TT

Exercises.

(a) Assume then ,. γγγγ→→→→ααααµαµαµαµα≡≡≡≡ττττ

γγγγ

γγγγ→→→→

γγγγ→→→→γγγγττττ

→→→→====→→→→====ττττ

K

)(

)(

T

T

Lambda calculus II 91

γγγγ

γγγγ→→→→

⊥⊥⊥⊥→→→→

→→→→====ττττ

K

)(T

(b) Assume then,.).(ββββµδµβµδµβµδµβµδµβ→→→→γγγγ→→→→ααααµαµαµαµα≡≡≡≡ττττ

Lambda calculus II 92

(c)).)(().(γγγγ→→→→γγγγ→→→→ααααµαµαµαµα≈≈≈≈γγγγ→→→→ααααµαµαµαµα

(d) for all σ, even if α.].:[. σσσσµαµαµαµα====αααασσσσ≈≈≈≈σσσσµαµαµαµα .ββββµµµµ≡≡≡≡σσσσ

Definition.

The type assignment system λµ is defined by the natural
deduction system presented in the following picture

Lambda calculus II 89

(ii) Let be a type. The tree of σ, T(σ) is defined by
induction on the structure of σ as follows:

T∈∈∈∈σσσσ

====αααα)(T αααα
====ττττ→→→→σσσσ)(T

)()(ττττσσσσ

→→→→

TT

σσσσµαµαµαµα====αααασσσσ

⊥⊥⊥⊥
====σσσσµαµαµαµα

]).:[(
).(

T
T

if is a type variableαααα

If for
some

ααααββββµβµβµβµβ≡≡≡≡σσσσ .n1K

0n ≥≥≥≥

else

Lambda calculus II 90

(iii) The equivalence relation on trees is defined as follows:≈≈≈≈
)()(ττττ====σσσσ⇔⇔⇔⇔ττττ≈≈≈≈σσσσ TT

Exercises.

(a) Assume then ,. γγγγ→→→→ααααµαµαµαµα≡≡≡≡ττττ

γγγγ

γγγγ→→→→

γγγγ→→→→γγγγττττ

→→→→====→→→→====ττττ

K

)(

)(

T

T

Lambda calculus II 91

γγγγ

γγγγ→→→→

⊥⊥⊥⊥→→→→

→→→→====ττττ

K

)(T

(b) Assume then,.).(ββββµδµβµδµβµδµβµδµβ→→→→γγγγ→→→→ααααµαµαµαµα≡≡≡≡ττττ

Lambda calculus II 92

(c)).)(().(γγγγ→→→→γγγγ→→→→ααααµαµαµαµα≈≈≈≈γγγγ→→→→ααααµαµαµαµα

(d) for all σ, even if α.].:[. σσσσµαµαµαµα====αααασσσσ≈≈≈≈σσσσµαµαµαµα .ββββµµµµ≡≡≡≡σσσσ

Definition.

The type assignment system λµ is defined by the natural
deduction system presented in the following picture

Lambda calculus II 89

(ii) Let be a type. The tree of σ, T(σ) is defined by
induction on the structure of σ as follows:

T∈∈∈∈σσσσ

====αααα)(T αααα
====ττττ→→→→σσσσ)(T

)()(ττττσσσσ

→→→→

TT

σσσσµαµαµαµα====αααασσσσ

⊥⊥⊥⊥
====σσσσµαµαµαµα

]).:[(
).(

T
T

if is a type variableαααα

If for
some

ααααββββµβµβµβµβ≡≡≡≡σσσσ .n1K

0n ≥≥≥≥

else

Lambda calculus II 90

(iii) The equivalence relation on trees is defined as follows:≈≈≈≈
)()(ττττ====σσσσ⇔⇔⇔⇔ττττ≈≈≈≈σσσσ TT

Exercises.

(a) Assume then ,. γγγγ→→→→ααααµαµαµαµα≡≡≡≡ττττ

γγγγ

γγγγ→→→→

γγγγ→→→→γγγγττττ

→→→→====→→→→====ττττ

K

)(

)(

T

T

Lambda calculus II 91

γγγγ

γγγγ→→→→

⊥⊥⊥⊥→→→→

→→→→====ττττ

K

)(T

(b) Assume then,.).(ββββµδµβµδµβµδµβµδµβ→→→→γγγγ→→→→ααααµαµαµαµα≡≡≡≡ττττ

Lambda calculus II 92

(c)).)(().(γγγγ→→→→γγγγ→→→→ααααµαµαµαµα≈≈≈≈γγγγ→→→→ααααµαµαµαµα

(d) for all σ, even if α.].:[. σσσσµαµαµαµα====αααασσσσ≈≈≈≈σσσσµαµαµαµα .ββββµµµµ≡≡≡≡σσσσ

Definition.

The type assignment system λµ is defined by the natural
deduction system presented in the following picture

Lambda calculus II 93

λµλµλµλµ

(start rule)

n)eliminatio−−−−→→→→(

on)introducti−−−−→→→→(

)(rule−−−−≈≈≈≈

σσσσ−−−−ΓΓΓΓ
ΓΓΓΓ∈∈∈∈σσσσ

:|
):(
x

x

ττττ−−−−ΓΓΓΓ
σσσσ−−−−ΓΓΓΓττττ→→→→σσσσ−−−−ΓΓΓΓ

:)(|
:|)(:|

MN
NM

)(:).(|
:|:,

ττττ→→→→σσσσλλλλ−−−−ΓΓΓΓ
ττττ−−−−σσσσΓΓΓΓ

Mx
Mx

ττττ−−−−ΓΓΓΓ
ττττ≈≈≈≈σσσσσσσσ−−−−ΓΓΓΓ

:|
:|

M
M

Lambda calculus II 94

Proposition. (Coppo 1985)

For an arbitrary type σ, we have in λµ

σσσσ→→→→σσσσ→→→→σσσσ−−−−)(:Y|)(i

σσσσΩΩΩΩ−−−− :|(ii)

Proof.

(i) If we put then We will derive,. αααα→→→→ααααµαµαµαµα≡≡≡≡ττττ .σσσσ→→→→ττττ≈≈≈≈ττττ

σσσσ→→→→σσσσ→→→→σσσσλλλλλλλλλλλλ≡≡≡≡)(:))(.))((..(Y xxfxxxfxf

Lambda calculus II 95

ττττσσσσ→→→→ττττ
ττττ

::
:

xx
x 1

σσσσ
σσσσσσσσ→→→→σσσσ
:)(

::
xxf
xxf 2

ττττλλλλσσσσ→→→→ττττλλλλ
σσσσ→→→→ττττλλλλ

:)(.:)(.
:)(.

xxfxxxfx
xxfx

σσσσ→→→→σσσσ→→→→σσσσλλλλλλλλλλλλ≡≡≡≡
σσσσλλλλλλλλ

)(:))(.))((..(Y
:))(.))((.(

xxfxxxfxf
xxfxxxfx

2

1

Lambda calculus II 96

(ii) Note that the result follows from the fact that

and the subject reduction
theorem. It is possible to prove (ii) directly.

ΩΩΩΩ→>→>→>→>ββββYI
),(:).(I σσσσ→→→→σσσσλλλλ≡≡≡≡ xx)(neliminatio−−−−→→→→

Lambda calculus II 93

λµλµλµλµ

(start rule)

n)eliminatio−−−−→→→→(

on)introducti−−−−→→→→(

)(rule−−−−≈≈≈≈

σσσσ−−−−ΓΓΓΓ
ΓΓΓΓ∈∈∈∈σσσσ

:|
):(
x

x

ττττ−−−−ΓΓΓΓ
σσσσ−−−−ΓΓΓΓττττ→→→→σσσσ−−−−ΓΓΓΓ

:)(|
:|)(:|

MN
NM

)(:).(|
:|:,

ττττ→→→→σσσσλλλλ−−−−ΓΓΓΓ
ττττ−−−−σσσσΓΓΓΓ

Mx
Mx

ττττ−−−−ΓΓΓΓ
ττττ≈≈≈≈σσσσσσσσ−−−−ΓΓΓΓ

:|
:|

M
M

Lambda calculus II 94

Proposition. (Coppo 1985)

For an arbitrary type σ, we have in λµ

σσσσ→→→→σσσσ→→→→σσσσ−−−−)(:Y|)(i

σσσσΩΩΩΩ−−−− :|(ii)

Proof.

(i) If we put then We will derive,. αααα→→→→ααααµαµαµαµα≡≡≡≡ττττ .σσσσ→→→→ττττ≈≈≈≈ττττ

σσσσ→→→→σσσσ→→→→σσσσλλλλλλλλλλλλ≡≡≡≡)(:))(.))((..(Y xxfxxxfxf

Lambda calculus II 95

ττττσσσσ→→→→ττττ
ττττ

::
:

xx
x 1

σσσσ
σσσσσσσσ→→→→σσσσ
:)(

::
xxf
xxf 2

ττττλλλλσσσσ→→→→ττττλλλλ
σσσσ→→→→ττττλλλλ

:)(.:)(.
:)(.

xxfxxxfx
xxfx

σσσσ→→→→σσσσ→→→→σσσσλλλλλλλλλλλλ≡≡≡≡
σσσσλλλλλλλλ

)(:))(.))((..(Y
:))(.))((.(

xxfxxxfxf
xxfxxxfx

2

1

Lambda calculus II 96

(ii) Note that the result follows from the fact that

and the subject reduction
theorem. It is possible to prove (ii) directly.

ΩΩΩΩ→>→>→>→>ββββYI
),(:).(I σσσσ→→→→σσσσλλλλ≡≡≡≡ xx)(neliminatio−−−−→→→→

Lambda calculus II 93

λµλµλµλµ

(start rule)

n)eliminatio−−−−→→→→(

on)introducti−−−−→→→→(

)(rule−−−−≈≈≈≈

σσσσ−−−−ΓΓΓΓ
ΓΓΓΓ∈∈∈∈σσσσ

:|
):(
x

x

ττττ−−−−ΓΓΓΓ
σσσσ−−−−ΓΓΓΓττττ→→→→σσσσ−−−−ΓΓΓΓ

:)(|
:|)(:|

MN
NM

)(:).(|
:|:,

ττττ→→→→σσσσλλλλ−−−−ΓΓΓΓ
ττττ−−−−σσσσΓΓΓΓ

Mx
Mx

ττττ−−−−ΓΓΓΓ
ττττ≈≈≈≈σσσσσσσσ−−−−ΓΓΓΓ

:|
:|

M
M

Lambda calculus II 94

Proposition. (Coppo 1985)

For an arbitrary type σ, we have in λµ

σσσσ→→→→σσσσ→→→→σσσσ−−−−)(:Y|)(i

σσσσΩΩΩΩ−−−− :|(ii)

Proof.

(i) If we put then We will derive,. αααα→→→→ααααµαµαµαµα≡≡≡≡ττττ .σσσσ→→→→ττττ≈≈≈≈ττττ

σσσσ→→→→σσσσ→→→→σσσσλλλλλλλλλλλλ≡≡≡≡)(:))(.))((..(Y xxfxxxfxf

Lambda calculus II 95

ττττσσσσ→→→→ττττ
ττττ

::
:

xx
x 1

σσσσ
σσσσσσσσ→→→→σσσσ
:)(

::
xxf
xxf 2

ττττλλλλσσσσ→→→→ττττλλλλ
σσσσ→→→→ττττλλλλ

:)(.:)(.
:)(.

xxfxxxfx
xxfx

σσσσ→→→→σσσσ→→→→σσσσλλλλλλλλλλλλ≡≡≡≡
σσσσλλλλλλλλ

)(:))(.))((..(Y
:))(.))((.(

xxfxxxfxf
xxfxxxfx

2

1

Lambda calculus II 96

(ii) Note that the result follows from the fact that

and the subject reduction
theorem. It is possible to prove (ii) directly.

ΩΩΩΩ→>→>→>→>ββββYI
),(:).(I σσσσ→→→→σσσσλλλλ≡≡≡≡ xx)(neliminatio−−−−→→→→

Lambda calculus II 93

λµλµλµλµ

(start rule)

n)eliminatio−−−−→→→→(

on)introducti−−−−→→→→(

)(rule−−−−≈≈≈≈

σσσσ−−−−ΓΓΓΓ
ΓΓΓΓ∈∈∈∈σσσσ

:|
):(
x

x

ττττ−−−−ΓΓΓΓ
σσσσ−−−−ΓΓΓΓττττ→→→→σσσσ−−−−ΓΓΓΓ

:)(|
:|)(:|

MN
NM

)(:).(|
:|:,

ττττ→→→→σσσσλλλλ−−−−ΓΓΓΓ
ττττ−−−−σσσσΓΓΓΓ

Mx
Mx

ττττ−−−−ΓΓΓΓ
ττττ≈≈≈≈σσσσσσσσ−−−−ΓΓΓΓ

:|
:|

M
M

Lambda calculus II 94

Proposition. (Coppo 1985)

For an arbitrary type σ, we have in λµ

σσσσ→→→→σσσσ→→→→σσσσ−−−−)(:Y|)(i

σσσσΩΩΩΩ−−−− :|(ii)

Proof.

(i) If we put then We will derive,. αααα→→→→ααααµαµαµαµα≡≡≡≡ττττ .σσσσ→→→→ττττ≈≈≈≈ττττ

σσσσ→→→→σσσσ→→→→σσσσλλλλλλλλλλλλ≡≡≡≡)(:))(.))((..(Y xxfxxxfxf

Lambda calculus II 95

ττττσσσσ→→→→ττττ
ττττ

::
:

xx
x 1

σσσσ
σσσσσσσσ→→→→σσσσ
:)(

::
xxf
xxf 2

ττττλλλλσσσσ→→→→ττττλλλλ
σσσσ→→→→ττττλλλλ

:)(.:)(.
:)(.

xxfxxxfx
xxfx

σσσσ→→→→σσσσ→→→→σσσσλλλλλλλλλλλλ≡≡≡≡
σσσσλλλλλλλλ

)(:))(.))((..(Y
:))(.))((.(

xxfxxxfxf
xxfxxxfx

2

1

Lambda calculus II 96

(ii) Note that the result follows from the fact that

and the subject reduction
theorem. It is possible to prove (ii) directly.

ΩΩΩΩ→>→>→>→>ββββYI
),(:).(I σσσσ→→→→σσσσλλλλ≡≡≡≡ xx)(neliminatio−−−−→→→→

Lambda calculus II 97

The system

� It is called the system of intersection types or Torino
system.

� Barendregt, Coppo, Dezani, Honsell and Longo (1981 -
1987)

� The system makes it possible that a (term) variable x has
exactly two types σ and τ at the same time.

∩∩∩∩λλλλ

Lambda calculus II 98

The set of types of the system comes together with a preorder
on the set of types.

∩∩∩∩λλλλ

Definition. The set of types.

(i) The set of types is defined by an abstract
grammar as follows:

),(T ∩∩∩∩λλλλ==== Type

TT|TT|VT ∩∩∩∩→→→→====
where V is the set of type variables.

(ii) We select one of the type variables as a constant and name
it as ω.

Lambda calculus II 99

Definition. The preorder on T.

(i) The relation is defined on T by the following axioms and
rules

≤≤≤≤

ρρρρ≤≤≤≤σσσσ⇒⇒⇒⇒ρρρρ≤≤≤≤ττττττττ≤≤≤≤σσσσ
σσσσ≤≤≤≤σσσσ
,

ωωωω→→→→ωωωω≤≤≤≤ωωωω
ωωωω≤≤≤≤σσσσ

ττττ≤≤≤≤ττττ∩∩∩∩σσσσσσσσ≤≤≤≤ττττ∩∩∩∩σσσσ
ττττ∩∩∩∩ρρρρ→→→→σσσσ≤≤≤≤ττττ→→→→σσσσ∩∩∩∩ρρρρ→→→→σσσσ

,
))(()()(

´´´´,
,

ττττ→→→→σσσσ≤≤≤≤ττττ→→→→σσσσ⇒⇒⇒⇒ττττ≤≤≤≤ττττσσσσ≤≤≤≤σσσσ
ττττ∩∩∩∩σσσσ≤≤≤≤σσσσ⇒⇒⇒⇒ρρρρ≤≤≤≤σσσσττττ≤≤≤≤σσσσ

(ii)) & σσσσ≤≤≤≤ττττττττ≤≤≤≤σσσσ⇔⇔⇔⇔ττττσσσσ (pf

Lambda calculus II 100

Exercises.

(a))(ωωωω→→→→ωωωωωωωωpf

(b))´)(())´()((ττττ→→→→σσσσ∩∩∩∩σσσσ≤≤≤≤ττττ→→→→σσσσ∩∩∩∩ττττ→→→→σσσσ

Lambda calculus II 97

The system

� It is called the system of intersection types or Torino
system.

� Barendregt, Coppo, Dezani, Honsell and Longo (1981 -
1987)

� The system makes it possible that a (term) variable x has
exactly two types σ and τ at the same time.

∩∩∩∩λλλλ

Lambda calculus II 98

The set of types of the system comes together with a preorder
on the set of types.

∩∩∩∩λλλλ

Definition. The set of types.

(i) The set of types is defined by an abstract
grammar as follows:

),(T ∩∩∩∩λλλλ==== Type

TT|TT|VT ∩∩∩∩→→→→====
where V is the set of type variables.

(ii) We select one of the type variables as a constant and name
it as ω.

Lambda calculus II 99

Definition. The preorder on T.

(i) The relation is defined on T by the following axioms and
rules

≤≤≤≤

ρρρρ≤≤≤≤σσσσ⇒⇒⇒⇒ρρρρ≤≤≤≤ττττττττ≤≤≤≤σσσσ
σσσσ≤≤≤≤σσσσ
,

ωωωω→→→→ωωωω≤≤≤≤ωωωω
ωωωω≤≤≤≤σσσσ

ττττ≤≤≤≤ττττ∩∩∩∩σσσσσσσσ≤≤≤≤ττττ∩∩∩∩σσσσ
ττττ∩∩∩∩ρρρρ→→→→σσσσ≤≤≤≤ττττ→→→→σσσσ∩∩∩∩ρρρρ→→→→σσσσ

,
))(()()(

´´´´,
,

ττττ→→→→σσσσ≤≤≤≤ττττ→→→→σσσσ⇒⇒⇒⇒ττττ≤≤≤≤ττττσσσσ≤≤≤≤σσσσ
ττττ∩∩∩∩σσσσ≤≤≤≤σσσσ⇒⇒⇒⇒ρρρρ≤≤≤≤σσσσττττ≤≤≤≤σσσσ

(ii)) & σσσσ≤≤≤≤ττττττττ≤≤≤≤σσσσ⇔⇔⇔⇔ττττσσσσ (pf

Lambda calculus II 100

Exercises.

(a))(ωωωω→→→→ωωωωωωωωpf

(b))´)(())´()((ττττ→→→→σσσσ∩∩∩∩σσσσ≤≤≤≤ττττ→→→→σσσσ∩∩∩∩ττττ→→→→σσσσ

Lambda calculus II 97

The system

� It is called the system of intersection types or Torino
system.

� Barendregt, Coppo, Dezani, Honsell and Longo (1981 -
1987)

� The system makes it possible that a (term) variable x has
exactly two types σ and τ at the same time.

∩∩∩∩λλλλ

Lambda calculus II 98

The set of types of the system comes together with a preorder
on the set of types.

∩∩∩∩λλλλ

Definition. The set of types.

(i) The set of types is defined by an abstract
grammar as follows:

),(T ∩∩∩∩λλλλ==== Type

TT|TT|VT ∩∩∩∩→→→→====
where V is the set of type variables.

(ii) We select one of the type variables as a constant and name
it as ω.

Lambda calculus II 99

Definition. The preorder on T.

(i) The relation is defined on T by the following axioms and
rules

≤≤≤≤

ρρρρ≤≤≤≤σσσσ⇒⇒⇒⇒ρρρρ≤≤≤≤ττττττττ≤≤≤≤σσσσ
σσσσ≤≤≤≤σσσσ
,

ωωωω→→→→ωωωω≤≤≤≤ωωωω
ωωωω≤≤≤≤σσσσ

ττττ≤≤≤≤ττττ∩∩∩∩σσσσσσσσ≤≤≤≤ττττ∩∩∩∩σσσσ
ττττ∩∩∩∩ρρρρ→→→→σσσσ≤≤≤≤ττττ→→→→σσσσ∩∩∩∩ρρρρ→→→→σσσσ

,
))(()()(

´´´´,
,

ττττ→→→→σσσσ≤≤≤≤ττττ→→→→σσσσ⇒⇒⇒⇒ττττ≤≤≤≤ττττσσσσ≤≤≤≤σσσσ
ττττ∩∩∩∩σσσσ≤≤≤≤σσσσ⇒⇒⇒⇒ρρρρ≤≤≤≤σσσσττττ≤≤≤≤σσσσ

(ii)) & σσσσ≤≤≤≤ττττττττ≤≤≤≤σσσσ⇔⇔⇔⇔ττττσσσσ (pf

Lambda calculus II 100

Exercises.

(a))(ωωωω→→→→ωωωωωωωωpf

(b))´)(())´()((ττττ→→→→σσσσ∩∩∩∩σσσσ≤≤≤≤ττττ→→→→σσσσ∩∩∩∩ττττ→→→→σσσσ

Lambda calculus II 97

The system

� It is called the system of intersection types or Torino
system.

� Barendregt, Coppo, Dezani, Honsell and Longo (1981 -
1987)

� The system makes it possible that a (term) variable x has
exactly two types σ and τ at the same time.

∩∩∩∩λλλλ

Lambda calculus II 98

The set of types of the system comes together with a preorder
on the set of types.

∩∩∩∩λλλλ

Definition. The set of types.

(i) The set of types is defined by an abstract
grammar as follows:

),(T ∩∩∩∩λλλλ==== Type

TT|TT|VT ∩∩∩∩→→→→====
where V is the set of type variables.

(ii) We select one of the type variables as a constant and name
it as ω.

Lambda calculus II 99

Definition. The preorder on T.

(i) The relation is defined on T by the following axioms and
rules

≤≤≤≤

ρρρρ≤≤≤≤σσσσ⇒⇒⇒⇒ρρρρ≤≤≤≤ττττττττ≤≤≤≤σσσσ
σσσσ≤≤≤≤σσσσ
,

ωωωω→→→→ωωωω≤≤≤≤ωωωω
ωωωω≤≤≤≤σσσσ

ττττ≤≤≤≤ττττ∩∩∩∩σσσσσσσσ≤≤≤≤ττττ∩∩∩∩σσσσ
ττττ∩∩∩∩ρρρρ→→→→σσσσ≤≤≤≤ττττ→→→→σσσσ∩∩∩∩ρρρρ→→→→σσσσ

,
))(()()(

´´´´,
,

ττττ→→→→σσσσ≤≤≤≤ττττ→→→→σσσσ⇒⇒⇒⇒ττττ≤≤≤≤ττττσσσσ≤≤≤≤σσσσ
ττττ∩∩∩∩σσσσ≤≤≤≤σσσσ⇒⇒⇒⇒ρρρρ≤≤≤≤σσσσττττ≤≤≤≤σσσσ

(ii)) & σσσσ≤≤≤≤ττττττττ≤≤≤≤σσσσ⇔⇔⇔⇔ττττσσσσ (pf

Lambda calculus II 100

Exercises.

(a))(ωωωω→→→→ωωωωωωωωpf

(b))´)(())´()((ττττ→→→→σσσσ∩∩∩∩σσσσ≤≤≤≤ττττ→→→→σσσσ∩∩∩∩ττττ→→→→σσσσ

Lambda calculus II 101

Exercises.

(a))(ωωωω→→→→ωωωωωωωωpf

(b))´)(())´()((ττττ→→→→σσσσ∩∩∩∩σσσσ≤≤≤≤ττττ→→→→σσσσ∩∩∩∩ττττ→→→→σσσσ

Proof.

(a) obvious

(b) We know thusσσσσ≤≤≤≤σσσσ∩∩∩∩σσσσ ´
)´)((ττττ→→→→σσσσ∩∩∩∩σσσσ≤≤≤≤ττττ→→→→σσσσ)(1

trivially
)()´()(ττττ→→→→σσσσ≤≤≤≤ττττ→→→→σσσσ∩∩∩∩ττττ→→→→σσσσ)(2

Then (b) follows from (1) and (2) by transitivity.

Lambda calculus II 102

Definition. The system of type assignment .∩∩∩∩λλλλ

(start rule)

n)eliminatio−−−−→→→→(

on)introducti−−−−→→→→(

n)eliminatio−−−−∩∩∩∩(

on)introducti−−−−∩∩∩∩(

on)introducti−−−−ωωωω(

rule)−−−−≤≤≤≤(

σσσσ−−−−ΓΓΓΓ
ΓΓΓΓ∈∈∈∈σσσσ

:|
):(
x

x

ττττ−−−−ΓΓΓΓ
σσσσ−−−−ΓΓΓΓττττ→→→→σσσσ−−−−ΓΓΓΓ

:)(|
:|)(:|

MN
NM

)(:).(|
:|:,

ττττ→→→→σσσσλλλλ−−−−ΓΓΓΓ
ττττ−−−−σσσσΓΓΓΓ

Mx
Mx

ττττ−−−−ΓΓΓΓσσσσ−−−−ΓΓΓΓ
ττττ∩∩∩∩σσσσ−−−−ΓΓΓΓ

:|:|
)(:|
MM

M

)(:|
:|:|

ττττ∩∩∩∩σσσσ−−−−ΓΓΓΓ
ττττ−−−−ΓΓΓΓσσσσ−−−−ΓΓΓΓ

M
MM

ωωωω−−−−ΓΓΓΓ :| M

ττττ−−−−ΓΓΓΓ
ττττ≤≤≤≤σσσσσσσσ−−−−ΓΓΓΓ

:|
:|

M
M

Lambda calculus II 103

Exercises.

ττττ→→→→∩∩∩∩ττττ→→→→σσσσλλλλ−−−−))((:.| xxx (a)

ωωωωΩΩΩΩ−−−− :| (b)

)).((:)))(..((| σσσσ→→→→ττττ→→→→σσσσλλλλλλλλ−−−− qpprpq (c)

Lambda calculus II 104

Proof.

(a) σσσσττττ→→→→σσσσ
σσσσ∩∩∩∩ττττ→→→→σσσσ
::

)(:
xx

x

ττττ→→→→σσσσ∩∩∩∩ττττ→→→→σσσσλλλλ
ττττ

))((:).(
:)(

xxx
xx

1

1

(b) Obvious, it can be shown that M has no head normal form
iff ω is the only possible type for M. (Barendregt 1983)

(c))(:).(
:::
σσσσ→→→→ωωωωλλλλ

ωωωωσσσσττττ
pr

rpq
ωωωω:)(qp

σσσσλλλλ :))(.(qppr

))((:)))(..((
)(:)))(..((

σσσσ→→→→ττττ→→→→σσσσλλλλλλλλ
σσσσ→→→→ττττλλλλλλλλ

qpprpq
qpprq

2
1

3

3

1

2

Lambda calculus II 101

Exercises.

(a))(ωωωω→→→→ωωωωωωωωpf

(b))´)(())´()((ττττ→→→→σσσσ∩∩∩∩σσσσ≤≤≤≤ττττ→→→→σσσσ∩∩∩∩ττττ→→→→σσσσ

Proof.

(a) obvious

(b) We know thusσσσσ≤≤≤≤σσσσ∩∩∩∩σσσσ ´
)´)((ττττ→→→→σσσσ∩∩∩∩σσσσ≤≤≤≤ττττ→→→→σσσσ)(1

trivially
)()´()(ττττ→→→→σσσσ≤≤≤≤ττττ→→→→σσσσ∩∩∩∩ττττ→→→→σσσσ)(2

Then (b) follows from (1) and (2) by transitivity.

Lambda calculus II 102

Definition. The system of type assignment .∩∩∩∩λλλλ

(start rule)

n)eliminatio−−−−→→→→(

on)introducti−−−−→→→→(

n)eliminatio−−−−∩∩∩∩(

on)introducti−−−−∩∩∩∩(

on)introducti−−−−ωωωω(

rule)−−−−≤≤≤≤(

σσσσ−−−−ΓΓΓΓ
ΓΓΓΓ∈∈∈∈σσσσ

:|
):(
x

x

ττττ−−−−ΓΓΓΓ
σσσσ−−−−ΓΓΓΓττττ→→→→σσσσ−−−−ΓΓΓΓ

:)(|
:|)(:|

MN
NM

)(:).(|
:|:,

ττττ→→→→σσσσλλλλ−−−−ΓΓΓΓ
ττττ−−−−σσσσΓΓΓΓ

Mx
Mx

ττττ−−−−ΓΓΓΓσσσσ−−−−ΓΓΓΓ
ττττ∩∩∩∩σσσσ−−−−ΓΓΓΓ

:|:|
)(:|
MM

M

)(:|
:|:|

ττττ∩∩∩∩σσσσ−−−−ΓΓΓΓ
ττττ−−−−ΓΓΓΓσσσσ−−−−ΓΓΓΓ

M
MM

ωωωω−−−−ΓΓΓΓ :| M

ττττ−−−−ΓΓΓΓ
ττττ≤≤≤≤σσσσσσσσ−−−−ΓΓΓΓ

:|
:|

M
M

Lambda calculus II 103

Exercises.

ττττ→→→→∩∩∩∩ττττ→→→→σσσσλλλλ−−−−))((:.| xxx (a)

ωωωωΩΩΩΩ−−−− :| (b)

)).((:)))(..((| σσσσ→→→→ττττ→→→→σσσσλλλλλλλλ−−−− qpprpq (c)

Lambda calculus II 104

Proof.

(a) σσσσττττ→→→→σσσσ
σσσσ∩∩∩∩ττττ→→→→σσσσ
::

)(:
xx

x

ττττ→→→→σσσσ∩∩∩∩ττττ→→→→σσσσλλλλ
ττττ

))((:).(
:)(

xxx
xx

1

1

(b) Obvious, it can be shown that M has no head normal form
iff ω is the only possible type for M. (Barendregt 1983)

(c))(:).(
:::
σσσσ→→→→ωωωωλλλλ

ωωωωσσσσττττ
pr

rpq
ωωωω:)(qp

σσσσλλλλ :))(.(qppr

))((:)))(..((
)(:)))(..((

σσσσ→→→→ττττ→→→→σσσσλλλλλλλλ
σσσσ→→→→ττττλλλλλλλλ

qpprpq
qpprq

2
1

3

3

1

2

Lambda calculus II 101

Exercises.

(a))(ωωωω→→→→ωωωωωωωωpf

(b))´)(())´()((ττττ→→→→σσσσ∩∩∩∩σσσσ≤≤≤≤ττττ→→→→σσσσ∩∩∩∩ττττ→→→→σσσσ

Proof.

(a) obvious

(b) We know thusσσσσ≤≤≤≤σσσσ∩∩∩∩σσσσ ´
)´)((ττττ→→→→σσσσ∩∩∩∩σσσσ≤≤≤≤ττττ→→→→σσσσ)(1

trivially
)()´()(ττττ→→→→σσσσ≤≤≤≤ττττ→→→→σσσσ∩∩∩∩ττττ→→→→σσσσ)(2

Then (b) follows from (1) and (2) by transitivity.

Lambda calculus II 102

Definition. The system of type assignment .∩∩∩∩λλλλ

(start rule)

n)eliminatio−−−−→→→→(

on)introducti−−−−→→→→(

n)eliminatio−−−−∩∩∩∩(

on)introducti−−−−∩∩∩∩(

on)introducti−−−−ωωωω(

rule)−−−−≤≤≤≤(

σσσσ−−−−ΓΓΓΓ
ΓΓΓΓ∈∈∈∈σσσσ

:|
):(
x

x

ττττ−−−−ΓΓΓΓ
σσσσ−−−−ΓΓΓΓττττ→→→→σσσσ−−−−ΓΓΓΓ

:)(|
:|)(:|

MN
NM

)(:).(|
:|:,

ττττ→→→→σσσσλλλλ−−−−ΓΓΓΓ
ττττ−−−−σσσσΓΓΓΓ

Mx
Mx

ττττ−−−−ΓΓΓΓσσσσ−−−−ΓΓΓΓ
ττττ∩∩∩∩σσσσ−−−−ΓΓΓΓ

:|:|
)(:|
MM

M

)(:|
:|:|

ττττ∩∩∩∩σσσσ−−−−ΓΓΓΓ
ττττ−−−−ΓΓΓΓσσσσ−−−−ΓΓΓΓ

M
MM

ωωωω−−−−ΓΓΓΓ :| M

ττττ−−−−ΓΓΓΓ
ττττ≤≤≤≤σσσσσσσσ−−−−ΓΓΓΓ

:|
:|

M
M

Lambda calculus II 103

Exercises.

ττττ→→→→∩∩∩∩ττττ→→→→σσσσλλλλ−−−−))((:.| xxx (a)

ωωωωΩΩΩΩ−−−− :| (b)

)).((:)))(..((| σσσσ→→→→ττττ→→→→σσσσλλλλλλλλ−−−− qpprpq (c)

Lambda calculus II 104

Proof.

(a) σσσσττττ→→→→σσσσ
σσσσ∩∩∩∩ττττ→→→→σσσσ
::

)(:
xx

x

ττττ→→→→σσσσ∩∩∩∩ττττ→→→→σσσσλλλλ
ττττ

))((:).(
:)(

xxx
xx

1

1

(b) Obvious, it can be shown that M has no head normal form
iff ω is the only possible type for M. (Barendregt 1983)

(c))(:).(
:::
σσσσ→→→→ωωωωλλλλ

ωωωωσσσσττττ
pr

rpq
ωωωω:)(qp

σσσσλλλλ :))(.(qppr

))((:)))(..((
)(:)))(..((

σσσσ→→→→ττττ→→→→σσσσλλλλλλλλ
σσσσ→→→→ττττλλλλλλλλ

qpprpq
qpprq

2
1

3

3

1

2

Lambda calculus II 101

Exercises.

(a))(ωωωω→→→→ωωωωωωωωpf

(b))´)(())´()((ττττ→→→→σσσσ∩∩∩∩σσσσ≤≤≤≤ττττ→→→→σσσσ∩∩∩∩ττττ→→→→σσσσ

Proof.

(a) obvious

(b) We know thusσσσσ≤≤≤≤σσσσ∩∩∩∩σσσσ ´
)´)((ττττ→→→→σσσσ∩∩∩∩σσσσ≤≤≤≤ττττ→→→→σσσσ)(1

trivially
)()´()(ττττ→→→→σσσσ≤≤≤≤ττττ→→→→σσσσ∩∩∩∩ττττ→→→→σσσσ)(2

Then (b) follows from (1) and (2) by transitivity.

Lambda calculus II 102

Definition. The system of type assignment .∩∩∩∩λλλλ

(start rule)

n)eliminatio−−−−→→→→(

on)introducti−−−−→→→→(

n)eliminatio−−−−∩∩∩∩(

on)introducti−−−−∩∩∩∩(

on)introducti−−−−ωωωω(

rule)−−−−≤≤≤≤(

σσσσ−−−−ΓΓΓΓ
ΓΓΓΓ∈∈∈∈σσσσ

:|
):(
x

x

ττττ−−−−ΓΓΓΓ
σσσσ−−−−ΓΓΓΓττττ→→→→σσσσ−−−−ΓΓΓΓ

:)(|
:|)(:|

MN
NM

)(:).(|
:|:,

ττττ→→→→σσσσλλλλ−−−−ΓΓΓΓ
ττττ−−−−σσσσΓΓΓΓ

Mx
Mx

ττττ−−−−ΓΓΓΓσσσσ−−−−ΓΓΓΓ
ττττ∩∩∩∩σσσσ−−−−ΓΓΓΓ

:|:|
)(:|
MM

M

)(:|
:|:|

ττττ∩∩∩∩σσσσ−−−−ΓΓΓΓ
ττττ−−−−ΓΓΓΓσσσσ−−−−ΓΓΓΓ

M
MM

ωωωω−−−−ΓΓΓΓ :| M

ττττ−−−−ΓΓΓΓ
ττττ≤≤≤≤σσσσσσσσ−−−−ΓΓΓΓ

:|
:|

M
M

Lambda calculus II 103

Exercises.

ττττ→→→→∩∩∩∩ττττ→→→→σσσσλλλλ−−−−))((:.| xxx (a)

ωωωωΩΩΩΩ−−−− :| (b)

)).((:)))(..((| σσσσ→→→→ττττ→→→→σσσσλλλλλλλλ−−−− qpprpq (c)

Lambda calculus II 104

Proof.

(a) σσσσττττ→→→→σσσσ
σσσσ∩∩∩∩ττττ→→→→σσσσ
::

)(:
xx

x

ττττ→→→→σσσσ∩∩∩∩ττττ→→→→σσσσλλλλ
ττττ

))((:).(
:)(

xxx
xx

1

1

(b) Obvious, it can be shown that M has no head normal form
iff ω is the only possible type for M. (Barendregt 1983)

(c))(:).(
:::
σσσσ→→→→ωωωωλλλλ

ωωωωσσσσττττ
pr

rpq
ωωωω:)(qp

σσσσλλλλ :))(.(qppr

))((:)))(..((
)(:)))(..((

σσσσ→→→→ττττ→→→→σσσσλλλλλλλλ
σσσσ→→→→ττττλλλλλλλλ

qpprpq
qpprq

2
1

3

3

1

2

Lambda calculus II 105

Combining the systems á la Curry

(i) there are some variants of the system in one of
them the rule (axiom) that assigns ω to any term.

.∩∩∩∩λλλλ

(ii) The systems are all extensions of
They can be combined into other systems, an extreme case is

which includes all these systems. It can be extended
by cartesian products and direct sums in order to fall into the
cartesian closed category.

∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ and ,, 2 .→→→→λλλλ

∩∩∩∩µµµµλλλλ2

Lambda calculus II 106

Basic properties.

The Curry systems enjoy several properties∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ and ,, 2

�Basis lemma

�Subterm lemma

�Substitution lemma

�Subject reduction Theorem

Common to all systems:

Each system has a proper variant
�Generation lemma

�Strong normalization
does not hold for all

Lambda calculus II 107

In the following refers to one of Curry systems −−−−| .,, ∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ and 2

The following three common properties are proved in the same way as we
have done for .→→→→λλλλ

Basis lemma for the Curry systems.

Let Γ be a basis.

(i) If is another basis, then´´, ΓΓΓΓ⊆⊆⊆⊆ΓΓΓΓΓΓΓΓ σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ :´|:| MM

(ii))()(:| ΓΓΓΓ⊆⊆⊆⊆⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ domMFVM

(iii) σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ :|)(|:| MMFVM

Lambda calculus II 108

Subterm lemma for the Curry systems.

Let M´ be a subterm of M. Then

':'|':| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

For some ´.´ σσσσΓΓΓΓ and

Substitution lemma for the Curry systems.

(i)]:[:|]:[:| ττττ====αααασσσσ−−−−ττττ====ααααΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

(ii) ττττ====−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓττττ−−−−σσσσΓΓΓΓ :]:[|):|&:|:,(NxMNMx

Lambda calculus II 105

Combining the systems á la Curry

(i) there are some variants of the system in one of
them the rule (axiom) that assigns ω to any term.

.∩∩∩∩λλλλ

(ii) The systems are all extensions of
They can be combined into other systems, an extreme case is

which includes all these systems. It can be extended
by cartesian products and direct sums in order to fall into the
cartesian closed category.

∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ and ,, 2 .→→→→λλλλ

∩∩∩∩µµµµλλλλ2

Lambda calculus II 106

Basic properties.

The Curry systems enjoy several properties∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ and ,, 2

�Basis lemma

�Subterm lemma

�Substitution lemma

�Subject reduction Theorem

Common to all systems:

Each system has a proper variant
�Generation lemma

�Strong normalization
does not hold for all

Lambda calculus II 107

In the following refers to one of Curry systems −−−−| .,, ∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ and 2

The following three common properties are proved in the same way as we
have done for .→→→→λλλλ

Basis lemma for the Curry systems.

Let Γ be a basis.

(i) If is another basis, then´´, ΓΓΓΓ⊆⊆⊆⊆ΓΓΓΓΓΓΓΓ σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ :´|:| MM

(ii))()(:| ΓΓΓΓ⊆⊆⊆⊆⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ domMFVM

(iii) σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ :|)(|:| MMFVM

Lambda calculus II 108

Subterm lemma for the Curry systems.

Let M´ be a subterm of M. Then

':'|':| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

For some ´.´ σσσσΓΓΓΓ and

Substitution lemma for the Curry systems.

(i)]:[:|]:[:| ττττ====αααασσσσ−−−−ττττ====ααααΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

(ii) ττττ====−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓττττ−−−−σσσσΓΓΓΓ :]:[|):|&:|:,(NxMNMx

Lambda calculus II 105

Combining the systems á la Curry

(i) there are some variants of the system in one of
them the rule (axiom) that assigns ω to any term.

.∩∩∩∩λλλλ

(ii) The systems are all extensions of
They can be combined into other systems, an extreme case is

which includes all these systems. It can be extended
by cartesian products and direct sums in order to fall into the
cartesian closed category.

∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ and ,, 2 .→→→→λλλλ

∩∩∩∩µµµµλλλλ2

Lambda calculus II 106

Basic properties.

The Curry systems enjoy several properties∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ and ,, 2

�Basis lemma

�Subterm lemma

�Substitution lemma

�Subject reduction Theorem

Common to all systems:

Each system has a proper variant
�Generation lemma

�Strong normalization
does not hold for all

Lambda calculus II 107

In the following refers to one of Curry systems −−−−| .,, ∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ and 2

The following three common properties are proved in the same way as we
have done for .→→→→λλλλ

Basis lemma for the Curry systems.

Let Γ be a basis.

(i) If is another basis, then´´, ΓΓΓΓ⊆⊆⊆⊆ΓΓΓΓΓΓΓΓ σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ :´|:| MM

(ii))()(:| ΓΓΓΓ⊆⊆⊆⊆⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ domMFVM

(iii) σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ :|)(|:| MMFVM

Lambda calculus II 108

Subterm lemma for the Curry systems.

Let M´ be a subterm of M. Then

':'|':| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

For some ´.´ σσσσΓΓΓΓ and

Substitution lemma for the Curry systems.

(i)]:[:|]:[:| ττττ====αααασσσσ−−−−ττττ====ααααΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

(ii) ττττ====−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓττττ−−−−σσσσΓΓΓΓ :]:[|):|&:|:,(NxMNMx

Lambda calculus II 105

Combining the systems á la Curry

(i) there are some variants of the system in one of
them the rule (axiom) that assigns ω to any term.

.∩∩∩∩λλλλ

(ii) The systems are all extensions of
They can be combined into other systems, an extreme case is

which includes all these systems. It can be extended
by cartesian products and direct sums in order to fall into the
cartesian closed category.

∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ and ,, 2 .→→→→λλλλ

∩∩∩∩µµµµλλλλ2

Lambda calculus II 106

Basic properties.

The Curry systems enjoy several properties∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ and ,, 2

�Basis lemma

�Subterm lemma

�Substitution lemma

�Subject reduction Theorem

Common to all systems:

Each system has a proper variant
�Generation lemma

�Strong normalization
does not hold for all

Lambda calculus II 107

In the following refers to one of Curry systems −−−−| .,, ∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ and 2

The following three common properties are proved in the same way as we
have done for .→→→→λλλλ

Basis lemma for the Curry systems.

Let Γ be a basis.

(i) If is another basis, then´´, ΓΓΓΓ⊆⊆⊆⊆ΓΓΓΓΓΓΓΓ σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ :´|:| MM

(ii))()(:| ΓΓΓΓ⊆⊆⊆⊆⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ domMFVM

(iii) σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ :|)(|:| MMFVM

Lambda calculus II 108

Subterm lemma for the Curry systems.

Let M´ be a subterm of M. Then

':'|':| σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

For some ´.´ σσσσΓΓΓΓ and

Substitution lemma for the Curry systems.

(i)]:[:|]:[:| ττττ====αααασσσσ−−−−ττττ====ααααΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ MM

(ii) ττττ====−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓττττ−−−−σσσσΓΓΓΓ :]:[|):|&:|:,(NxMNMx

Lambda calculus II 109

Exercise.

Show that for each of the systems
one has

∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ and ,, 2

)(:| αααα→→→→αααα−−−−//// K

in that system.

Lambda calculus II 110

Subject reduction and subject conversion.

Subject reduction

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒→>→>→>→>σσσσ−−−−ΓΓΓΓ :'|':| MMMM β and

holds for the main systems of type assignment á la Curry, namely

with or without the additional rules EQ and A.,,, ∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ and 2

Subject conversion

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒====σσσσ−−−−ΓΓΓΓ :'|':| MMMM β and

Holds only for the systems including or rule A or if the rule EQ
is included.

∩∩∩∩λλλλ

Lambda calculus II 111

Subject reduction.

We have already proved the Subject reduction theorem for the basic
system and we are going to prove it for We need some
definitions and throughout the proof T = Type().

→→→→λλλλ .2λλλλ
2λλλλ

Definition.

(i) Write if one of the following conditions is satisfiedττττ>>>>σσσσ

ππππππππ====αααασσσσ≡≡≡≡ττττ
σσσσαααα∀∀∀∀≡≡≡≡σσσσ

σσσσσσσσαααα∀∀∀∀≡≡≡≡ττττ

 somefor

or
 somefor

],:[
&.

,,.

1

1

(ii) The relation is the reflexive and transitive closure of > .≥≥≥≥

Lambda calculus II 112

(iii) A map o : is defined as followsTT →→→→

oo

o

o

σσσσ====σσσσαααα∀∀∀∀
ττττ→→→→σσσσ====ττττ→→→→σσσσ

αααααααα====αααα

).(
)(

 variable typea is if

Remark.

Note that the -introduction and -elimination rules are the
only ones in which the subject does not change. Several instances of
these rules may be applied consecutively, giving

∀∀∀∀ ∀ ∀∀∀

ττττ

σσσσ

:

:

M

M

M

M

In this case By this reasoning, one obtains the following: .ττττ≥≥≥≥σσσσ

Lambda calculus II 109

Exercise.

Show that for each of the systems
one has

∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ and ,, 2

)(:| αααα→→→→αααα−−−−//// K

in that system.

Lambda calculus II 110

Subject reduction and subject conversion.

Subject reduction

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒→>→>→>→>σσσσ−−−−ΓΓΓΓ :'|':| MMMM β and

holds for the main systems of type assignment á la Curry, namely

with or without the additional rules EQ and A.,,, ∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ and 2

Subject conversion

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒====σσσσ−−−−ΓΓΓΓ :'|':| MMMM β and

Holds only for the systems including or rule A or if the rule EQ
is included.

∩∩∩∩λλλλ

Lambda calculus II 111

Subject reduction.

We have already proved the Subject reduction theorem for the basic
system and we are going to prove it for We need some
definitions and throughout the proof T = Type().

→→→→λλλλ .2λλλλ
2λλλλ

Definition.

(i) Write if one of the following conditions is satisfiedττττ>>>>σσσσ

ππππππππ====αααασσσσ≡≡≡≡ττττ
σσσσαααα∀∀∀∀≡≡≡≡σσσσ

σσσσσσσσαααα∀∀∀∀≡≡≡≡ττττ

 somefor

or
 somefor

],:[
&.

,,.

1

1

(ii) The relation is the reflexive and transitive closure of > .≥≥≥≥

Lambda calculus II 112

(iii) A map o : is defined as followsTT →→→→

oo

o

o

σσσσ====σσσσαααα∀∀∀∀
ττττ→→→→σσσσ====ττττ→→→→σσσσ

αααααααα====αααα

).(
)(

 variable typea is if

Remark.

Note that the -introduction and -elimination rules are the
only ones in which the subject does not change. Several instances of
these rules may be applied consecutively, giving

∀∀∀∀ ∀ ∀∀∀

ττττ

σσσσ

:

:

M

M

M

M

In this case By this reasoning, one obtains the following: .ττττ≥≥≥≥σσσσ

Lambda calculus II 109

Exercise.

Show that for each of the systems
one has

∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ and ,, 2

)(:| αααα→→→→αααα−−−−//// K

in that system.

Lambda calculus II 110

Subject reduction and subject conversion.

Subject reduction

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒→>→>→>→>σσσσ−−−−ΓΓΓΓ :'|':| MMMM β and

holds for the main systems of type assignment á la Curry, namely

with or without the additional rules EQ and A.,,, ∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ and 2

Subject conversion

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒====σσσσ−−−−ΓΓΓΓ :'|':| MMMM β and

Holds only for the systems including or rule A or if the rule EQ
is included.

∩∩∩∩λλλλ

Lambda calculus II 111

Subject reduction.

We have already proved the Subject reduction theorem for the basic
system and we are going to prove it for We need some
definitions and throughout the proof T = Type().

→→→→λλλλ .2λλλλ
2λλλλ

Definition.

(i) Write if one of the following conditions is satisfiedττττ>>>>σσσσ

ππππππππ====αααασσσσ≡≡≡≡ττττ
σσσσαααα∀∀∀∀≡≡≡≡σσσσ

σσσσσσσσαααα∀∀∀∀≡≡≡≡ττττ

 somefor

or
 somefor

],:[
&.

,,.

1

1

(ii) The relation is the reflexive and transitive closure of > .≥≥≥≥

Lambda calculus II 112

(iii) A map o : is defined as followsTT →→→→

oo

o

o

σσσσ====σσσσαααα∀∀∀∀
ττττ→→→→σσσσ====ττττ→→→→σσσσ

αααααααα====αααα

).(
)(

 variable typea is if

Remark.

Note that the -introduction and -elimination rules are the
only ones in which the subject does not change. Several instances of
these rules may be applied consecutively, giving

∀∀∀∀ ∀ ∀∀∀

ττττ

σσσσ

:

:

M

M

M

M

In this case By this reasoning, one obtains the following: .ττττ≥≥≥≥σσσσ

Lambda calculus II 109

Exercise.

Show that for each of the systems
one has

∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ and ,, 2

)(:| αααα→→→→αααα−−−−//// K

in that system.

Lambda calculus II 110

Subject reduction and subject conversion.

Subject reduction

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒→>→>→>→>σσσσ−−−−ΓΓΓΓ :'|':| MMMM β and

holds for the main systems of type assignment á la Curry, namely

with or without the additional rules EQ and A.,,, ∩∩∩∩λλλλλµλµλµλµλλλλ→→→→λλλλ and 2

Subject conversion

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒====σσσσ−−−−ΓΓΓΓ :'|':| MMMM β and

Holds only for the systems including or rule A or if the rule EQ
is included.

∩∩∩∩λλλλ

Lambda calculus II 111

Subject reduction.

We have already proved the Subject reduction theorem for the basic
system and we are going to prove it for We need some
definitions and throughout the proof T = Type().

→→→→λλλλ .2λλλλ
2λλλλ

Definition.

(i) Write if one of the following conditions is satisfiedττττ>>>>σσσσ

ππππππππ====αααασσσσ≡≡≡≡ττττ
σσσσαααα∀∀∀∀≡≡≡≡σσσσ

σσσσσσσσαααα∀∀∀∀≡≡≡≡ττττ

 somefor

or
 somefor

],:[
&.

,,.

1

1

(ii) The relation is the reflexive and transitive closure of > .≥≥≥≥

Lambda calculus II 112

(iii) A map o : is defined as followsTT →→→→

oo

o

o

σσσσ====σσσσαααα∀∀∀∀
ττττ→→→→σσσσ====ττττ→→→→σσσσ

αααααααα====αααα

).(
)(

 variable typea is if

Remark.

Note that the -introduction and -elimination rules are the
only ones in which the subject does not change. Several instances of
these rules may be applied consecutively, giving

∀∀∀∀ ∀ ∀∀∀

ττττ

σσσσ

:

:

M

M

M

M

In this case By this reasoning, one obtains the following: .ττττ≥≥≥≥σσσσ

Lambda calculus II 113

Lemma.
Let an assume that no free type variable in σ occurs in Γ.
Then

ττττ≥≥≥≥σσσσ
ττττ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ :|:| MM

Proof.

σσσσ−−−−ΓΓΓΓ :| M .ττττ≥≥≥≥σσσσSuppose and Then
for some if necessary, by renaming some bound
type variables, we may assume that for we have

ττττ≡≡≡≡σσσσ>>>>>>>>σσσσ≡≡≡≡σσσσ n1 L
.,, n1 σσσσσσσσ L

,, ni1i <<<<≤≤≤≤
)(. ΓΓΓΓ∉∉∉∉αααα⇒⇒⇒⇒σσσσαααα∀∀∀∀≡≡≡≡σσσσ ++++ FV11i

By the definition of the relation > and the rules of λ2, it
follows that we have

1ii MM ++++σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ :|:|

for all i < n. Hence .:| ττττ≡≡≡≡σσσσ−−−−ΓΓΓΓ nM

Lambda calculus II 114

Generation lemma for λ2-Curry.

]:|&´:|[´:)(| σσσσ−−−−ΓΓΓΓττττ→→→→σσσσ−−−−ΓΓΓΓττττ≥≥≥≥ττττ∃∃∃∃σσσσ∃∃∃∃⇒⇒⇒⇒ττττ−−−−ΓΓΓΓ NMMN (ii)

ΓΓΓΓ∈∈∈∈σσσσσσσσ≥≥≥≥σσσσ∃∃∃∃⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ):((´:| xx (i)

]&:|:,[:).(| ρρρρ≥≥≥≥ττττ→→→→σσσσττττ−−−−σσσσΓΓΓΓττττ∃∃∃∃σσσσ∃∃∃∃⇒⇒⇒⇒ρρρρλλλλ−−−−ΓΓΓΓ MxMx (iii)

Proof.

By induction on derivations.

Lambda calculus II 115

Lemma on preorder of types.

(i) Given types σ, τ, there exists a type τ´ such that

´]:[]):[(ττττ====αααασσσσ≡≡≡≡ττττ====αααασσσσ oo

(ii)]:[(ττττ====αααασσσσ≡≡≡≡σσσσττττ∃∃∃∃αααα∃∃∃∃⇒⇒⇒⇒σσσσ≥≥≥≥σσσσ rro
1

o
221

(iii)]:)[(´)´(´)´()(ττττ====ααααρρρρ→→→→σσσσ≡≡≡≡ρρρρ→→→→σσσσττττ∃∃∃∃αααα∃∃∃∃⇒⇒⇒⇒ρρρρ→→→→σσσσ≥≥≥≥ρρρρ→→→→σσσσ rrrr

Lambda calculus II 116

Proof.

(i) By induction on the structure of σ.

(ii) It suffices to prove it for We have to consider two cases .21 σσσσ≥≥≥≥σσσσ

Case 1. ... o
1

o
212 σσσσ≡≡≡≡σσσσσσσσαααα∀∀∀∀≡≡≡≡σσσσ Then

Case 2.]:[. ττττ====ααααρρρρ≡≡≡≡σσσσρρρραααα∀∀∀∀≡≡≡≡σσσσ 21 and

Then by (i) we have ´]:[´]:[ττττ====αααασσσσ≡≡≡≡ττττ====ααααρρρρ≡≡≡≡σσσσ o
1

oo
2

(iii) By (ii), we have

])[(]:[)(´)´(´)´(ττττ→→→→ααααρρρρ→→→→σσσσ≡≡≡≡ττττ====ααααρρρρ→→→→σσσσ≡≡≡≡ρρρρ→→→→σσσσ≡≡≡≡ρρρρ→→→→σσσσ rrrroo

Lambda calculus II 113

Lemma.
Let an assume that no free type variable in σ occurs in Γ.
Then

ττττ≥≥≥≥σσσσ
ττττ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ :|:| MM

Proof.

σσσσ−−−−ΓΓΓΓ :| M .ττττ≥≥≥≥σσσσSuppose and Then
for some if necessary, by renaming some bound
type variables, we may assume that for we have

ττττ≡≡≡≡σσσσ>>>>>>>>σσσσ≡≡≡≡σσσσ n1 L
.,, n1 σσσσσσσσ L

,, ni1i <<<<≤≤≤≤
)(. ΓΓΓΓ∉∉∉∉αααα⇒⇒⇒⇒σσσσαααα∀∀∀∀≡≡≡≡σσσσ ++++ FV11i

By the definition of the relation > and the rules of λ2, it
follows that we have

1ii MM ++++σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ :|:|

for all i < n. Hence .:| ττττ≡≡≡≡σσσσ−−−−ΓΓΓΓ nM

Lambda calculus II 114

Generation lemma for λ2-Curry.

]:|&´:|[´:)(| σσσσ−−−−ΓΓΓΓττττ→→→→σσσσ−−−−ΓΓΓΓττττ≥≥≥≥ττττ∃∃∃∃σσσσ∃∃∃∃⇒⇒⇒⇒ττττ−−−−ΓΓΓΓ NMMN (ii)

ΓΓΓΓ∈∈∈∈σσσσσσσσ≥≥≥≥σσσσ∃∃∃∃⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ):((´:| xx (i)

]&:|:,[:).(| ρρρρ≥≥≥≥ττττ→→→→σσσσττττ−−−−σσσσΓΓΓΓττττ∃∃∃∃σσσσ∃∃∃∃⇒⇒⇒⇒ρρρρλλλλ−−−−ΓΓΓΓ MxMx (iii)

Proof.

By induction on derivations.

Lambda calculus II 115

Lemma on preorder of types.

(i) Given types σ, τ, there exists a type τ´ such that

´]:[]):[(ττττ====αααασσσσ≡≡≡≡ττττ====αααασσσσ oo

(ii)]:[(ττττ====αααασσσσ≡≡≡≡σσσσττττ∃∃∃∃αααα∃∃∃∃⇒⇒⇒⇒σσσσ≥≥≥≥σσσσ rro
1

o
221

(iii)]:)[(´)´(´)´()(ττττ====ααααρρρρ→→→→σσσσ≡≡≡≡ρρρρ→→→→σσσσττττ∃∃∃∃αααα∃∃∃∃⇒⇒⇒⇒ρρρρ→→→→σσσσ≥≥≥≥ρρρρ→→→→σσσσ rrrr

Lambda calculus II 116

Proof.

(i) By induction on the structure of σ.

(ii) It suffices to prove it for We have to consider two cases .21 σσσσ≥≥≥≥σσσσ

Case 1. ... o
1

o
212 σσσσ≡≡≡≡σσσσσσσσαααα∀∀∀∀≡≡≡≡σσσσ Then

Case 2.]:[. ττττ====ααααρρρρ≡≡≡≡σσσσρρρραααα∀∀∀∀≡≡≡≡σσσσ 21 and

Then by (i) we have ´]:[´]:[ττττ====αααασσσσ≡≡≡≡ττττ====ααααρρρρ≡≡≡≡σσσσ o
1

oo
2

(iii) By (ii), we have

])[(]:[)(´)´(´)´(ττττ→→→→ααααρρρρ→→→→σσσσ≡≡≡≡ττττ====ααααρρρρ→→→→σσσσ≡≡≡≡ρρρρ→→→→σσσσ≡≡≡≡ρρρρ→→→→σσσσ rrrroo

Lambda calculus II 113

Lemma.
Let an assume that no free type variable in σ occurs in Γ.
Then

ττττ≥≥≥≥σσσσ
ττττ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ :|:| MM

Proof.

σσσσ−−−−ΓΓΓΓ :| M .ττττ≥≥≥≥σσσσSuppose and Then
for some if necessary, by renaming some bound
type variables, we may assume that for we have

ττττ≡≡≡≡σσσσ>>>>>>>>σσσσ≡≡≡≡σσσσ n1 L
.,, n1 σσσσσσσσ L

,, ni1i <<<<≤≤≤≤
)(. ΓΓΓΓ∉∉∉∉αααα⇒⇒⇒⇒σσσσαααα∀∀∀∀≡≡≡≡σσσσ ++++ FV11i

By the definition of the relation > and the rules of λ2, it
follows that we have

1ii MM ++++σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ :|:|

for all i < n. Hence .:| ττττ≡≡≡≡σσσσ−−−−ΓΓΓΓ nM

Lambda calculus II 114

Generation lemma for λ2-Curry.

]:|&´:|[´:)(| σσσσ−−−−ΓΓΓΓττττ→→→→σσσσ−−−−ΓΓΓΓττττ≥≥≥≥ττττ∃∃∃∃σσσσ∃∃∃∃⇒⇒⇒⇒ττττ−−−−ΓΓΓΓ NMMN (ii)

ΓΓΓΓ∈∈∈∈σσσσσσσσ≥≥≥≥σσσσ∃∃∃∃⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ):((´:| xx (i)

]&:|:,[:).(| ρρρρ≥≥≥≥ττττ→→→→σσσσττττ−−−−σσσσΓΓΓΓττττ∃∃∃∃σσσσ∃∃∃∃⇒⇒⇒⇒ρρρρλλλλ−−−−ΓΓΓΓ MxMx (iii)

Proof.

By induction on derivations.

Lambda calculus II 115

Lemma on preorder of types.

(i) Given types σ, τ, there exists a type τ´ such that

´]:[]):[(ττττ====αααασσσσ≡≡≡≡ττττ====αααασσσσ oo

(ii)]:[(ττττ====αααασσσσ≡≡≡≡σσσσττττ∃∃∃∃αααα∃∃∃∃⇒⇒⇒⇒σσσσ≥≥≥≥σσσσ rro
1

o
221

(iii)]:)[(´)´(´)´()(ττττ====ααααρρρρ→→→→σσσσ≡≡≡≡ρρρρ→→→→σσσσττττ∃∃∃∃αααα∃∃∃∃⇒⇒⇒⇒ρρρρ→→→→σσσσ≥≥≥≥ρρρρ→→→→σσσσ rrrr

Lambda calculus II 116

Proof.

(i) By induction on the structure of σ.

(ii) It suffices to prove it for We have to consider two cases .21 σσσσ≥≥≥≥σσσσ

Case 1. ... o
1

o
212 σσσσ≡≡≡≡σσσσσσσσαααα∀∀∀∀≡≡≡≡σσσσ Then

Case 2.]:[. ττττ====ααααρρρρ≡≡≡≡σσσσρρρραααα∀∀∀∀≡≡≡≡σσσσ 21 and

Then by (i) we have ´]:[´]:[ττττ====αααασσσσ≡≡≡≡ττττ====ααααρρρρ≡≡≡≡σσσσ o
1

oo
2

(iii) By (ii), we have

])[(]:[)(´)´(´)´(ττττ→→→→ααααρρρρ→→→→σσσσ≡≡≡≡ττττ====ααααρρρρ→→→→σσσσ≡≡≡≡ρρρρ→→→→σσσσ≡≡≡≡ρρρρ→→→→σσσσ rrrroo

Lambda calculus II 113

Lemma.
Let an assume that no free type variable in σ occurs in Γ.
Then

ττττ≥≥≥≥σσσσ
ττττ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ :|:| MM

Proof.

σσσσ−−−−ΓΓΓΓ :| M .ττττ≥≥≥≥σσσσSuppose and Then
for some if necessary, by renaming some bound
type variables, we may assume that for we have

ττττ≡≡≡≡σσσσ>>>>>>>>σσσσ≡≡≡≡σσσσ n1 L
.,, n1 σσσσσσσσ L

,, ni1i <<<<≤≤≤≤
)(. ΓΓΓΓ∉∉∉∉αααα⇒⇒⇒⇒σσσσαααα∀∀∀∀≡≡≡≡σσσσ ++++ FV11i

By the definition of the relation > and the rules of λ2, it
follows that we have

1ii MM ++++σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ :|:|

for all i < n. Hence .:| ττττ≡≡≡≡σσσσ−−−−ΓΓΓΓ nM

Lambda calculus II 114

Generation lemma for λ2-Curry.

]:|&´:|[´:)(| σσσσ−−−−ΓΓΓΓττττ→→→→σσσσ−−−−ΓΓΓΓττττ≥≥≥≥ττττ∃∃∃∃σσσσ∃∃∃∃⇒⇒⇒⇒ττττ−−−−ΓΓΓΓ NMMN (ii)

ΓΓΓΓ∈∈∈∈σσσσσσσσ≥≥≥≥σσσσ∃∃∃∃⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ):((´:| xx (i)

]&:|:,[:).(| ρρρρ≥≥≥≥ττττ→→→→σσσσττττ−−−−σσσσΓΓΓΓττττ∃∃∃∃σσσσ∃∃∃∃⇒⇒⇒⇒ρρρρλλλλ−−−−ΓΓΓΓ MxMx (iii)

Proof.

By induction on derivations.

Lambda calculus II 115

Lemma on preorder of types.

(i) Given types σ, τ, there exists a type τ´ such that

´]:[]):[(ττττ====αααασσσσ≡≡≡≡ττττ====αααασσσσ oo

(ii)]:[(ττττ====αααασσσσ≡≡≡≡σσσσττττ∃∃∃∃αααα∃∃∃∃⇒⇒⇒⇒σσσσ≥≥≥≥σσσσ rro
1

o
221

(iii)]:)[(´)´(´)´()(ττττ====ααααρρρρ→→→→σσσσ≡≡≡≡ρρρρ→→→→σσσσττττ∃∃∃∃αααα∃∃∃∃⇒⇒⇒⇒ρρρρ→→→→σσσσ≥≥≥≥ρρρρ→→→→σσσσ rrrr

Lambda calculus II 116

Proof.

(i) By induction on the structure of σ.

(ii) It suffices to prove it for We have to consider two cases .21 σσσσ≥≥≥≥σσσσ

Case 1. ... o
1

o
212 σσσσ≡≡≡≡σσσσσσσσαααα∀∀∀∀≡≡≡≡σσσσ Then

Case 2.]:[. ττττ====ααααρρρρ≡≡≡≡σσσσρρρραααα∀∀∀∀≡≡≡≡σσσσ 21 and

Then by (i) we have ´]:[´]:[ττττ====αααασσσσ≡≡≡≡ττττ====ααααρρρρ≡≡≡≡σσσσ o
1

oo
2

(iii) By (ii), we have

])[(]:[)(´)´(´)´(ττττ→→→→ααααρρρρ→→→→σσσσ≡≡≡≡ττττ====ααααρρρρ→→→→σσσσ≡≡≡≡ρρρρ→→→→σσσσ≡≡≡≡ρρρρ→→→→σσσσ rrrroo

Lambda calculus II 117

Subject reduction theorem for λ2-Curry.

If then we have´,MM ββββ→>→>→>→>

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ ´:|:| MM

Lambda calculus II 118

Proof.

By induction on the derivation of We will treat only
the case of β-reduction i.e. the case that

´.MM ββββ→>→>→>→>
].:[´).(QxPMQPxM ====≡≡≡≡λλλλ≡≡≡≡ and

By the generation lemma, we obtain

]:|&´)(´´)´(&´´:´|:,[´´´
]:|&´)(:).(|[´

:)).((|

ρρρρ−−−−ΓΓΓΓσσσσ→→→→ρρρρ≥≥≥≥σσσσ→→→→ρρρρσσσσ−−−−ρρρρΓΓΓΓσσσσ≥≥≥≥σσσσ∃∃∃∃ρρρρ∃∃∃∃⇒⇒⇒⇒
ρρρρ−−−−ΓΓΓΓσσσσ→→→→ρρρρλλλλ−−−−ΓΓΓΓσσσσ≥≥≥≥σσσσ∃∃∃∃ρρρρ∃∃∃∃⇒⇒⇒⇒

σσσσλλλλ−−−−ΓΓΓΓ

QPx
QPx

QPx

From (iii) of the lemma on preorder of types, it follows

]:´´)[´(´)(ττττ====αααασσσσ→→→→ρρρρ≡≡≡≡σσσσ→→→→ρρρρ rr

Lambda calculus II 119

and hence by (i) of the the Substitution lemma

pe.smaller ty a of assignment theimplies
 terma toebigger typ a of assignment that stating lemma by the

lemmaon Substituti theof (ii)by and
 and

σσσσ====−−−−ΓΓΓΓ⇒⇒⇒⇒
σσσσ≥≥≥≥σσσσσσσσ====−−−−ΓΓΓΓ⇒⇒⇒⇒

σσσσ≥≥≥≥σσσσρρρρ−−−−ΓΓΓΓσσσσ−−−−ρρρρΓΓΓΓ⇒⇒⇒⇒

:]:[|
´´:]:[|

´:|´,:|:,

QxP
QxP

QPx

Lambda calculus II 120

Subject reduction theorem for λµ.

Let then for λµ one has ´,MM ββββ→>→>→>→>

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ ´:|:| MM

Lambda calculus II 117

Subject reduction theorem for λ2-Curry.

If then we have´,MM ββββ→>→>→>→>

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ ´:|:| MM

Lambda calculus II 118

Proof.

By induction on the derivation of We will treat only
the case of β-reduction i.e. the case that

´.MM ββββ→>→>→>→>
].:[´).(QxPMQPxM ====≡≡≡≡λλλλ≡≡≡≡ and

By the generation lemma, we obtain

]:|&´)(´´)´(&´´:´|:,[´´´
]:|&´)(:).(|[´

:)).((|

ρρρρ−−−−ΓΓΓΓσσσσ→→→→ρρρρ≥≥≥≥σσσσ→→→→ρρρρσσσσ−−−−ρρρρΓΓΓΓσσσσ≥≥≥≥σσσσ∃∃∃∃ρρρρ∃∃∃∃⇒⇒⇒⇒
ρρρρ−−−−ΓΓΓΓσσσσ→→→→ρρρρλλλλ−−−−ΓΓΓΓσσσσ≥≥≥≥σσσσ∃∃∃∃ρρρρ∃∃∃∃⇒⇒⇒⇒

σσσσλλλλ−−−−ΓΓΓΓ

QPx
QPx

QPx

From (iii) of the lemma on preorder of types, it follows

]:´´)[´(´)(ττττ====αααασσσσ→→→→ρρρρ≡≡≡≡σσσσ→→→→ρρρρ rr

Lambda calculus II 119

and hence by (i) of the the Substitution lemma

pe.smaller ty a of assignment theimplies
 terma toebigger typ a of assignment that stating lemma by the

lemmaon Substituti theof (ii)by and
 and

σσσσ====−−−−ΓΓΓΓ⇒⇒⇒⇒
σσσσ≥≥≥≥σσσσσσσσ====−−−−ΓΓΓΓ⇒⇒⇒⇒

σσσσ≥≥≥≥σσσσρρρρ−−−−ΓΓΓΓσσσσ−−−−ρρρρΓΓΓΓ⇒⇒⇒⇒

:]:[|
´´:]:[|

´:|´,:|:,

QxP
QxP

QPx

Lambda calculus II 120

Subject reduction theorem for λµ.

Let then for λµ one has ´,MM ββββ→>→>→>→>

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ ´:|:| MM

Lambda calculus II 117

Subject reduction theorem for λ2-Curry.

If then we have´,MM ββββ→>→>→>→>

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ ´:|:| MM

Lambda calculus II 118

Proof.

By induction on the derivation of We will treat only
the case of β-reduction i.e. the case that

´.MM ββββ→>→>→>→>
].:[´).(QxPMQPxM ====≡≡≡≡λλλλ≡≡≡≡ and

By the generation lemma, we obtain

]:|&´)(´´)´(&´´:´|:,[´´´
]:|&´)(:).(|[´

:)).((|

ρρρρ−−−−ΓΓΓΓσσσσ→→→→ρρρρ≥≥≥≥σσσσ→→→→ρρρρσσσσ−−−−ρρρρΓΓΓΓσσσσ≥≥≥≥σσσσ∃∃∃∃ρρρρ∃∃∃∃⇒⇒⇒⇒
ρρρρ−−−−ΓΓΓΓσσσσ→→→→ρρρρλλλλ−−−−ΓΓΓΓσσσσ≥≥≥≥σσσσ∃∃∃∃ρρρρ∃∃∃∃⇒⇒⇒⇒

σσσσλλλλ−−−−ΓΓΓΓ

QPx
QPx

QPx

From (iii) of the lemma on preorder of types, it follows

]:´´)[´(´)(ττττ====αααασσσσ→→→→ρρρρ≡≡≡≡σσσσ→→→→ρρρρ rr

Lambda calculus II 119

and hence by (i) of the the Substitution lemma

pe.smaller ty a of assignment theimplies
 terma toebigger typ a of assignment that stating lemma by the

lemmaon Substituti theof (ii)by and
 and

σσσσ====−−−−ΓΓΓΓ⇒⇒⇒⇒
σσσσ≥≥≥≥σσσσσσσσ====−−−−ΓΓΓΓ⇒⇒⇒⇒

σσσσ≥≥≥≥σσσσρρρρ−−−−ΓΓΓΓσσσσ−−−−ρρρρΓΓΓΓ⇒⇒⇒⇒

:]:[|
´´:]:[|

´:|´,:|:,

QxP
QxP

QPx

Lambda calculus II 120

Subject reduction theorem for λµ.

Let then for λµ one has ´,MM ββββ→>→>→>→>

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ ´:|:| MM

Lambda calculus II 117

Subject reduction theorem for λ2-Curry.

If then we have´,MM ββββ→>→>→>→>

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ ´:|:| MM

Lambda calculus II 118

Proof.

By induction on the derivation of We will treat only
the case of β-reduction i.e. the case that

´.MM ββββ→>→>→>→>
].:[´).(QxPMQPxM ====≡≡≡≡λλλλ≡≡≡≡ and

By the generation lemma, we obtain

]:|&´)(´´)´(&´´:´|:,[´´´
]:|&´)(:).(|[´

:)).((|

ρρρρ−−−−ΓΓΓΓσσσσ→→→→ρρρρ≥≥≥≥σσσσ→→→→ρρρρσσσσ−−−−ρρρρΓΓΓΓσσσσ≥≥≥≥σσσσ∃∃∃∃ρρρρ∃∃∃∃⇒⇒⇒⇒
ρρρρ−−−−ΓΓΓΓσσσσ→→→→ρρρρλλλλ−−−−ΓΓΓΓσσσσ≥≥≥≥σσσσ∃∃∃∃ρρρρ∃∃∃∃⇒⇒⇒⇒

σσσσλλλλ−−−−ΓΓΓΓ

QPx
QPx

QPx

From (iii) of the lemma on preorder of types, it follows

]:´´)[´(´)(ττττ====αααασσσσ→→→→ρρρρ≡≡≡≡σσσσ→→→→ρρρρ rr

Lambda calculus II 119

and hence by (i) of the the Substitution lemma

pe.smaller ty a of assignment theimplies
 terma toebigger typ a of assignment that stating lemma by the

lemmaon Substituti theof (ii)by and
 and

σσσσ====−−−−ΓΓΓΓ⇒⇒⇒⇒
σσσσ≥≥≥≥σσσσσσσσ====−−−−ΓΓΓΓ⇒⇒⇒⇒

σσσσ≥≥≥≥σσσσρρρρ−−−−ΓΓΓΓσσσσ−−−−ρρρρΓΓΓΓ⇒⇒⇒⇒

:]:[|
´´:]:[|

´:|´,:|:,

QxP
QxP

QPx

Lambda calculus II 120

Subject reduction theorem for λµ.

Let then for λµ one has ´,MM ββββ→>→>→>→>

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ ´:|:| MM

Lambda calculus II 121

Proof.

The proof of the subject reduction theorem for λµ is
somewhat easier than that for λ2. It follows similar steps
but using the relation insted of≈≈≈≈ .≥≥≥≥

Lambda calculus II 122

Remark.

The subject reduction theorem holds also for This
system is also closed under the rule EQ as we will show
later on. We will see that in the systems
and λ-A the subject conversion theorem holds. This is
not so for

.∩∩∩∩λλλλ

.∩∩∩∩λλλλ

., λµλµλµλµλλλλ→→→→λλλλ and 2

Lambda calculus II 123

Example. What makes closed under β-expansion. ∩∩∩∩λλλλ

Let

.contractum its andredex thebe]:[´).(QxPMQPxM ====≡≡≡≡λλλλ≡≡≡≡

To show that β-expansion holds for this pair assume that

.´:| σσσσ−−−−ΓΓΓΓ ∩∩∩∩λλλλ M
Now Q occurs each occurence having its
proper type Define

´,M0n in times≥≥≥≥
.ni1i ≤≤≤≤≤≤≤≤ττττ for

====ωωωω
>>>>ττττ∩∩∩∩∩∩∩∩ττττ

≡≡≡≡ττττ
0n
0nn1

 if
 ifL

Then

σσσσ−−−−ττττΓΓΓΓ
ττττ−−−−ΓΓΓΓ

:|:,
:|

Px
Q

Hence .:):(|)(:).(| σσσσλλλλ−−−−ΓΓΓΓσσσσ→→→→ττττλλλλ−−−−ΓΓΓΓ QPxPx and

Lambda calculus II 124

In it is not guaranteed that there is a common type
for the different occurrences of Q. Note that the type ω is essential in
case when Q has no occurrence in P[x:= Q].

., λµλµλµλµλλλλ→→→→λλλλ and 2

Subject conversion theorem for .∩∩∩∩λλλλ

Let then for one has ´,MM ββββ====
σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ ´:|:| MM

Without proof

∩∩∩∩λλλλ

Lambda calculus II 121

Proof.

The proof of the subject reduction theorem for λµ is
somewhat easier than that for λ2. It follows similar steps
but using the relation insted of≈≈≈≈ .≥≥≥≥

Lambda calculus II 122

Remark.

The subject reduction theorem holds also for This
system is also closed under the rule EQ as we will show
later on. We will see that in the systems
and λ-A the subject conversion theorem holds. This is
not so for

.∩∩∩∩λλλλ

.∩∩∩∩λλλλ

., λµλµλµλµλλλλ→→→→λλλλ and 2

Lambda calculus II 123

Example. What makes closed under β-expansion. ∩∩∩∩λλλλ

Let

.contractum its andredex thebe]:[´).(QxPMQPxM ====≡≡≡≡λλλλ≡≡≡≡

To show that β-expansion holds for this pair assume that

.´:| σσσσ−−−−ΓΓΓΓ ∩∩∩∩λλλλ M
Now Q occurs each occurence having its
proper type Define

´,M0n in times≥≥≥≥
.ni1i ≤≤≤≤≤≤≤≤ττττ for

====ωωωω
>>>>ττττ∩∩∩∩∩∩∩∩ττττ

≡≡≡≡ττττ
0n
0nn1

 if
 ifL

Then

σσσσ−−−−ττττΓΓΓΓ
ττττ−−−−ΓΓΓΓ

:|:,
:|

Px
Q

Hence .:):(|)(:).(| σσσσλλλλ−−−−ΓΓΓΓσσσσ→→→→ττττλλλλ−−−−ΓΓΓΓ QPxPx and

Lambda calculus II 124

In it is not guaranteed that there is a common type
for the different occurrences of Q. Note that the type ω is essential in
case when Q has no occurrence in P[x:= Q].

., λµλµλµλµλλλλ→→→→λλλλ and 2

Subject conversion theorem for .∩∩∩∩λλλλ

Let then for one has ´,MM ββββ====
σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ ´:|:| MM

Without proof

∩∩∩∩λλλλ

Lambda calculus II 121

Proof.

The proof of the subject reduction theorem for λµ is
somewhat easier than that for λ2. It follows similar steps
but using the relation insted of≈≈≈≈ .≥≥≥≥

Lambda calculus II 122

Remark.

The subject reduction theorem holds also for This
system is also closed under the rule EQ as we will show
later on. We will see that in the systems
and λ-A the subject conversion theorem holds. This is
not so for

.∩∩∩∩λλλλ

.∩∩∩∩λλλλ

., λµλµλµλµλλλλ→→→→λλλλ and 2

Lambda calculus II 123

Example. What makes closed under β-expansion. ∩∩∩∩λλλλ

Let

.contractum its andredex thebe]:[´).(QxPMQPxM ====≡≡≡≡λλλλ≡≡≡≡

To show that β-expansion holds for this pair assume that

.´:| σσσσ−−−−ΓΓΓΓ ∩∩∩∩λλλλ M
Now Q occurs each occurence having its
proper type Define

´,M0n in times≥≥≥≥
.ni1i ≤≤≤≤≤≤≤≤ττττ for

====ωωωω
>>>>ττττ∩∩∩∩∩∩∩∩ττττ

≡≡≡≡ττττ
0n
0nn1

 if
 ifL

Then

σσσσ−−−−ττττΓΓΓΓ
ττττ−−−−ΓΓΓΓ

:|:,
:|

Px
Q

Hence .:):(|)(:).(| σσσσλλλλ−−−−ΓΓΓΓσσσσ→→→→ττττλλλλ−−−−ΓΓΓΓ QPxPx and

Lambda calculus II 124

In it is not guaranteed that there is a common type
for the different occurrences of Q. Note that the type ω is essential in
case when Q has no occurrence in P[x:= Q].

., λµλµλµλµλλλλ→→→→λλλλ and 2

Subject conversion theorem for .∩∩∩∩λλλλ

Let then for one has ´,MM ββββ====
σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ ´:|:| MM

Without proof

∩∩∩∩λλλλ

Lambda calculus II 121

Proof.

The proof of the subject reduction theorem for λµ is
somewhat easier than that for λ2. It follows similar steps
but using the relation insted of≈≈≈≈ .≥≥≥≥

Lambda calculus II 122

Remark.

The subject reduction theorem holds also for This
system is also closed under the rule EQ as we will show
later on. We will see that in the systems
and λ-A the subject conversion theorem holds. This is
not so for

.∩∩∩∩λλλλ

.∩∩∩∩λλλλ

., λµλµλµλµλλλλ→→→→λλλλ and 2

Lambda calculus II 123

Example. What makes closed under β-expansion. ∩∩∩∩λλλλ

Let

.contractum its andredex thebe]:[´).(QxPMQPxM ====≡≡≡≡λλλλ≡≡≡≡

To show that β-expansion holds for this pair assume that

.´:| σσσσ−−−−ΓΓΓΓ ∩∩∩∩λλλλ M
Now Q occurs each occurence having its
proper type Define

´,M0n in times≥≥≥≥
.ni1i ≤≤≤≤≤≤≤≤ττττ for

====ωωωω
>>>>ττττ∩∩∩∩∩∩∩∩ττττ

≡≡≡≡ττττ
0n
0nn1

 if
 ifL

Then

σσσσ−−−−ττττΓΓΓΓ
ττττ−−−−ΓΓΓΓ

:|:,
:|

Px
Q

Hence .:):(|)(:).(| σσσσλλλλ−−−−ΓΓΓΓσσσσ→→→→ττττλλλλ−−−−ΓΓΓΓ QPxPx and

Lambda calculus II 124

In it is not guaranteed that there is a common type
for the different occurrences of Q. Note that the type ω is essential in
case when Q has no occurrence in P[x:= Q].

., λµλµλµλµλλλλ→→→→λλλλ and 2

Subject conversion theorem for .∩∩∩∩λλλλ

Let then for one has ´,MM ββββ====
σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ ´:|:| MM

Without proof

∩∩∩∩λλλλ

Lambda calculus II 125

Strong normalization

Definition
A lambda term M is called strongly normalizing iff all reduction
sequences starting with M terminate.

KIK is strongly normalizing, while KIΩ is not.

We are going to show that every term typable in is
strongly normalizing. This is not true for since in these
systems, all terms are typable.

 and 2λλλλ→→→→λλλλ
∩∩∩∩λλλλλµλµλµλµ and

Lambda calculus II 126

We start with the proof of strong normalization for .→→→→λλλλ

Definition.

(i) }|{ gnormalizinstrongly is MMSN ΛΛΛΛ∈∈∈∈====

(ii) Let Define a subset as follows: ., ΛΛΛΛ⊆⊆⊆⊆BA ΛΛΛΛ→→→→ of BA

)}(|{ BFaAaAFBA ∈∈∈∈∈∈∈∈∀∀∀∀∈∈∈∈====→→→→

(iii) For every we define a set as
follows

), Type(→→→→λλλλ∈∈∈∈σσσσ ΛΛΛΛ⊆⊆⊆⊆σσσσ

 variable typea is if αααα====αααα SN

ττττ→→→→σσσσ====ττττ→→→→σσσσ

Lambda calculus II 127

Definition.

(i) We call a subset saturated ifSNX ⊆⊆⊆⊆

])[,,)(XRxSNRR0n n1 ∈∈∈∈∈∈∈∈∀∀∀∀≥≥≥≥∀∀∀∀
r

K((a)

where x is any term variable.

))(,,)(SNQSNRR0n n1 ∈∈∈∈∀∀∀∀∈∈∈∈∀∀∀∀≥≥≥≥∀∀∀∀ K((b)
]).(]:[[XRQPxXRQxP ∈∈∈∈λλλλ⇒⇒⇒⇒∈∈∈∈====

rr

(ii) }|{ saturated is XXSAT ΛΛΛΛ⊆⊆⊆⊆====

Note that saturated sets are non-empty, as they contain all term
variables, and that they are closed under a particular type of
expansion.

Lambda calculus II 128

Lemma on saturated sets.

SATSN ∈∈∈∈ (i)

SATBASATBA ∈∈∈∈→→→→⇒⇒⇒⇒∈∈∈∈, (ii)

SATA
SATA

iIi

Iii

∈∈∈∈∈∈∈∈

∈∈∈∈

I
 then of members of collection a be Let (iii) ,}{

 SAT has one)Type(allFor (iv) ∈∈∈∈σσσσ→→→→λλλλ∈∈∈∈σσσσ

Lambda calculus II 125

Strong normalization

Definition
A lambda term M is called strongly normalizing iff all reduction
sequences starting with M terminate.

KIK is strongly normalizing, while KIΩ is not.

We are going to show that every term typable in is
strongly normalizing. This is not true for since in these
systems, all terms are typable.

 and 2λλλλ→→→→λλλλ
∩∩∩∩λλλλλµλµλµλµ and

Lambda calculus II 126

We start with the proof of strong normalization for .→→→→λλλλ

Definition.

(i) }|{ gnormalizinstrongly is MMSN ΛΛΛΛ∈∈∈∈====

(ii) Let Define a subset as follows: ., ΛΛΛΛ⊆⊆⊆⊆BA ΛΛΛΛ→→→→ of BA

)}(|{ BFaAaAFBA ∈∈∈∈∈∈∈∈∀∀∀∀∈∈∈∈====→→→→

(iii) For every we define a set as
follows

), Type(→→→→λλλλ∈∈∈∈σσσσ ΛΛΛΛ⊆⊆⊆⊆σσσσ

 variable typea is if αααα====αααα SN

ττττ→→→→σσσσ====ττττ→→→→σσσσ

Lambda calculus II 127

Definition.

(i) We call a subset saturated ifSNX ⊆⊆⊆⊆

])[,,)(XRxSNRR0n n1 ∈∈∈∈∈∈∈∈∀∀∀∀≥≥≥≥∀∀∀∀
r

K((a)

where x is any term variable.

))(,,)(SNQSNRR0n n1 ∈∈∈∈∀∀∀∀∈∈∈∈∀∀∀∀≥≥≥≥∀∀∀∀ K((b)
]).(]:[[XRQPxXRQxP ∈∈∈∈λλλλ⇒⇒⇒⇒∈∈∈∈====

rr

(ii) }|{ saturated is XXSAT ΛΛΛΛ⊆⊆⊆⊆====

Note that saturated sets are non-empty, as they contain all term
variables, and that they are closed under a particular type of
expansion.

Lambda calculus II 128

Lemma on saturated sets.

SATSN ∈∈∈∈ (i)

SATBASATBA ∈∈∈∈→→→→⇒⇒⇒⇒∈∈∈∈, (ii)

SATA
SATA

iIi

Iii

∈∈∈∈∈∈∈∈

∈∈∈∈

I
 then of members of collection a be Let (iii) ,}{

 SAT has one)Type(allFor (iv) ∈∈∈∈σσσσ→→→→λλλλ∈∈∈∈σσσσ

Lambda calculus II 125

Strong normalization

Definition
A lambda term M is called strongly normalizing iff all reduction
sequences starting with M terminate.

KIK is strongly normalizing, while KIΩ is not.

We are going to show that every term typable in is
strongly normalizing. This is not true for since in these
systems, all terms are typable.

 and 2λλλλ→→→→λλλλ
∩∩∩∩λλλλλµλµλµλµ and

Lambda calculus II 126

We start with the proof of strong normalization for .→→→→λλλλ

Definition.

(i) }|{ gnormalizinstrongly is MMSN ΛΛΛΛ∈∈∈∈====

(ii) Let Define a subset as follows: ., ΛΛΛΛ⊆⊆⊆⊆BA ΛΛΛΛ→→→→ of BA

)}(|{ BFaAaAFBA ∈∈∈∈∈∈∈∈∀∀∀∀∈∈∈∈====→→→→

(iii) For every we define a set as
follows

), Type(→→→→λλλλ∈∈∈∈σσσσ ΛΛΛΛ⊆⊆⊆⊆σσσσ

 variable typea is if αααα====αααα SN

ττττ→→→→σσσσ====ττττ→→→→σσσσ

Lambda calculus II 127

Definition.

(i) We call a subset saturated ifSNX ⊆⊆⊆⊆

])[,,)(XRxSNRR0n n1 ∈∈∈∈∈∈∈∈∀∀∀∀≥≥≥≥∀∀∀∀
r

K((a)

where x is any term variable.

))(,,)(SNQSNRR0n n1 ∈∈∈∈∀∀∀∀∈∈∈∈∀∀∀∀≥≥≥≥∀∀∀∀ K((b)
]).(]:[[XRQPxXRQxP ∈∈∈∈λλλλ⇒⇒⇒⇒∈∈∈∈====

rr

(ii) }|{ saturated is XXSAT ΛΛΛΛ⊆⊆⊆⊆====

Note that saturated sets are non-empty, as they contain all term
variables, and that they are closed under a particular type of
expansion.

Lambda calculus II 128

Lemma on saturated sets.

SATSN ∈∈∈∈ (i)

SATBASATBA ∈∈∈∈→→→→⇒⇒⇒⇒∈∈∈∈, (ii)

SATA
SATA

iIi

Iii

∈∈∈∈∈∈∈∈

∈∈∈∈

I
 then of members of collection a be Let (iii) ,}{

 SAT has one)Type(allFor (iv) ∈∈∈∈σσσσ→→→→λλλλ∈∈∈∈σσσσ

Lambda calculus II 125

Strong normalization

Definition
A lambda term M is called strongly normalizing iff all reduction
sequences starting with M terminate.

KIK is strongly normalizing, while KIΩ is not.

We are going to show that every term typable in is
strongly normalizing. This is not true for since in these
systems, all terms are typable.

 and 2λλλλ→→→→λλλλ
∩∩∩∩λλλλλµλµλµλµ and

Lambda calculus II 126

We start with the proof of strong normalization for .→→→→λλλλ

Definition.

(i) }|{ gnormalizinstrongly is MMSN ΛΛΛΛ∈∈∈∈====

(ii) Let Define a subset as follows: ., ΛΛΛΛ⊆⊆⊆⊆BA ΛΛΛΛ→→→→ of BA

)}(|{ BFaAaAFBA ∈∈∈∈∈∈∈∈∀∀∀∀∈∈∈∈====→→→→

(iii) For every we define a set as
follows

), Type(→→→→λλλλ∈∈∈∈σσσσ ΛΛΛΛ⊆⊆⊆⊆σσσσ

 variable typea is if αααα====αααα SN

ττττ→→→→σσσσ====ττττ→→→→σσσσ

Lambda calculus II 127

Definition.

(i) We call a subset saturated ifSNX ⊆⊆⊆⊆

])[,,)(XRxSNRR0n n1 ∈∈∈∈∈∈∈∈∀∀∀∀≥≥≥≥∀∀∀∀
r

K((a)

where x is any term variable.

))(,,)(SNQSNRR0n n1 ∈∈∈∈∀∀∀∀∈∈∈∈∀∀∀∀≥≥≥≥∀∀∀∀ K((b)
]).(]:[[XRQPxXRQxP ∈∈∈∈λλλλ⇒⇒⇒⇒∈∈∈∈====

rr

(ii) }|{ saturated is XXSAT ΛΛΛΛ⊆⊆⊆⊆====

Note that saturated sets are non-empty, as they contain all term
variables, and that they are closed under a particular type of
expansion.

Lambda calculus II 128

Lemma on saturated sets.

SATSN ∈∈∈∈ (i)

SATBASATBA ∈∈∈∈→→→→⇒⇒⇒⇒∈∈∈∈, (ii)

SATA
SATA

iIi

Iii

∈∈∈∈∈∈∈∈

∈∈∈∈

I
 then of members of collection a be Let (iii) ,}{

 SAT has one)Type(allFor (iv) ∈∈∈∈σσσσ→→→→λλλλ∈∈∈∈σσσσ

Lambda calculus II 129

Proof.

(i) Obviously and it satisfies the condition (a). As to the
condition (b), suppose

SNSN ⊆⊆⊆⊆

SNRQSNRQxP ∈∈∈∈∈∈∈∈====
rr

,&]:[)(1

We claim that also
SNRQPx ∈∈∈∈λλλλ

r
).()(2

Note that the reductions inside must terminate
since these terms are strongly normalising by assumption. The term

RQP
r

 or the ,

]:[QxP ====

is a subterm of a term in SN by (1) hence it is itself in SN and,
consequently, P is i n SN. So after finitely many reduction steps
applied to the term in (2), we obtain

etcetera ´&´´´).(PPRQPx ββββ→>→>→>→>λλλλ
r

Lambda calculus II 130

´´´).(RQPx
r

λλλλThen the contraction of gives

´´]:´[RQxP
r

====)(3

This is a reduct of and since this term is SN, then
(3) and the term are SN.

RQxP
r

]:[====
QPx).(λλλλ

(ii) Let Then by definition for all variables x.., SATBA ∈∈∈∈ Ax ∈∈∈∈

Hence

SNF
SNFx

BFxBAF

∈∈∈∈⇒⇒⇒⇒
∈∈∈∈⇒⇒⇒⇒

∈∈∈∈⇒⇒⇒⇒→→→→∈∈∈∈

So indeed We prove the condition (i) (a) of
saturation, let We must show for a variable x that
. which means

.SNBA ⊆⊆⊆⊆→→→→
.SNR ∈∈∈∈

r

BARx →→→→∈∈∈∈
r

)(BQRxAQ ∈∈∈∈∈∈∈∈∀∀∀∀

which is true since and B is saturated.SNA ⊆⊆⊆⊆

Lambda calculus II 131

(iii) Similarly

(iv) By induction on the generation of σ, using (i) and (ii).

Definition.

In order to prove the key Soundness Theorem, we need the folowing

(i) A valuation in Λ is a map where V is the set of term
variables.

,: ΛΛΛΛ→→→→ρρρρ V

(ii) Let ρ be a valuation in Λ. We define

)](:,),(:[nn11 xxxxMM ρρρρ====ρρρρ========
ρρρρ

K

where is the set of free variables in M.n1 xxx ,,Kr ====

Lambda calculus II 132

(iii) Let ρ be a valuation in Λ. We say that ρ satisfies M : σ and write

.,:| σσσσ∈∈∈∈σσσσ====ρρρρ
ρρρρ

MM if

If Γ is a basis, we say that ρ satisfies Γ and write
for all

σσσσ====ρρρρΓΓΓΓ====ρρρρ :|,| x if
.):(ΓΓΓΓ∈∈∈∈σσσσx

(iv) A basis Γ satisfies M : σ and write if,:| σσσσ====ΓΓΓΓ M

]:||[σσσσ====ρρρρ⇒⇒⇒⇒ΓΓΓΓ====ρρρρρρρρ∀∀∀∀ M

Lambda calculus II 129

Proof.

(i) Obviously and it satisfies the condition (a). As to the
condition (b), suppose

SNSN ⊆⊆⊆⊆

SNRQSNRQxP ∈∈∈∈∈∈∈∈====
rr

,&]:[)(1

We claim that also
SNRQPx ∈∈∈∈λλλλ

r
).()(2

Note that the reductions inside must terminate
since these terms are strongly normalising by assumption. The term

RQP
r

 or the ,

]:[QxP ====

is a subterm of a term in SN by (1) hence it is itself in SN and,
consequently, P is i n SN. So after finitely many reduction steps
applied to the term in (2), we obtain

etcetera ´&´´´).(PPRQPx ββββ→>→>→>→>λλλλ
r

Lambda calculus II 130

´´´).(RQPx
r

λλλλThen the contraction of gives

´´]:´[RQxP
r

====)(3

This is a reduct of and since this term is SN, then
(3) and the term are SN.

RQxP
r

]:[====
QPx).(λλλλ

(ii) Let Then by definition for all variables x.., SATBA ∈∈∈∈ Ax ∈∈∈∈

Hence

SNF
SNFx

BFxBAF

∈∈∈∈⇒⇒⇒⇒
∈∈∈∈⇒⇒⇒⇒

∈∈∈∈⇒⇒⇒⇒→→→→∈∈∈∈

So indeed We prove the condition (i) (a) of
saturation, let We must show for a variable x that
. which means

.SNBA ⊆⊆⊆⊆→→→→
.SNR ∈∈∈∈

r

BARx →→→→∈∈∈∈
r

)(BQRxAQ ∈∈∈∈∈∈∈∈∀∀∀∀

which is true since and B is saturated.SNA ⊆⊆⊆⊆

Lambda calculus II 131

(iii) Similarly

(iv) By induction on the generation of σ, using (i) and (ii).

Definition.

In order to prove the key Soundness Theorem, we need the folowing

(i) A valuation in Λ is a map where V is the set of term
variables.

,: ΛΛΛΛ→→→→ρρρρ V

(ii) Let ρ be a valuation in Λ. We define

)](:,),(:[nn11 xxxxMM ρρρρ====ρρρρ========
ρρρρ

K

where is the set of free variables in M.n1 xxx ,,Kr ====

Lambda calculus II 132

(iii) Let ρ be a valuation in Λ. We say that ρ satisfies M : σ and write

.,:| σσσσ∈∈∈∈σσσσ====ρρρρ
ρρρρ

MM if

If Γ is a basis, we say that ρ satisfies Γ and write
for all

σσσσ====ρρρρΓΓΓΓ====ρρρρ :|,| x if
.):(ΓΓΓΓ∈∈∈∈σσσσx

(iv) A basis Γ satisfies M : σ and write if,:| σσσσ====ΓΓΓΓ M

]:||[σσσσ====ρρρρ⇒⇒⇒⇒ΓΓΓΓ====ρρρρρρρρ∀∀∀∀ M

Lambda calculus II 129

Proof.

(i) Obviously and it satisfies the condition (a). As to the
condition (b), suppose

SNSN ⊆⊆⊆⊆

SNRQSNRQxP ∈∈∈∈∈∈∈∈====
rr

,&]:[)(1

We claim that also
SNRQPx ∈∈∈∈λλλλ

r
).()(2

Note that the reductions inside must terminate
since these terms are strongly normalising by assumption. The term

RQP
r

 or the ,

]:[QxP ====

is a subterm of a term in SN by (1) hence it is itself in SN and,
consequently, P is i n SN. So after finitely many reduction steps
applied to the term in (2), we obtain

etcetera ´&´´´).(PPRQPx ββββ→>→>→>→>λλλλ
r

Lambda calculus II 130

´´´).(RQPx
r

λλλλThen the contraction of gives

´´]:´[RQxP
r

====)(3

This is a reduct of and since this term is SN, then
(3) and the term are SN.

RQxP
r

]:[====
QPx).(λλλλ

(ii) Let Then by definition for all variables x.., SATBA ∈∈∈∈ Ax ∈∈∈∈

Hence

SNF
SNFx

BFxBAF

∈∈∈∈⇒⇒⇒⇒
∈∈∈∈⇒⇒⇒⇒

∈∈∈∈⇒⇒⇒⇒→→→→∈∈∈∈

So indeed We prove the condition (i) (a) of
saturation, let We must show for a variable x that
. which means

.SNBA ⊆⊆⊆⊆→→→→
.SNR ∈∈∈∈

r

BARx →→→→∈∈∈∈
r

)(BQRxAQ ∈∈∈∈∈∈∈∈∀∀∀∀

which is true since and B is saturated.SNA ⊆⊆⊆⊆

Lambda calculus II 131

(iii) Similarly

(iv) By induction on the generation of σ, using (i) and (ii).

Definition.

In order to prove the key Soundness Theorem, we need the folowing

(i) A valuation in Λ is a map where V is the set of term
variables.

,: ΛΛΛΛ→→→→ρρρρ V

(ii) Let ρ be a valuation in Λ. We define

)](:,),(:[nn11 xxxxMM ρρρρ====ρρρρ========
ρρρρ

K

where is the set of free variables in M.n1 xxx ,,Kr ====

Lambda calculus II 132

(iii) Let ρ be a valuation in Λ. We say that ρ satisfies M : σ and write

.,:| σσσσ∈∈∈∈σσσσ====ρρρρ
ρρρρ

MM if

If Γ is a basis, we say that ρ satisfies Γ and write
for all

σσσσ====ρρρρΓΓΓΓ====ρρρρ :|,| x if
.):(ΓΓΓΓ∈∈∈∈σσσσx

(iv) A basis Γ satisfies M : σ and write if,:| σσσσ====ΓΓΓΓ M

]:||[σσσσ====ρρρρ⇒⇒⇒⇒ΓΓΓΓ====ρρρρρρρρ∀∀∀∀ M

Lambda calculus II 129

Proof.

(i) Obviously and it satisfies the condition (a). As to the
condition (b), suppose

SNSN ⊆⊆⊆⊆

SNRQSNRQxP ∈∈∈∈∈∈∈∈====
rr

,&]:[)(1

We claim that also
SNRQPx ∈∈∈∈λλλλ

r
).()(2

Note that the reductions inside must terminate
since these terms are strongly normalising by assumption. The term

RQP
r

 or the ,

]:[QxP ====

is a subterm of a term in SN by (1) hence it is itself in SN and,
consequently, P is i n SN. So after finitely many reduction steps
applied to the term in (2), we obtain

etcetera ´&´´´).(PPRQPx ββββ→>→>→>→>λλλλ
r

Lambda calculus II 130

´´´).(RQPx
r

λλλλThen the contraction of gives

´´]:´[RQxP
r

====)(3

This is a reduct of and since this term is SN, then
(3) and the term are SN.

RQxP
r

]:[====
QPx).(λλλλ

(ii) Let Then by definition for all variables x.., SATBA ∈∈∈∈ Ax ∈∈∈∈

Hence

SNF
SNFx

BFxBAF

∈∈∈∈⇒⇒⇒⇒
∈∈∈∈⇒⇒⇒⇒

∈∈∈∈⇒⇒⇒⇒→→→→∈∈∈∈

So indeed We prove the condition (i) (a) of
saturation, let We must show for a variable x that
. which means

.SNBA ⊆⊆⊆⊆→→→→
.SNR ∈∈∈∈

r

BARx →→→→∈∈∈∈
r

)(BQRxAQ ∈∈∈∈∈∈∈∈∀∀∀∀

which is true since and B is saturated.SNA ⊆⊆⊆⊆

Lambda calculus II 131

(iii) Similarly

(iv) By induction on the generation of σ, using (i) and (ii).

Definition.

In order to prove the key Soundness Theorem, we need the folowing

(i) A valuation in Λ is a map where V is the set of term
variables.

,: ΛΛΛΛ→→→→ρρρρ V

(ii) Let ρ be a valuation in Λ. We define

)](:,),(:[nn11 xxxxMM ρρρρ====ρρρρ========
ρρρρ

K

where is the set of free variables in M.n1 xxx ,,Kr ====

Lambda calculus II 132

(iii) Let ρ be a valuation in Λ. We say that ρ satisfies M : σ and write

.,:| σσσσ∈∈∈∈σσσσ====ρρρρ
ρρρρ

MM if

If Γ is a basis, we say that ρ satisfies Γ and write
for all

σσσσ====ρρρρΓΓΓΓ====ρρρρ :|,| x if
.):(ΓΓΓΓ∈∈∈∈σσσσx

(iv) A basis Γ satisfies M : σ and write if,:| σσσσ====ΓΓΓΓ M

]:||[σσσσ====ρρρρ⇒⇒⇒⇒ΓΓΓΓ====ρρρρρρρρ∀∀∀∀ M

Lambda calculus II 133

(iii) Let ρ be a valuation in Λ. We say that ρ satisfies M : σ and write

.,:| σσσσ∈∈∈∈σσσσ====ρρρρ
ρρρρ

MM if

If Γ is a basis, we say that ρ satisfies Γ and write
for all

σσσσ====ρρρρΓΓΓΓ====ρρρρ :|,| x if
.):(ΓΓΓΓ∈∈∈∈σσσσx

(iv) A basis Γ satisfies M : σ and write if,:| σσσσ====ΓΓΓΓ M

]:||[σσσσ====ρρρρ⇒⇒⇒⇒ΓΓΓΓ====ρρρρρρρρ∀∀∀∀ M

Soundness Theorem.

σσσσ====ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ →→→→λλλλ :|:| MM

Lambda calculus II 134

Proof.

By induction on derivation of .: σσσσM

Case 1. If follows from then
trivially

σσσσ−−−−ΓΓΓΓ≡≡≡≡ :| MxM and ,):(ΓΓΓΓ∈∈∈∈σσσσx
.:| σσσσ====ΓΓΓΓ x

Case 2. If is a direct consequence ofσσσσ−−−−ΓΓΓΓ≡≡≡≡ :| MMMM 21 and
,:|:| ττττ−−−−ΓΓΓΓσσσσ→→→→ττττ−−−−ΓΓΓΓ 21 MM and In order to show ,:| σσσσ====ρρρρ 21MM

We suppose Then which
means

.| ΓΓΓΓ====ρρρρ ττττ====ρρρρσσσσ→→→→ττττ====ρρρρ :|:| 21 MM and

ττττ∈∈∈∈σσσσ→→→→ττττ====σσσσ→→→→ττττ∈∈∈∈
ρρρρρρρρ 2M and 1M

But then

σσσσ====ρρρρσσσσ∈∈∈∈====
ρρρρρρρρρρρρ

:| 212121 MMMMMM means which

Lambda calculus II 135

Case 3. Let be a direct
consequence of

21MMxM σσσσ→→→→σσσσ≡≡≡≡σσσσσσσσ−−−−ΓΓΓΓλλλλ≡≡≡≡ let and :|´,.
.´:|:, 21 Mx σσσσ−−−−σσσσΓΓΓΓ

By the induction hypothesis, we have

21 Mx σσσσ====σσσσΓΓΓΓ ´:|:,)(1

In order to show suppose We have to
show

,´:.| 21Mx σσσσ→→→→σσσσλλλλ====ρρρρ .| ΓΓΓΓ====ρρρρ

12 NNMx σσσσ∈∈∈∈σσσσ∈∈∈∈λλλλ
ρρρρ

 allfor ´.

Let Then and hence .1N σσσσ∈∈∈∈ ,:,|):(1xNx σσσσΓΓΓΓ========ρρρρ

2Nx
M σσσσ∈∈∈∈

====ρρρρ):(
´

by (1).

Lambda calculus II 136

Since

):(
´

]),(:´[

)](:´)[.(´.

Nx
M

NxyyM

NyyMxNMx

====ρρρρ

ββββ

ρρρρ

≡≡≡≡

====ρρρρ====→→→→

ρρρρ====λλλλ≡≡≡≡λλλλ
rr

vr

it follows from the saturation of .´. 22 NMx σσσσ∈∈∈∈λλλλσσσσ
ρρρρ

 that

Lambda calculus II 133

(iii) Let ρ be a valuation in Λ. We say that ρ satisfies M : σ and write

.,:| σσσσ∈∈∈∈σσσσ====ρρρρ
ρρρρ

MM if

If Γ is a basis, we say that ρ satisfies Γ and write
for all

σσσσ====ρρρρΓΓΓΓ====ρρρρ :|,| x if
.):(ΓΓΓΓ∈∈∈∈σσσσx

(iv) A basis Γ satisfies M : σ and write if,:| σσσσ====ΓΓΓΓ M

]:||[σσσσ====ρρρρ⇒⇒⇒⇒ΓΓΓΓ====ρρρρρρρρ∀∀∀∀ M

Soundness Theorem.

σσσσ====ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ →→→→λλλλ :|:| MM

Lambda calculus II 134

Proof.

By induction on derivation of .: σσσσM

Case 1. If follows from then
trivially

σσσσ−−−−ΓΓΓΓ≡≡≡≡ :| MxM and ,):(ΓΓΓΓ∈∈∈∈σσσσx
.:| σσσσ====ΓΓΓΓ x

Case 2. If is a direct consequence ofσσσσ−−−−ΓΓΓΓ≡≡≡≡ :| MMMM 21 and
,:|:| ττττ−−−−ΓΓΓΓσσσσ→→→→ττττ−−−−ΓΓΓΓ 21 MM and In order to show ,:| σσσσ====ρρρρ 21MM

We suppose Then which
means

.| ΓΓΓΓ====ρρρρ ττττ====ρρρρσσσσ→→→→ττττ====ρρρρ :|:| 21 MM and

ττττ∈∈∈∈σσσσ→→→→ττττ====σσσσ→→→→ττττ∈∈∈∈
ρρρρρρρρ 2M and 1M

But then

σσσσ====ρρρρσσσσ∈∈∈∈====
ρρρρρρρρρρρρ

:| 212121 MMMMMM means which

Lambda calculus II 135

Case 3. Let be a direct
consequence of

21MMxM σσσσ→→→→σσσσ≡≡≡≡σσσσσσσσ−−−−ΓΓΓΓλλλλ≡≡≡≡ let and :|´,.
.´:|:, 21 Mx σσσσ−−−−σσσσΓΓΓΓ

By the induction hypothesis, we have

21 Mx σσσσ====σσσσΓΓΓΓ ´:|:,)(1

In order to show suppose We have to
show

,´:.| 21Mx σσσσ→→→→σσσσλλλλ====ρρρρ .| ΓΓΓΓ====ρρρρ

12 NNMx σσσσ∈∈∈∈σσσσ∈∈∈∈λλλλ
ρρρρ

 allfor ´.

Let Then and hence .1N σσσσ∈∈∈∈ ,:,|):(1xNx σσσσΓΓΓΓ========ρρρρ

2Nx
M σσσσ∈∈∈∈

====ρρρρ):(
´

by (1).

Lambda calculus II 136

Since

):(
´

]),(:´[

)](:´)[.(´.

Nx
M

NxyyM

NyyMxNMx

====ρρρρ

ββββ

ρρρρ

≡≡≡≡

====ρρρρ====→→→→

ρρρρ====λλλλ≡≡≡≡λλλλ
rr

vr

it follows from the saturation of .´. 22 NMx σσσσ∈∈∈∈λλλλσσσσ
ρρρρ

 that

Lambda calculus II 133

(iii) Let ρ be a valuation in Λ. We say that ρ satisfies M : σ and write

.,:| σσσσ∈∈∈∈σσσσ====ρρρρ
ρρρρ

MM if

If Γ is a basis, we say that ρ satisfies Γ and write
for all

σσσσ====ρρρρΓΓΓΓ====ρρρρ :|,| x if
.):(ΓΓΓΓ∈∈∈∈σσσσx

(iv) A basis Γ satisfies M : σ and write if,:| σσσσ====ΓΓΓΓ M

]:||[σσσσ====ρρρρ⇒⇒⇒⇒ΓΓΓΓ====ρρρρρρρρ∀∀∀∀ M

Soundness Theorem.

σσσσ====ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ →→→→λλλλ :|:| MM

Lambda calculus II 134

Proof.

By induction on derivation of .: σσσσM

Case 1. If follows from then
trivially

σσσσ−−−−ΓΓΓΓ≡≡≡≡ :| MxM and ,):(ΓΓΓΓ∈∈∈∈σσσσx
.:| σσσσ====ΓΓΓΓ x

Case 2. If is a direct consequence ofσσσσ−−−−ΓΓΓΓ≡≡≡≡ :| MMMM 21 and
,:|:| ττττ−−−−ΓΓΓΓσσσσ→→→→ττττ−−−−ΓΓΓΓ 21 MM and In order to show ,:| σσσσ====ρρρρ 21MM

We suppose Then which
means

.| ΓΓΓΓ====ρρρρ ττττ====ρρρρσσσσ→→→→ττττ====ρρρρ :|:| 21 MM and

ττττ∈∈∈∈σσσσ→→→→ττττ====σσσσ→→→→ττττ∈∈∈∈
ρρρρρρρρ 2M and 1M

But then

σσσσ====ρρρρσσσσ∈∈∈∈====
ρρρρρρρρρρρρ

:| 212121 MMMMMM means which

Lambda calculus II 135

Case 3. Let be a direct
consequence of

21MMxM σσσσ→→→→σσσσ≡≡≡≡σσσσσσσσ−−−−ΓΓΓΓλλλλ≡≡≡≡ let and :|´,.
.´:|:, 21 Mx σσσσ−−−−σσσσΓΓΓΓ

By the induction hypothesis, we have

21 Mx σσσσ====σσσσΓΓΓΓ ´:|:,)(1

In order to show suppose We have to
show

,´:.| 21Mx σσσσ→→→→σσσσλλλλ====ρρρρ .| ΓΓΓΓ====ρρρρ

12 NNMx σσσσ∈∈∈∈σσσσ∈∈∈∈λλλλ
ρρρρ

 allfor ´.

Let Then and hence .1N σσσσ∈∈∈∈ ,:,|):(1xNx σσσσΓΓΓΓ========ρρρρ

2Nx
M σσσσ∈∈∈∈

====ρρρρ):(
´

by (1).

Lambda calculus II 136

Since

):(
´

]),(:´[

)](:´)[.(´.

Nx
M

NxyyM

NyyMxNMx

====ρρρρ

ββββ

ρρρρ

≡≡≡≡

====ρρρρ====→→→→

ρρρρ====λλλλ≡≡≡≡λλλλ
rr

vr

it follows from the saturation of .´. 22 NMx σσσσ∈∈∈∈λλλλσσσσ
ρρρρ

 that

Lambda calculus II 133

(iii) Let ρ be a valuation in Λ. We say that ρ satisfies M : σ and write

.,:| σσσσ∈∈∈∈σσσσ====ρρρρ
ρρρρ

MM if

If Γ is a basis, we say that ρ satisfies Γ and write
for all

σσσσ====ρρρρΓΓΓΓ====ρρρρ :|,| x if
.):(ΓΓΓΓ∈∈∈∈σσσσx

(iv) A basis Γ satisfies M : σ and write if,:| σσσσ====ΓΓΓΓ M

]:||[σσσσ====ρρρρ⇒⇒⇒⇒ΓΓΓΓ====ρρρρρρρρ∀∀∀∀ M

Soundness Theorem.

σσσσ====ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ →→→→λλλλ :|:| MM

Lambda calculus II 134

Proof.

By induction on derivation of .: σσσσM

Case 1. If follows from then
trivially

σσσσ−−−−ΓΓΓΓ≡≡≡≡ :| MxM and ,):(ΓΓΓΓ∈∈∈∈σσσσx
.:| σσσσ====ΓΓΓΓ x

Case 2. If is a direct consequence ofσσσσ−−−−ΓΓΓΓ≡≡≡≡ :| MMMM 21 and
,:|:| ττττ−−−−ΓΓΓΓσσσσ→→→→ττττ−−−−ΓΓΓΓ 21 MM and In order to show ,:| σσσσ====ρρρρ 21MM

We suppose Then which
means

.| ΓΓΓΓ====ρρρρ ττττ====ρρρρσσσσ→→→→ττττ====ρρρρ :|:| 21 MM and

ττττ∈∈∈∈σσσσ→→→→ττττ====σσσσ→→→→ττττ∈∈∈∈
ρρρρρρρρ 2M and 1M

But then

σσσσ====ρρρρσσσσ∈∈∈∈====
ρρρρρρρρρρρρ

:| 212121 MMMMMM means which

Lambda calculus II 135

Case 3. Let be a direct
consequence of

21MMxM σσσσ→→→→σσσσ≡≡≡≡σσσσσσσσ−−−−ΓΓΓΓλλλλ≡≡≡≡ let and :|´,.
.´:|:, 21 Mx σσσσ−−−−σσσσΓΓΓΓ

By the induction hypothesis, we have

21 Mx σσσσ====σσσσΓΓΓΓ ´:|:,)(1

In order to show suppose We have to
show

,´:.| 21Mx σσσσ→→→→σσσσλλλλ====ρρρρ .| ΓΓΓΓ====ρρρρ

12 NNMx σσσσ∈∈∈∈σσσσ∈∈∈∈λλλλ
ρρρρ

 allfor ´.

Let Then and hence .1N σσσσ∈∈∈∈ ,:,|):(1xNx σσσσΓΓΓΓ========ρρρρ

2Nx
M σσσσ∈∈∈∈

====ρρρρ):(
´

by (1).

Lambda calculus II 136

Since

):(
´

]),(:´[

)](:´)[.(´.

Nx
M

NxyyM

NyyMxNMx

====ρρρρ

ββββ

ρρρρ

≡≡≡≡

====ρρρρ====→→→→

ρρρρ====λλλλ≡≡≡≡λλλλ
rr

vr

it follows from the saturation of .´. 22 NMx σσσσ∈∈∈∈λλλλσσσσ
ρρρρ

 that

Lambda calculus II 137

Strong normalization theorem for -Curry →→→→λλλλ

Suppose

σσσσ−−−−ΓΓΓΓ →→→→λλλλ :| M

then M is strongly normalizing.

Lambda calculus II 138

Proof.

Suppose Then according to the Soundness
Theorem. If we put then Note
that since is saturated.

.:| σσσσ−−−−ΓΓΓΓ M σσσσ====ΓΓΓΓ :| M
.| ΓΓΓΓ====ρρρρ0

ττττ∈∈∈∈x
,)(xxx0 allfor ====ρρρρ

ττττ is saturated.

Therefore hence,:| σσσσ====ρρρρ M0 .SNMM
0

⊆⊆⊆⊆σσσσ∈∈∈∈≡≡≡≡
ρρρρ

Lambda calculus II 139

Proof.

Suppose Then according to the Soundness
Theorem. If we put then Note
that since is saturated.

.:| σσσσ−−−−ΓΓΓΓ M σσσσ====ΓΓΓΓ :| M
.| ΓΓΓΓ====ρρρρ0

ττττ∈∈∈∈x
,)(xxx0 allfor ====ρρρρ

ττττ is saturated.

Therefore hence,:| σσσσ====ρρρρ M0 .SNMM
0

⊆⊆⊆⊆σσσσ∈∈∈∈≡≡≡≡
ρρρρ

Remark.

A simple generalization of the method proves the Strong
Normalization Theorem for λ2.

Lambda calculus II 140

Definition.

(i) A valuation in SAT is a map

SAT→→→→ξξξξ V:
Where V is the set of type variables.

(ii) Given a valuation ξ in SAT one defines a set for every
type σ in λ2 as follows:

ΛΛΛΛ⊆⊆⊆⊆σσσσ
ξξξξ

):(
.

V),(

XSATX ====ααααξξξξ∈∈∈∈ξξξξ

ξξξξξξξξξξξξ

ξξξξ

σσσσ====σσσσαααα∀∀∀∀

ττττ→→→→σσσσ====ττττ→→→→σσσσ

∈∈∈∈ααααααααξξξξ====αααα

I

 where

Lambda calculus II 137

Strong normalization theorem for -Curry →→→→λλλλ

Suppose

σσσσ−−−−ΓΓΓΓ →→→→λλλλ :| M

then M is strongly normalizing.

Lambda calculus II 138

Proof.

Suppose Then according to the Soundness
Theorem. If we put then Note
that since is saturated.

.:| σσσσ−−−−ΓΓΓΓ M σσσσ====ΓΓΓΓ :| M
.| ΓΓΓΓ====ρρρρ0

ττττ∈∈∈∈x
,)(xxx0 allfor ====ρρρρ

ττττ is saturated.

Therefore hence,:| σσσσ====ρρρρ M0 .SNMM
0

⊆⊆⊆⊆σσσσ∈∈∈∈≡≡≡≡
ρρρρ

Lambda calculus II 139

Proof.

Suppose Then according to the Soundness
Theorem. If we put then Note
that since is saturated.

.:| σσσσ−−−−ΓΓΓΓ M σσσσ====ΓΓΓΓ :| M
.| ΓΓΓΓ====ρρρρ0

ττττ∈∈∈∈x
,)(xxx0 allfor ====ρρρρ

ττττ is saturated.

Therefore hence,:| σσσσ====ρρρρ M0 .SNMM
0

⊆⊆⊆⊆σσσσ∈∈∈∈≡≡≡≡
ρρρρ

Remark.

A simple generalization of the method proves the Strong
Normalization Theorem for λ2.

Lambda calculus II 140

Definition.

(i) A valuation in SAT is a map

SAT→→→→ξξξξ V:
Where V is the set of type variables.

(ii) Given a valuation ξ in SAT one defines a set for every
type σ in λ2 as follows:

ΛΛΛΛ⊆⊆⊆⊆σσσσ
ξξξξ

):(
.

V),(

XSATX ====ααααξξξξ∈∈∈∈ξξξξ

ξξξξξξξξξξξξ

ξξξξ

σσσσ====σσσσαααα∀∀∀∀

ττττ→→→→σσσσ====ττττ→→→→σσσσ

∈∈∈∈ααααααααξξξξ====αααα

I

 where

Lambda calculus II 137

Strong normalization theorem for -Curry →→→→λλλλ

Suppose

σσσσ−−−−ΓΓΓΓ →→→→λλλλ :| M

then M is strongly normalizing.

Lambda calculus II 138

Proof.

Suppose Then according to the Soundness
Theorem. If we put then Note
that since is saturated.

.:| σσσσ−−−−ΓΓΓΓ M σσσσ====ΓΓΓΓ :| M
.| ΓΓΓΓ====ρρρρ0

ττττ∈∈∈∈x
,)(xxx0 allfor ====ρρρρ

ττττ is saturated.

Therefore hence,:| σσσσ====ρρρρ M0 .SNMM
0

⊆⊆⊆⊆σσσσ∈∈∈∈≡≡≡≡
ρρρρ

Lambda calculus II 139

Proof.

Suppose Then according to the Soundness
Theorem. If we put then Note
that since is saturated.

.:| σσσσ−−−−ΓΓΓΓ M σσσσ====ΓΓΓΓ :| M
.| ΓΓΓΓ====ρρρρ0

ττττ∈∈∈∈x
,)(xxx0 allfor ====ρρρρ

ττττ is saturated.

Therefore hence,:| σσσσ====ρρρρ M0 .SNMM
0

⊆⊆⊆⊆σσσσ∈∈∈∈≡≡≡≡
ρρρρ

Remark.

A simple generalization of the method proves the Strong
Normalization Theorem for λ2.

Lambda calculus II 140

Definition.

(i) A valuation in SAT is a map

SAT→→→→ξξξξ V:
Where V is the set of type variables.

(ii) Given a valuation ξ in SAT one defines a set for every
type σ in λ2 as follows:

ΛΛΛΛ⊆⊆⊆⊆σσσσ
ξξξξ

):(
.

V),(

XSATX ====ααααξξξξ∈∈∈∈ξξξξ

ξξξξξξξξξξξξ

ξξξξ

σσσσ====σσσσαααα∀∀∀∀

ττττ→→→→σσσσ====ττττ→→→→σσσσ

∈∈∈∈ααααααααξξξξ====αααα

I

 where

Lambda calculus II 137

Strong normalization theorem for -Curry →→→→λλλλ

Suppose

σσσσ−−−−ΓΓΓΓ →→→→λλλλ :| M

then M is strongly normalizing.

Lambda calculus II 138

Proof.

Suppose Then according to the Soundness
Theorem. If we put then Note
that since is saturated.

.:| σσσσ−−−−ΓΓΓΓ M σσσσ====ΓΓΓΓ :| M
.| ΓΓΓΓ====ρρρρ0

ττττ∈∈∈∈x
,)(xxx0 allfor ====ρρρρ

ττττ is saturated.

Therefore hence,:| σσσσ====ρρρρ M0 .SNMM
0

⊆⊆⊆⊆σσσσ∈∈∈∈≡≡≡≡
ρρρρ

Lambda calculus II 139

Proof.

Suppose Then according to the Soundness
Theorem. If we put then Note
that since is saturated.

.:| σσσσ−−−−ΓΓΓΓ M σσσσ====ΓΓΓΓ :| M
.| ΓΓΓΓ====ρρρρ0

ττττ∈∈∈∈x
,)(xxx0 allfor ====ρρρρ

ττττ is saturated.

Therefore hence,:| σσσσ====ρρρρ M0 .SNMM
0

⊆⊆⊆⊆σσσσ∈∈∈∈≡≡≡≡
ρρρρ

Remark.

A simple generalization of the method proves the Strong
Normalization Theorem for λ2.

Lambda calculus II 140

Definition.

(i) A valuation in SAT is a map

SAT→→→→ξξξξ V:
Where V is the set of type variables.

(ii) Given a valuation ξ in SAT one defines a set for every
type σ in λ2 as follows:

ΛΛΛΛ⊆⊆⊆⊆σσσσ
ξξξξ

):(
.

V),(

XSATX ====ααααξξξξ∈∈∈∈ξξξξ

ξξξξξξξξξξξξ

ξξξξ

σσσσ====σσσσαααα∀∀∀∀

ττττ→→→→σσσσ====ττττ→→→→σσσσ

∈∈∈∈ααααααααξξξξ====αααα

I

 where

Lambda calculus II 141

Lemma.

Given a valuation ξ in SAT and a type σ in λ2, then .SAT∈∈∈∈σσσσ
ξξξξ

Proof.
As the proof of (iv) in lemma on saturated sets using the fact that
SAT is closed under arbitrary intersections.

Lambda calculus II 142

Definition.

Let ρ be a valuation in Λ and ξ be a valuation in SAT.

(i) We write ξξξξρρρρ
σσσσ∈∈∈∈σσσσ====ξξξξρρρρ MM iff :|,

(ii) If Γ is a basis, we write

ΓΓΓΓσσσσσσσσ====ξξξξρρρρΓΓΓΓ====ξξξξρρρρ in allfor iff ::|,|, xx

(iii) We write

]:|,|,[,:| σσσσ====ξξξξρρρρ⇒⇒⇒⇒ΓΓΓΓ====ξξξξρρρρξξξξρρρρ∀∀∀∀σσσσ====ΓΓΓΓ MM iff

Lambda calculus II 143

Soundness Theorem for λ2.

σσσσ====ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ λλλλ :|:| MM2

Lambda calculus II 144

Soundness Theorem for λ2.

σσσσ====ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ λλλλ :|:| MM2

Proof.

By induction on the derivation of as in the proof
of Soundness Theorem for There are two more cases
corresponding to

σσσσ−−−−ΓΓΓΓ :| M
.→→→→λλλλ

rules.−−−−∀∀∀∀

Case 4. is a direct
consequence of By the Induction
Hypothesis, we have

]:[:| ττττ====αααασσσσ≡≡≡≡σσσσσσσσ−−−−ΓΓΓΓ 0M where
..:| 0M σσσσαααα∀∀∀∀−−−−ΓΓΓΓ

0M σσσσαααα∀∀∀∀====ΓΓΓΓ .:|)(1

In order to show
]:[:|, ττττ====αααασσσσ====ξξξξρρρρ 0M

suppose
.|, ΓΓΓΓ====ξξξξρρρρ

Lambda calculus II 141

Lemma.

Given a valuation ξ in SAT and a type σ in λ2, then .SAT∈∈∈∈σσσσ
ξξξξ

Proof.
As the proof of (iv) in lemma on saturated sets using the fact that
SAT is closed under arbitrary intersections.

Lambda calculus II 142

Definition.

Let ρ be a valuation in Λ and ξ be a valuation in SAT.

(i) We write ξξξξρρρρ
σσσσ∈∈∈∈σσσσ====ξξξξρρρρ MM iff :|,

(ii) If Γ is a basis, we write

ΓΓΓΓσσσσσσσσ====ξξξξρρρρΓΓΓΓ====ξξξξρρρρ in allfor iff ::|,|, xx

(iii) We write

]:|,|,[,:| σσσσ====ξξξξρρρρ⇒⇒⇒⇒ΓΓΓΓ====ξξξξρρρρξξξξρρρρ∀∀∀∀σσσσ====ΓΓΓΓ MM iff

Lambda calculus II 143

Soundness Theorem for λ2.

σσσσ====ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ λλλλ :|:| MM2

Lambda calculus II 144

Soundness Theorem for λ2.

σσσσ====ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ λλλλ :|:| MM2

Proof.

By induction on the derivation of as in the proof
of Soundness Theorem for There are two more cases
corresponding to

σσσσ−−−−ΓΓΓΓ :| M
.→→→→λλλλ

rules.−−−−∀∀∀∀

Case 4. is a direct
consequence of By the Induction
Hypothesis, we have

]:[:| ττττ====αααασσσσ≡≡≡≡σσσσσσσσ−−−−ΓΓΓΓ 0M where
..:| 0M σσσσαααα∀∀∀∀−−−−ΓΓΓΓ

0M σσσσαααα∀∀∀∀====ΓΓΓΓ .:|)(1

In order to show
]:[:|, ττττ====αααασσσσ====ξξξξρρρρ 0M

suppose
.|, ΓΓΓΓ====ξξξξρρρρ

Lambda calculus II 141

Lemma.

Given a valuation ξ in SAT and a type σ in λ2, then .SAT∈∈∈∈σσσσ
ξξξξ

Proof.
As the proof of (iv) in lemma on saturated sets using the fact that
SAT is closed under arbitrary intersections.

Lambda calculus II 142

Definition.

Let ρ be a valuation in Λ and ξ be a valuation in SAT.

(i) We write ξξξξρρρρ
σσσσ∈∈∈∈σσσσ====ξξξξρρρρ MM iff :|,

(ii) If Γ is a basis, we write

ΓΓΓΓσσσσσσσσ====ξξξξρρρρΓΓΓΓ====ξξξξρρρρ in allfor iff ::|,|, xx

(iii) We write

]:|,|,[,:| σσσσ====ξξξξρρρρ⇒⇒⇒⇒ΓΓΓΓ====ξξξξρρρρξξξξρρρρ∀∀∀∀σσσσ====ΓΓΓΓ MM iff

Lambda calculus II 143

Soundness Theorem for λ2.

σσσσ====ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ λλλλ :|:| MM2

Lambda calculus II 144

Soundness Theorem for λ2.

σσσσ====ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ λλλλ :|:| MM2

Proof.

By induction on the derivation of as in the proof
of Soundness Theorem for There are two more cases
corresponding to

σσσσ−−−−ΓΓΓΓ :| M
.→→→→λλλλ

rules.−−−−∀∀∀∀

Case 4. is a direct
consequence of By the Induction
Hypothesis, we have

]:[:| ττττ====αααασσσσ≡≡≡≡σσσσσσσσ−−−−ΓΓΓΓ 0M where
..:| 0M σσσσαααα∀∀∀∀−−−−ΓΓΓΓ

0M σσσσαααα∀∀∀∀====ΓΓΓΓ .:|)(1

In order to show
]:[:|, ττττ====αααασσσσ====ξξξξρρρρ 0M

suppose
.|, ΓΓΓΓ====ξξξξρρρρ

Lambda calculus II 141

Lemma.

Given a valuation ξ in SAT and a type σ in λ2, then .SAT∈∈∈∈σσσσ
ξξξξ

Proof.
As the proof of (iv) in lemma on saturated sets using the fact that
SAT is closed under arbitrary intersections.

Lambda calculus II 142

Definition.

Let ρ be a valuation in Λ and ξ be a valuation in SAT.

(i) We write ξξξξρρρρ
σσσσ∈∈∈∈σσσσ====ξξξξρρρρ MM iff :|,

(ii) If Γ is a basis, we write

ΓΓΓΓσσσσσσσσ====ξξξξρρρρΓΓΓΓ====ξξξξρρρρ in allfor iff ::|,|, xx

(iii) We write

]:|,|,[,:| σσσσ====ξξξξρρρρ⇒⇒⇒⇒ΓΓΓΓ====ξξξξρρρρξξξξρρρρ∀∀∀∀σσσσ====ΓΓΓΓ MM iff

Lambda calculus II 143

Soundness Theorem for λ2.

σσσσ====ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ λλλλ :|:| MM2

Lambda calculus II 144

Soundness Theorem for λ2.

σσσσ====ΓΓΓΓ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ λλλλ :|:| MM2

Proof.

By induction on the derivation of as in the proof
of Soundness Theorem for There are two more cases
corresponding to

σσσσ−−−−ΓΓΓΓ :| M
.→→→→λλλλ

rules.−−−−∀∀∀∀

Case 4. is a direct
consequence of By the Induction
Hypothesis, we have

]:[:| ττττ====αααασσσσ≡≡≡≡σσσσσσσσ−−−−ΓΓΓΓ 0M where
..:| 0M σσσσαααα∀∀∀∀−−−−ΓΓΓΓ

0M σσσσαααα∀∀∀∀====ΓΓΓΓ .:|)(1

In order to show
]:[:|, ττττ====αααασσσσ====ξξξξρρρρ 0M

suppose
.|, ΓΓΓΓ====ξξξξρρρρ

Lambda calculus II 145

It follows from (1) that

):(
.

X0
SATX

0M
====ααααξξξξ

∈∈∈∈
ξξξξρρρρ

σσσσ====σσσσαααα∀∀∀∀∈∈∈∈ I

Hence

):(ξξξξττττ====ααααξξξξρρρρ
σσσσ∈∈∈∈ 0M

By induction on (some care is needed in case 2)Type(λλλλ∈∈∈∈σσσσ0). 00 ττττββββ∀∀∀∀≡≡≡≡σσσσ

we prove

]:[
):(

ττττ====αααασσσσ====σσσσ
ξξξξττττ====ααααξξξξ 00

which completes the proof of the Case 4.

Lambda calculus II 146

Case 5. Let is a direct
consequence of By the Induction Hypothesis, we have

)(.:| ΓΓΓΓ∉∉∉∉αααασσσσαααα∀∀∀∀≡≡≡≡σσσσσσσσ−−−−ΓΓΓΓ FVM 0 and with
.:| 0M σσσσ−−−−ΓΓΓΓ

0M σσσσ====ΓΓΓΓ :|

In order to show Since .|,,.:|, ΓΓΓΓ====ξξξξρρρρσσσσαααα∀∀∀∀====ξξξξρρρρ suppose we0M),(ΓΓΓΓ∉∉∉∉αααα FV

we have Therefore .|):(, SATXX ∈∈∈∈ΓΓΓΓ========ααααξξξξρρρρ allfor

SATXM
X0 ∈∈∈∈σσσσ∈∈∈∈

====ααααξξξξρρρρ
 allfor

):(

)(2

It follows from (2) that

ξξξξρρρρ
σσσσαααα∀∀∀∀∈∈∈∈ 0M .

Hence
321

σσσσ

σσσσαααα∀∀∀∀====ξξξξρρρρ 0M .:|,

Lambda calculus II 147

Strong Normalization Theorem for λ2-Curry

gnormalizinstrongly is MM2 ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ λλλλ :|

Lambda calculus II 148

Strong Normalization Theorem for λ2-Curry

gnormalizinstrongly is MM2 ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ λλλλ :|

Proof of the theorem is similar to the proof of Strong
Normalizing Theorem for Curry.−−−−→→→→λλλλ

Lambda calculus II 145

It follows from (1) that

):(
.

X0
SATX

0M
====ααααξξξξ

∈∈∈∈
ξξξξρρρρ

σσσσ====σσσσαααα∀∀∀∀∈∈∈∈ I

Hence

):(ξξξξττττ====ααααξξξξρρρρ
σσσσ∈∈∈∈ 0M

By induction on (some care is needed in case 2)Type(λλλλ∈∈∈∈σσσσ0). 00 ττττββββ∀∀∀∀≡≡≡≡σσσσ

we prove

]:[
):(

ττττ====αααασσσσ====σσσσ
ξξξξττττ====ααααξξξξ 00

which completes the proof of the Case 4.

Lambda calculus II 146

Case 5. Let is a direct
consequence of By the Induction Hypothesis, we have

)(.:| ΓΓΓΓ∉∉∉∉αααασσσσαααα∀∀∀∀≡≡≡≡σσσσσσσσ−−−−ΓΓΓΓ FVM 0 and with
.:| 0M σσσσ−−−−ΓΓΓΓ

0M σσσσ====ΓΓΓΓ :|

In order to show Since .|,,.:|, ΓΓΓΓ====ξξξξρρρρσσσσαααα∀∀∀∀====ξξξξρρρρ suppose we0M),(ΓΓΓΓ∉∉∉∉αααα FV

we have Therefore .|):(, SATXX ∈∈∈∈ΓΓΓΓ========ααααξξξξρρρρ allfor

SATXM
X0 ∈∈∈∈σσσσ∈∈∈∈

====ααααξξξξρρρρ
 allfor

):(

)(2

It follows from (2) that

ξξξξρρρρ
σσσσαααα∀∀∀∀∈∈∈∈ 0M .

Hence
321

σσσσ

σσσσαααα∀∀∀∀====ξξξξρρρρ 0M .:|,

Lambda calculus II 147

Strong Normalization Theorem for λ2-Curry

gnormalizinstrongly is MM2 ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ λλλλ :|

Lambda calculus II 148

Strong Normalization Theorem for λ2-Curry

gnormalizinstrongly is MM2 ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ λλλλ :|

Proof of the theorem is similar to the proof of Strong
Normalizing Theorem for Curry.−−−−→→→→λλλλ

Lambda calculus II 145

It follows from (1) that

):(
.

X0
SATX

0M
====ααααξξξξ

∈∈∈∈
ξξξξρρρρ

σσσσ====σσσσαααα∀∀∀∀∈∈∈∈ I

Hence

):(ξξξξττττ====ααααξξξξρρρρ
σσσσ∈∈∈∈ 0M

By induction on (some care is needed in case 2)Type(λλλλ∈∈∈∈σσσσ0). 00 ττττββββ∀∀∀∀≡≡≡≡σσσσ

we prove

]:[
):(

ττττ====αααασσσσ====σσσσ
ξξξξττττ====ααααξξξξ 00

which completes the proof of the Case 4.

Lambda calculus II 146

Case 5. Let is a direct
consequence of By the Induction Hypothesis, we have

)(.:| ΓΓΓΓ∉∉∉∉αααασσσσαααα∀∀∀∀≡≡≡≡σσσσσσσσ−−−−ΓΓΓΓ FVM 0 and with
.:| 0M σσσσ−−−−ΓΓΓΓ

0M σσσσ====ΓΓΓΓ :|

In order to show Since .|,,.:|, ΓΓΓΓ====ξξξξρρρρσσσσαααα∀∀∀∀====ξξξξρρρρ suppose we0M),(ΓΓΓΓ∉∉∉∉αααα FV

we have Therefore .|):(, SATXX ∈∈∈∈ΓΓΓΓ========ααααξξξξρρρρ allfor

SATXM
X0 ∈∈∈∈σσσσ∈∈∈∈

====ααααξξξξρρρρ
 allfor

):(

)(2

It follows from (2) that

ξξξξρρρρ
σσσσαααα∀∀∀∀∈∈∈∈ 0M .

Hence
321

σσσσ

σσσσαααα∀∀∀∀====ξξξξρρρρ 0M .:|,

Lambda calculus II 147

Strong Normalization Theorem for λ2-Curry

gnormalizinstrongly is MM2 ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ λλλλ :|

Lambda calculus II 148

Strong Normalization Theorem for λ2-Curry

gnormalizinstrongly is MM2 ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ λλλλ :|

Proof of the theorem is similar to the proof of Strong
Normalizing Theorem for Curry.−−−−→→→→λλλλ

Lambda calculus II 145

It follows from (1) that

):(
.

X0
SATX

0M
====ααααξξξξ

∈∈∈∈
ξξξξρρρρ

σσσσ====σσσσαααα∀∀∀∀∈∈∈∈ I

Hence

):(ξξξξττττ====ααααξξξξρρρρ
σσσσ∈∈∈∈ 0M

By induction on (some care is needed in case 2)Type(λλλλ∈∈∈∈σσσσ0). 00 ττττββββ∀∀∀∀≡≡≡≡σσσσ

we prove

]:[
):(

ττττ====αααασσσσ====σσσσ
ξξξξττττ====ααααξξξξ 00

which completes the proof of the Case 4.

Lambda calculus II 146

Case 5. Let is a direct
consequence of By the Induction Hypothesis, we have

)(.:| ΓΓΓΓ∉∉∉∉αααασσσσαααα∀∀∀∀≡≡≡≡σσσσσσσσ−−−−ΓΓΓΓ FVM 0 and with
.:| 0M σσσσ−−−−ΓΓΓΓ

0M σσσσ====ΓΓΓΓ :|

In order to show Since .|,,.:|, ΓΓΓΓ====ξξξξρρρρσσσσαααα∀∀∀∀====ξξξξρρρρ suppose we0M),(ΓΓΓΓ∉∉∉∉αααα FV

we have Therefore .|):(, SATXX ∈∈∈∈ΓΓΓΓ========ααααξξξξρρρρ allfor

SATXM
X0 ∈∈∈∈σσσσ∈∈∈∈

====ααααξξξξρρρρ
 allfor

):(

)(2

It follows from (2) that

ξξξξρρρρ
σσσσαααα∀∀∀∀∈∈∈∈ 0M .

Hence
321

σσσσ

σσσσαααα∀∀∀∀====ξξξξρρρρ 0M .:|,

Lambda calculus II 147

Strong Normalization Theorem for λ2-Curry

gnormalizinstrongly is MM2 ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ λλλλ :|

Lambda calculus II 148

Strong Normalization Theorem for λ2-Curry

gnormalizinstrongly is MM2 ⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ λλλλ :|

Proof of the theorem is similar to the proof of Strong
Normalizing Theorem for Curry.−−−−→→→→λλλλ

Lambda calculus II 149

Decidability of type assignment.

Note that for arbitrary base one has}:,,:{ nn11 xx σσσσσσσσ====ΓΓΓΓ K

)(:).(|:| σσσσ→→→→σσσσ→→→→σσσσλλλλλλλλ−−−−⇔⇔⇔⇔σσσσ−−−−ΓΓΓΓ n1n1 MxxM KK

Consequently, analysing the type assignment, we may
assume that the base is always empty. Typical questions are

�Given M and σ, does it hold ?

�Given M, does there exist a σ such that ?

�Given σ, does there exist an M such that ?

σσσσ−−−− :| M

σσσσ−−−− :| M

σσσσ−−−− :| M

These three problems are called type checking, typability and
inhabitation respectively and we shall denote them ,

.:? σσσσ and
?: σσσσM

?,:M
Lambda calculus II 150

We shall examine the decidability of these three problems for the
various systems of type assignments. The results can be summarized

in the following table

?:σσσσM ?:M σσσσ:?
→→→→λλλλ yes yes yes
2λλλλ ?? ?? no

λµλµλµλµ yes yes, always yes, always
∩∩∩∩λλλλ no yes, always ??

++++→→→→λλλλ no no yes
++++λλλλ2 no no no
++++λµλµλµλµ no yes,always yes, always

A→→→→λλλλ no no yes, always
A2λλλλ no no yes, always
Aλµλµλµλµ no yes, always yes, always

A∩∩∩∩λλλλ no yes, always yes, always

Lambda calculus II 151

We first show decidability of the three questions for In
what follows

Curry.−−−−→→→→λλλλ
.||) Curry→→→→λλλλ−−−−−−−−→→→→λλλλ denotes and Type(denotes T

We define some operations on the set of types: substitutor, unifier,
unification and some concepts concerning type assignments: pricipal
pair and principal type.

Definition.

(i) A substitutor is an operation on the set of types such
that

TT: →→→→∗∗∗∗

)()()(ττττ∗∗∗∗→→→→σσσσ∗∗∗∗≡≡≡≡ττττ→→→→σσσσ∗∗∗∗

Lambda calculus II 152

Notation.

a) We write).(σσσσ∗∗∗∗σσσσ∗∗∗∗ for

b) In cases that are of interest for us, a substitutor has a finite
support, which means that for all but finitely many type variables α
one has the support of being

∗∗∗∗

,αααα≡≡≡≡αααα ∗∗∗∗ ∗∗∗∗ }.αααα≡≡≡≡////αααααααα====∗∗∗∗ ∗∗∗∗|{)sup(

In that case we write
]:,,:[)(∗∗∗∗∗∗∗∗ αααα====αααααααα====αααασσσσ====σσσσ∗∗∗∗ nn11 K

Where is the support of We also write},,{ n1 αααααααα K .∗∗∗∗

].:,,:[∗∗∗∗∗∗∗∗ αααα====αααααααα====αααα====∗∗∗∗ nn11 K

Lambda calculus II 149

Decidability of type assignment.

Note that for arbitrary base one has}:,,:{ nn11 xx σσσσσσσσ====ΓΓΓΓ K

)(:).(|:| σσσσ→→→→σσσσ→→→→σσσσλλλλλλλλ−−−−⇔⇔⇔⇔σσσσ−−−−ΓΓΓΓ n1n1 MxxM KK

Consequently, analysing the type assignment, we may
assume that the base is always empty. Typical questions are

�Given M and σ, does it hold ?

�Given M, does there exist a σ such that ?

�Given σ, does there exist an M such that ?

σσσσ−−−− :| M

σσσσ−−−− :| M

σσσσ−−−− :| M

These three problems are called type checking, typability and
inhabitation respectively and we shall denote them ,

.:? σσσσ and
?: σσσσM

?,:M
Lambda calculus II 150

We shall examine the decidability of these three problems for the
various systems of type assignments. The results can be summarized

in the following table

?:σσσσM ?:M σσσσ:?
→→→→λλλλ yes yes yes
2λλλλ ?? ?? no

λµλµλµλµ yes yes, always yes, always
∩∩∩∩λλλλ no yes, always ??

++++→→→→λλλλ no no yes
++++λλλλ2 no no no
++++λµλµλµλµ no yes,always yes, always

A→→→→λλλλ no no yes, always
A2λλλλ no no yes, always
Aλµλµλµλµ no yes, always yes, always

A∩∩∩∩λλλλ no yes, always yes, always

Lambda calculus II 151

We first show decidability of the three questions for In
what follows

Curry.−−−−→→→→λλλλ
.||) Curry→→→→λλλλ−−−−−−−−→→→→λλλλ denotes and Type(denotes T

We define some operations on the set of types: substitutor, unifier,
unification and some concepts concerning type assignments: pricipal
pair and principal type.

Definition.

(i) A substitutor is an operation on the set of types such
that

TT: →→→→∗∗∗∗

)()()(ττττ∗∗∗∗→→→→σσσσ∗∗∗∗≡≡≡≡ττττ→→→→σσσσ∗∗∗∗

Lambda calculus II 152

Notation.

a) We write).(σσσσ∗∗∗∗σσσσ∗∗∗∗ for

b) In cases that are of interest for us, a substitutor has a finite
support, which means that for all but finitely many type variables α
one has the support of being

∗∗∗∗

,αααα≡≡≡≡αααα ∗∗∗∗ ∗∗∗∗ }.αααα≡≡≡≡////αααααααα====∗∗∗∗ ∗∗∗∗|{)sup(

In that case we write
]:,,:[)(∗∗∗∗∗∗∗∗ αααα====αααααααα====αααασσσσ====σσσσ∗∗∗∗ nn11 K

Where is the support of We also write},,{ n1 αααααααα K .∗∗∗∗

].:,,:[∗∗∗∗∗∗∗∗ αααα====αααααααα====αααα====∗∗∗∗ nn11 K

Lambda calculus II 149

Decidability of type assignment.

Note that for arbitrary base one has}:,,:{ nn11 xx σσσσσσσσ====ΓΓΓΓ K

)(:).(|:| σσσσ→→→→σσσσ→→→→σσσσλλλλλλλλ−−−−⇔⇔⇔⇔σσσσ−−−−ΓΓΓΓ n1n1 MxxM KK

Consequently, analysing the type assignment, we may
assume that the base is always empty. Typical questions are

�Given M and σ, does it hold ?

�Given M, does there exist a σ such that ?

�Given σ, does there exist an M such that ?

σσσσ−−−− :| M

σσσσ−−−− :| M

σσσσ−−−− :| M

These three problems are called type checking, typability and
inhabitation respectively and we shall denote them ,

.:? σσσσ and
?: σσσσM

?,:M
Lambda calculus II 150

We shall examine the decidability of these three problems for the
various systems of type assignments. The results can be summarized

in the following table

?:σσσσM ?:M σσσσ:?
→→→→λλλλ yes yes yes
2λλλλ ?? ?? no

λµλµλµλµ yes yes, always yes, always
∩∩∩∩λλλλ no yes, always ??

++++→→→→λλλλ no no yes
++++λλλλ2 no no no
++++λµλµλµλµ no yes,always yes, always

A→→→→λλλλ no no yes, always
A2λλλλ no no yes, always
Aλµλµλµλµ no yes, always yes, always

A∩∩∩∩λλλλ no yes, always yes, always

Lambda calculus II 151

We first show decidability of the three questions for In
what follows

Curry.−−−−→→→→λλλλ
.||) Curry→→→→λλλλ−−−−−−−−→→→→λλλλ denotes and Type(denotes T

We define some operations on the set of types: substitutor, unifier,
unification and some concepts concerning type assignments: pricipal
pair and principal type.

Definition.

(i) A substitutor is an operation on the set of types such
that

TT: →→→→∗∗∗∗

)()()(ττττ∗∗∗∗→→→→σσσσ∗∗∗∗≡≡≡≡ττττ→→→→σσσσ∗∗∗∗

Lambda calculus II 152

Notation.

a) We write).(σσσσ∗∗∗∗σσσσ∗∗∗∗ for

b) In cases that are of interest for us, a substitutor has a finite
support, which means that for all but finitely many type variables α
one has the support of being

∗∗∗∗

,αααα≡≡≡≡αααα ∗∗∗∗ ∗∗∗∗ }.αααα≡≡≡≡////αααααααα====∗∗∗∗ ∗∗∗∗|{)sup(

In that case we write
]:,,:[)(∗∗∗∗∗∗∗∗ αααα====αααααααα====αααασσσσ====σσσσ∗∗∗∗ nn11 K

Where is the support of We also write},,{ n1 αααααααα K .∗∗∗∗

].:,,:[∗∗∗∗∗∗∗∗ αααα====αααααααα====αααα====∗∗∗∗ nn11 K

Lambda calculus II 149

Decidability of type assignment.

Note that for arbitrary base one has}:,,:{ nn11 xx σσσσσσσσ====ΓΓΓΓ K

)(:).(|:| σσσσ→→→→σσσσ→→→→σσσσλλλλλλλλ−−−−⇔⇔⇔⇔σσσσ−−−−ΓΓΓΓ n1n1 MxxM KK

Consequently, analysing the type assignment, we may
assume that the base is always empty. Typical questions are

�Given M and σ, does it hold ?

�Given M, does there exist a σ such that ?

�Given σ, does there exist an M such that ?

σσσσ−−−− :| M

σσσσ−−−− :| M

σσσσ−−−− :| M

These three problems are called type checking, typability and
inhabitation respectively and we shall denote them ,

.:? σσσσ and
?: σσσσM

?,:M
Lambda calculus II 150

We shall examine the decidability of these three problems for the
various systems of type assignments. The results can be summarized

in the following table

?:σσσσM ?:M σσσσ:?
→→→→λλλλ yes yes yes
2λλλλ ?? ?? no

λµλµλµλµ yes yes, always yes, always
∩∩∩∩λλλλ no yes, always ??

++++→→→→λλλλ no no yes
++++λλλλ2 no no no
++++λµλµλµλµ no yes,always yes, always

A→→→→λλλλ no no yes, always
A2λλλλ no no yes, always
Aλµλµλµλµ no yes, always yes, always

A∩∩∩∩λλλλ no yes, always yes, always

Lambda calculus II 151

We first show decidability of the three questions for In
what follows

Curry.−−−−→→→→λλλλ
.||) Curry→→→→λλλλ−−−−−−−−→→→→λλλλ denotes and Type(denotes T

We define some operations on the set of types: substitutor, unifier,
unification and some concepts concerning type assignments: pricipal
pair and principal type.

Definition.

(i) A substitutor is an operation on the set of types such
that

TT: →→→→∗∗∗∗

)()()(ττττ∗∗∗∗→→→→σσσσ∗∗∗∗≡≡≡≡ττττ→→→→σσσσ∗∗∗∗

Lambda calculus II 152

Notation.

a) We write).(σσσσ∗∗∗∗σσσσ∗∗∗∗ for

b) In cases that are of interest for us, a substitutor has a finite
support, which means that for all but finitely many type variables α
one has the support of being

∗∗∗∗

,αααα≡≡≡≡αααα ∗∗∗∗ ∗∗∗∗ }.αααα≡≡≡≡////αααααααα====∗∗∗∗ ∗∗∗∗|{)sup(

In that case we write
]:,,:[)(∗∗∗∗∗∗∗∗ αααα====αααααααα====αααασσσσ====σσσσ∗∗∗∗ nn11 K

Where is the support of We also write},,{ n1 αααααααα K .∗∗∗∗

].:,,:[∗∗∗∗∗∗∗∗ αααα====αααααααα====αααα====∗∗∗∗ nn11 K

Lambda calculus II 153

Definition. Unifiers.

(i) Let σ and τ be two types. A unifier for σ and τ is a substitutor ∗∗∗∗
such that .∗∗∗∗∗∗∗∗ ττττ≡≡≡≡σσσσ

(ii) The substitutor is a most general unifier for σ and τ if ∗∗∗∗

(a) is a unifier for σ and τ ∗∗∗∗
(b) if an arbitrary unifier for σ and τ, then there is a
substitutor such that

1∗∗∗∗
2∗∗∗∗ .∗∗∗∗∗∗∗∗≡≡≡≡∗∗∗∗ o21

(iii) Let be a finite set of equations
between types. The equations do not need to be valid. A unifier for E
is a substitutor such that In that case one
writes Similarly one defines the notion of a most general
unifier for E.

},,{ nn11E ττττ====σσσσττττ====σσσσ==== K

∗∗∗∗ .,, ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ττττ====σσσσττττ====σσσσ nn11 K

.| E====∗∗∗∗

Lambda calculus II 154

Examples.

The types

δδδδ→→→→γγγγ→→→→γγγγββββ→→→→αααα→→→→ββββ)()(

have unfiers

)]()(:,:,:[
)](:,:[

γγγγ→→→→γγγγ→→→→εεεε→→→→εεεε====δδδδεεεε→→→→εεεε====ααααγγγγ→→→→γγγγ====ββββ====∗∗∗∗
γγγγ→→→→γγγγ→→→→αααα====δδδδγγγγ→→→→γγγγ====ββββ====∗∗∗∗

1

The unifier is most general, the unifier is not.∗∗∗∗ 1∗∗∗∗

Lambda calculus II 155

Definition. Variants.
The type σ is a variant of the type τ if there are substitutors 21 ∗∗∗∗∗∗∗∗ ,
such that

21 ∗∗∗∗∗∗∗∗ σσσσ====ττττττττ====σσσσ and

Examples.

αααα→→→→ββββ→→→→ααααββββ→→→→ββββ→→→→αααα
δδδδ→→→→δδδδ→→→→γγγγββββ→→→→ββββ→→→→αααα

 of variant anot is
othereach of variantsare and

Note that if are two most general unifiers of
types σ and τ then are variants of each
other and similarly for τ.

21 and ∗∗∗∗∗∗∗∗
21 ∗∗∗∗∗∗∗∗ σσσσσσσσ and

Lambda calculus II 156

Unification Theorem.

(i) There is a recursive function U with input (after coding) a
pair of types and with output which is either a substitutor or fail
such that

ττττσσσσ
ττττσσσσ

ττττσσσσ
====ττττσσσσ

unifier no have and if
unifier a have and if

 and for unifier generalmost a

 fail
),(U

(ii) There is a recursive function U with input (after coding) finite
sets of equations between types and with output either a substitutor
or fail such that

====

unifier no has E if
unifier a has E if

Efor unifier generalmost a

 fail
)(EU

Lambda calculus II 153

Definition. Unifiers.

(i) Let σ and τ be two types. A unifier for σ and τ is a substitutor ∗∗∗∗
such that .∗∗∗∗∗∗∗∗ ττττ≡≡≡≡σσσσ

(ii) The substitutor is a most general unifier for σ and τ if ∗∗∗∗

(a) is a unifier for σ and τ ∗∗∗∗
(b) if an arbitrary unifier for σ and τ, then there is a
substitutor such that

1∗∗∗∗
2∗∗∗∗ .∗∗∗∗∗∗∗∗≡≡≡≡∗∗∗∗ o21

(iii) Let be a finite set of equations
between types. The equations do not need to be valid. A unifier for E
is a substitutor such that In that case one
writes Similarly one defines the notion of a most general
unifier for E.

},,{ nn11E ττττ====σσσσττττ====σσσσ==== K

∗∗∗∗ .,, ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ττττ====σσσσττττ====σσσσ nn11 K

.| E====∗∗∗∗

Lambda calculus II 154

Examples.

The types

δδδδ→→→→γγγγ→→→→γγγγββββ→→→→αααα→→→→ββββ)()(

have unfiers

)]()(:,:,:[
)](:,:[

γγγγ→→→→γγγγ→→→→εεεε→→→→εεεε====δδδδεεεε→→→→εεεε====ααααγγγγ→→→→γγγγ====ββββ====∗∗∗∗
γγγγ→→→→γγγγ→→→→αααα====δδδδγγγγ→→→→γγγγ====ββββ====∗∗∗∗

1

The unifier is most general, the unifier is not.∗∗∗∗ 1∗∗∗∗

Lambda calculus II 155

Definition. Variants.
The type σ is a variant of the type τ if there are substitutors 21 ∗∗∗∗∗∗∗∗ ,
such that

21 ∗∗∗∗∗∗∗∗ σσσσ====ττττττττ====σσσσ and

Examples.

αααα→→→→ββββ→→→→ααααββββ→→→→ββββ→→→→αααα
δδδδ→→→→δδδδ→→→→γγγγββββ→→→→ββββ→→→→αααα

 of variant anot is
othereach of variantsare and

Note that if are two most general unifiers of
types σ and τ then are variants of each
other and similarly for τ.

21 and ∗∗∗∗∗∗∗∗
21 ∗∗∗∗∗∗∗∗ σσσσσσσσ and

Lambda calculus II 156

Unification Theorem.

(i) There is a recursive function U with input (after coding) a
pair of types and with output which is either a substitutor or fail
such that

ττττσσσσ
ττττσσσσ

ττττσσσσ
====ττττσσσσ

unifier no have and if
unifier a have and if

 and for unifier generalmost a

 fail
),(U

(ii) There is a recursive function U with input (after coding) finite
sets of equations between types and with output either a substitutor
or fail such that

====

unifier no has E if
unifier a has E if

Efor unifier generalmost a

 fail
)(EU

Lambda calculus II 153

Definition. Unifiers.

(i) Let σ and τ be two types. A unifier for σ and τ is a substitutor ∗∗∗∗
such that .∗∗∗∗∗∗∗∗ ττττ≡≡≡≡σσσσ

(ii) The substitutor is a most general unifier for σ and τ if ∗∗∗∗

(a) is a unifier for σ and τ ∗∗∗∗
(b) if an arbitrary unifier for σ and τ, then there is a
substitutor such that

1∗∗∗∗
2∗∗∗∗ .∗∗∗∗∗∗∗∗≡≡≡≡∗∗∗∗ o21

(iii) Let be a finite set of equations
between types. The equations do not need to be valid. A unifier for E
is a substitutor such that In that case one
writes Similarly one defines the notion of a most general
unifier for E.

},,{ nn11E ττττ====σσσσττττ====σσσσ==== K

∗∗∗∗ .,, ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ττττ====σσσσττττ====σσσσ nn11 K

.| E====∗∗∗∗

Lambda calculus II 154

Examples.

The types

δδδδ→→→→γγγγ→→→→γγγγββββ→→→→αααα→→→→ββββ)()(

have unfiers

)]()(:,:,:[
)](:,:[

γγγγ→→→→γγγγ→→→→εεεε→→→→εεεε====δδδδεεεε→→→→εεεε====ααααγγγγ→→→→γγγγ====ββββ====∗∗∗∗
γγγγ→→→→γγγγ→→→→αααα====δδδδγγγγ→→→→γγγγ====ββββ====∗∗∗∗

1

The unifier is most general, the unifier is not.∗∗∗∗ 1∗∗∗∗

Lambda calculus II 155

Definition. Variants.
The type σ is a variant of the type τ if there are substitutors 21 ∗∗∗∗∗∗∗∗ ,
such that

21 ∗∗∗∗∗∗∗∗ σσσσ====ττττττττ====σσσσ and

Examples.

αααα→→→→ββββ→→→→ααααββββ→→→→ββββ→→→→αααα
δδδδ→→→→δδδδ→→→→γγγγββββ→→→→ββββ→→→→αααα

 of variant anot is
othereach of variantsare and

Note that if are two most general unifiers of
types σ and τ then are variants of each
other and similarly for τ.

21 and ∗∗∗∗∗∗∗∗
21 ∗∗∗∗∗∗∗∗ σσσσσσσσ and

Lambda calculus II 156

Unification Theorem.

(i) There is a recursive function U with input (after coding) a
pair of types and with output which is either a substitutor or fail
such that

ττττσσσσ
ττττσσσσ

ττττσσσσ
====ττττσσσσ

unifier no have and if
unifier a have and if

 and for unifier generalmost a

 fail
),(U

(ii) There is a recursive function U with input (after coding) finite
sets of equations between types and with output either a substitutor
or fail such that

====

unifier no has E if
unifier a has E if

Efor unifier generalmost a

 fail
)(EU

Lambda calculus II 153

Definition. Unifiers.

(i) Let σ and τ be two types. A unifier for σ and τ is a substitutor ∗∗∗∗
such that .∗∗∗∗∗∗∗∗ ττττ≡≡≡≡σσσσ

(ii) The substitutor is a most general unifier for σ and τ if ∗∗∗∗

(a) is a unifier for σ and τ ∗∗∗∗
(b) if an arbitrary unifier for σ and τ, then there is a
substitutor such that

1∗∗∗∗
2∗∗∗∗ .∗∗∗∗∗∗∗∗≡≡≡≡∗∗∗∗ o21

(iii) Let be a finite set of equations
between types. The equations do not need to be valid. A unifier for E
is a substitutor such that In that case one
writes Similarly one defines the notion of a most general
unifier for E.

},,{ nn11E ττττ====σσσσττττ====σσσσ==== K

∗∗∗∗ .,, ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ττττ====σσσσττττ====σσσσ nn11 K

.| E====∗∗∗∗

Lambda calculus II 154

Examples.

The types

δδδδ→→→→γγγγ→→→→γγγγββββ→→→→αααα→→→→ββββ)()(

have unfiers

)]()(:,:,:[
)](:,:[

γγγγ→→→→γγγγ→→→→εεεε→→→→εεεε====δδδδεεεε→→→→εεεε====ααααγγγγ→→→→γγγγ====ββββ====∗∗∗∗
γγγγ→→→→γγγγ→→→→αααα====δδδδγγγγ→→→→γγγγ====ββββ====∗∗∗∗

1

The unifier is most general, the unifier is not.∗∗∗∗ 1∗∗∗∗

Lambda calculus II 155

Definition. Variants.
The type σ is a variant of the type τ if there are substitutors 21 ∗∗∗∗∗∗∗∗ ,
such that

21 ∗∗∗∗∗∗∗∗ σσσσ====ττττττττ====σσσσ and

Examples.

αααα→→→→ββββ→→→→ααααββββ→→→→ββββ→→→→αααα
δδδδ→→→→δδδδ→→→→γγγγββββ→→→→ββββ→→→→αααα

 of variant anot is
othereach of variantsare and

Note that if are two most general unifiers of
types σ and τ then are variants of each
other and similarly for τ.

21 and ∗∗∗∗∗∗∗∗
21 ∗∗∗∗∗∗∗∗ σσσσσσσσ and

Lambda calculus II 156

Unification Theorem.

(i) There is a recursive function U with input (after coding) a
pair of types and with output which is either a substitutor or fail
such that

ττττσσσσ
ττττσσσσ

ττττσσσσ
====ττττσσσσ

unifier no have and if
unifier a have and if

 and for unifier generalmost a

 fail
),(U

(ii) There is a recursive function U with input (after coding) finite
sets of equations between types and with output either a substitutor
or fail such that

====

unifier no has E if
unifier a has E if

Efor unifier generalmost a

 fail
)(EU

Lambda calculus II 157

Proof.

Note that
22112121 ττττ≡≡≡≡σσσσττττ≡≡≡≡σσσσ⇔⇔⇔⇔ττττ→→→→ττττ≡≡≡≡σσσσ→→→→σσσσ &

(i) Define by the following recursive loop with case
distinction.

),(ττττσσσσU

αααα====ττττ

ττττ∉∉∉∉ααααττττ====αααα
====τττταααα

else
 if identity) (the
 if

fail
Id

FV
U

)(]:[
),(

),(),(2121 UU σσσσ→→→→σσσσαααα====αααασσσσ→→→→σσσσ

),(),(),(),(),(
22

U
1

U
12121 UUU 2222 ττττσσσσττττσσσσ====ττττ→→→→ττττσσσσ→→→→σσσσ ττττσσσσττττσσσσ o

Where the last expression is considered to be fail if one of its parts is.

Lambda calculus II 158

Proof.

(i) By induction on the lexicografic order of pairs of natural numbers
defined as follows:

the number of variables in and #====ττττσσσσ),(var ττττ→→→→σσσσ ====ττττσσσσ→→→→),(
the number of arrows in .ττττ→→→→σσσσ

By induction on pairs (# ,#) ordered lexicograph-
ically, one can show that is always defined. Moreover U
satisfies the specification.

),(var ττττσσσσ),(ττττσσσσ→→→→

),(ττττσσσσU

(ii) If then define },,{ nn11E ττττ====σσσσττττ====σσσσ==== K),,()(ττττσσσσ====UEU

Where

n1 σσσσ→→→→→→→→σσσσ====σσσσ L .n1 ττττ→→→→→→→→ττττ====ττττ L and

Lambda calculus II 159

Proposition on substitutors and equations.

Let Γ be a basis, a term and a type such that ΛΛΛΛ∈∈∈∈M T∈∈∈∈σσσσ
).dom(ΓΓΓΓ⊆⊆⊆⊆)(MFV Then there is a finite set of equations

),,(σσσσΓΓΓΓ==== MEE such that for all substitutors one has∗∗∗∗

∗∗∗∗∗∗∗∗ σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσΓΓΓΓ====∗∗∗∗ :|),,(| MME

),,(|:| σσσσΓΓΓΓ====∗∗∗∗⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ ∗∗∗∗∗∗∗∗ MEM 1

)(1

)(2

For some such that and have the same effect on
type variables in

1∗∗∗∗ ∗∗∗∗ 1∗∗∗∗
. and σσσσΓΓΓΓ

Lambda calculus II 160

Proof.

Define the set by induction on the structure of M:),,(σσσσΓΓΓΓ ME

)}({),,(xxE ΓΓΓΓ====σσσσ====σσσσΓΓΓΓ

),,(),,(),,(ααααΓΓΓΓ∪∪∪∪σσσσ→→→→ααααΓΓΓΓ====σσσσΓΓΓΓ NEMEMNE
where α is a fresh variable

}{),},:{(),.,(σσσσ====ββββ→→→→αααα∪∪∪∪ββββσσσσ∪∪∪∪ΓΓΓΓ====σσσσλλλλΓΓΓΓ MxEMxE
where α, β are fresh variables

By induction on M one can show (using generation lemma) that (1)
and (2) hold.

Lambda calculus II 157

Proof.

Note that
22112121 ττττ≡≡≡≡σσσσττττ≡≡≡≡σσσσ⇔⇔⇔⇔ττττ→→→→ττττ≡≡≡≡σσσσ→→→→σσσσ &

(i) Define by the following recursive loop with case
distinction.

),(ττττσσσσU

αααα====ττττ

ττττ∉∉∉∉ααααττττ====αααα
====τττταααα

else
 if identity) (the
 if

fail
Id

FV
U

)(]:[
),(

),(),(2121 UU σσσσ→→→→σσσσαααα====αααασσσσ→→→→σσσσ

),(),(),(),(),(
22

U
1

U
12121 UUU 2222 ττττσσσσττττσσσσ====ττττ→→→→ττττσσσσ→→→→σσσσ ττττσσσσττττσσσσ o

Where the last expression is considered to be fail if one of its parts is.

Lambda calculus II 158

Proof.

(i) By induction on the lexicografic order of pairs of natural numbers
defined as follows:

the number of variables in and #====ττττσσσσ),(var ττττ→→→→σσσσ ====ττττσσσσ→→→→),(
the number of arrows in .ττττ→→→→σσσσ

By induction on pairs (# ,#) ordered lexicograph-
ically, one can show that is always defined. Moreover U
satisfies the specification.

),(var ττττσσσσ),(ττττσσσσ→→→→

),(ττττσσσσU

(ii) If then define },,{ nn11E ττττ====σσσσττττ====σσσσ==== K),,()(ττττσσσσ====UEU

Where

n1 σσσσ→→→→→→→→σσσσ====σσσσ L .n1 ττττ→→→→→→→→ττττ====ττττ L and

Lambda calculus II 159

Proposition on substitutors and equations.

Let Γ be a basis, a term and a type such that ΛΛΛΛ∈∈∈∈M T∈∈∈∈σσσσ
).dom(ΓΓΓΓ⊆⊆⊆⊆)(MFV Then there is a finite set of equations

),,(σσσσΓΓΓΓ==== MEE such that for all substitutors one has∗∗∗∗

∗∗∗∗∗∗∗∗ σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσΓΓΓΓ====∗∗∗∗ :|),,(| MME

),,(|:| σσσσΓΓΓΓ====∗∗∗∗⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ ∗∗∗∗∗∗∗∗ MEM 1

)(1

)(2

For some such that and have the same effect on
type variables in

1∗∗∗∗ ∗∗∗∗ 1∗∗∗∗
. and σσσσΓΓΓΓ

Lambda calculus II 160

Proof.

Define the set by induction on the structure of M:),,(σσσσΓΓΓΓ ME

)}({),,(xxE ΓΓΓΓ====σσσσ====σσσσΓΓΓΓ

),,(),,(),,(ααααΓΓΓΓ∪∪∪∪σσσσ→→→→ααααΓΓΓΓ====σσσσΓΓΓΓ NEMEMNE
where α is a fresh variable

}{),},:{(),.,(σσσσ====ββββ→→→→αααα∪∪∪∪ββββσσσσ∪∪∪∪ΓΓΓΓ====σσσσλλλλΓΓΓΓ MxEMxE
where α, β are fresh variables

By induction on M one can show (using generation lemma) that (1)
and (2) hold.

Lambda calculus II 157

Proof.

Note that
22112121 ττττ≡≡≡≡σσσσττττ≡≡≡≡σσσσ⇔⇔⇔⇔ττττ→→→→ττττ≡≡≡≡σσσσ→→→→σσσσ &

(i) Define by the following recursive loop with case
distinction.

),(ττττσσσσU

αααα====ττττ

ττττ∉∉∉∉ααααττττ====αααα
====τττταααα

else
 if identity) (the
 if

fail
Id

FV
U

)(]:[
),(

),(),(2121 UU σσσσ→→→→σσσσαααα====αααασσσσ→→→→σσσσ

),(),(),(),(),(
22

U
1

U
12121 UUU 2222 ττττσσσσττττσσσσ====ττττ→→→→ττττσσσσ→→→→σσσσ ττττσσσσττττσσσσ o

Where the last expression is considered to be fail if one of its parts is.

Lambda calculus II 158

Proof.

(i) By induction on the lexicografic order of pairs of natural numbers
defined as follows:

the number of variables in and #====ττττσσσσ),(var ττττ→→→→σσσσ ====ττττσσσσ→→→→),(
the number of arrows in .ττττ→→→→σσσσ

By induction on pairs (# ,#) ordered lexicograph-
ically, one can show that is always defined. Moreover U
satisfies the specification.

),(var ττττσσσσ),(ττττσσσσ→→→→

),(ττττσσσσU

(ii) If then define },,{ nn11E ττττ====σσσσττττ====σσσσ==== K),,()(ττττσσσσ====UEU

Where

n1 σσσσ→→→→→→→→σσσσ====σσσσ L .n1 ττττ→→→→→→→→ττττ====ττττ L and

Lambda calculus II 159

Proposition on substitutors and equations.

Let Γ be a basis, a term and a type such that ΛΛΛΛ∈∈∈∈M T∈∈∈∈σσσσ
).dom(ΓΓΓΓ⊆⊆⊆⊆)(MFV Then there is a finite set of equations

),,(σσσσΓΓΓΓ==== MEE such that for all substitutors one has∗∗∗∗

∗∗∗∗∗∗∗∗ σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσΓΓΓΓ====∗∗∗∗ :|),,(| MME

),,(|:| σσσσΓΓΓΓ====∗∗∗∗⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ ∗∗∗∗∗∗∗∗ MEM 1

)(1

)(2

For some such that and have the same effect on
type variables in

1∗∗∗∗ ∗∗∗∗ 1∗∗∗∗
. and σσσσΓΓΓΓ

Lambda calculus II 160

Proof.

Define the set by induction on the structure of M:),,(σσσσΓΓΓΓ ME

)}({),,(xxE ΓΓΓΓ====σσσσ====σσσσΓΓΓΓ

),,(),,(),,(ααααΓΓΓΓ∪∪∪∪σσσσ→→→→ααααΓΓΓΓ====σσσσΓΓΓΓ NEMEMNE
where α is a fresh variable

}{),},:{(),.,(σσσσ====ββββ→→→→αααα∪∪∪∪ββββσσσσ∪∪∪∪ΓΓΓΓ====σσσσλλλλΓΓΓΓ MxEMxE
where α, β are fresh variables

By induction on M one can show (using generation lemma) that (1)
and (2) hold.

Lambda calculus II 157

Proof.

Note that
22112121 ττττ≡≡≡≡σσσσττττ≡≡≡≡σσσσ⇔⇔⇔⇔ττττ→→→→ττττ≡≡≡≡σσσσ→→→→σσσσ &

(i) Define by the following recursive loop with case
distinction.

),(ττττσσσσU

αααα====ττττ

ττττ∉∉∉∉ααααττττ====αααα
====τττταααα

else
 if identity) (the
 if

fail
Id

FV
U

)(]:[
),(

),(),(2121 UU σσσσ→→→→σσσσαααα====αααασσσσ→→→→σσσσ

),(),(),(),(),(
22

U
1

U
12121 UUU 2222 ττττσσσσττττσσσσ====ττττ→→→→ττττσσσσ→→→→σσσσ ττττσσσσττττσσσσ o

Where the last expression is considered to be fail if one of its parts is.

Lambda calculus II 158

Proof.

(i) By induction on the lexicografic order of pairs of natural numbers
defined as follows:

the number of variables in and #====ττττσσσσ),(var ττττ→→→→σσσσ ====ττττσσσσ→→→→),(
the number of arrows in .ττττ→→→→σσσσ

By induction on pairs (# ,#) ordered lexicograph-
ically, one can show that is always defined. Moreover U
satisfies the specification.

),(var ττττσσσσ),(ττττσσσσ→→→→

),(ττττσσσσU

(ii) If then define },,{ nn11E ττττ====σσσσττττ====σσσσ==== K),,()(ττττσσσσ====UEU

Where

n1 σσσσ→→→→→→→→σσσσ====σσσσ L .n1 ττττ→→→→→→→→ττττ====ττττ L and

Lambda calculus II 159

Proposition on substitutors and equations.

Let Γ be a basis, a term and a type such that ΛΛΛΛ∈∈∈∈M T∈∈∈∈σσσσ
).dom(ΓΓΓΓ⊆⊆⊆⊆)(MFV Then there is a finite set of equations

),,(σσσσΓΓΓΓ==== MEE such that for all substitutors one has∗∗∗∗

∗∗∗∗∗∗∗∗ σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒σσσσΓΓΓΓ====∗∗∗∗ :|),,(| MME

),,(|:| σσσσΓΓΓΓ====∗∗∗∗⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ ∗∗∗∗∗∗∗∗ MEM 1

)(1

)(2

For some such that and have the same effect on
type variables in

1∗∗∗∗ ∗∗∗∗ 1∗∗∗∗
. and σσσσΓΓΓΓ

Lambda calculus II 160

Proof.

Define the set by induction on the structure of M:),,(σσσσΓΓΓΓ ME

)}({),,(xxE ΓΓΓΓ====σσσσ====σσσσΓΓΓΓ

),,(),,(),,(ααααΓΓΓΓ∪∪∪∪σσσσ→→→→ααααΓΓΓΓ====σσσσΓΓΓΓ NEMEMNE
where α is a fresh variable

}{),},:{(),.,(σσσσ====ββββ→→→→αααα∪∪∪∪ββββσσσσ∪∪∪∪ΓΓΓΓ====σσσσλλλλΓΓΓΓ MxEMxE
where α, β are fresh variables

By induction on M one can show (using generation lemma) that (1)
and (2) hold.

Lambda calculus II 161

Definition. Principal pair, principal type.

(i) Let Then (Γ,σ) is a principal pair (pp) for M if .ΛΛΛΛ∈∈∈∈M

´]&´[´:´|)(
:|)(

σσσσ≡≡≡≡σσσσΓΓΓΓ⊆⊆⊆⊆ΓΓΓΓ∗∗∗∗∃∃∃∃⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ
σσσσ−−−−ΓΓΓΓ

∗∗∗∗∗∗∗∗M2
M1

Here }.:,,:{}:,,:{ ∗∗∗∗∗∗∗∗∗∗∗∗ σσσσσσσσ====σσσσσσσσ nn11nn11 xxxx KK

(ii) Let be closed. Then σ is a principal type (pt) for M ifΛΛΛΛ∈∈∈∈M

´][´:|)(
:|)(

σσσσ≡≡≡≡σσσσ∗∗∗∗∃∃∃∃⇒⇒⇒⇒σσσσ−−−−
σσσσ−−−−

∗∗∗∗M2
M1

Lambda calculus II 162

Remarks.

Note that if (Γ,σ) is a principal pair for M, then every variant
(Γ´,σ´) of (Γ,σ), in the obvious sense, is a principal pair for M.

Conversely, if (Γ,σ) and (Γ´,σ´) are both principal pairs for M,
then (Γ´,σ´) is a variant of (Γ,σ) .

Moreover, if (Γ,σ) is a principal pair for M, then).dom(ΓΓΓΓ====)(MFV

Lambda calculus II 163

Principal Type Theorem for Curry. −−−−→→→→λλλλ

(i) There exists (after coding) a recursive function pp such that

 σσσσΓΓΓΓ

====
 typeno has if

exists for typea if for pair principal a
M

MM
Mpp

fail
),(

)(

(ii) There exists (after coding) a recursive function pt such that for
closed terms M one has

σσσσ

====
 typeno has if

exists for typea if for typeprincipal a
M

MM
Mpt

fail
)(

Lambda calculus II 164

Proof.
(i) Let }.:,,:{},,{)(nn11n1 xxxxMFV αααααααα====ΓΓΓΓ==== KK 0 define and

If we put we have,ββββ====σσσσ0

),,(|
:|

:|

00

00

ME
M

MM

σσσσΓΓΓΓ====∗∗∗∗∗∗∗∗∃∃∃∃⇔⇔⇔⇔
σσσσ−−−−ΓΓΓΓ∗∗∗∗∃∃∃∃⇔⇔⇔⇔

σσσσ−−−−ΓΓΓΓσσσσ∃∃∃∃ΓΓΓΓ∃∃∃∃⇔⇔⇔⇔
∗∗∗∗∗∗∗∗

 typea has

Define

====σσσσΓΓΓΓ
∗∗∗∗====σσσσΓΓΓΓσσσσΓΓΓΓ

====
∗∗∗∗∗∗∗∗

 if
 if

failfail)),,((
)),,((),(

)(
00

0000

MEU
MEU

Mpp

Then pp(M) satisfies the statement (i) of the theorem. Indeed, if
M has a type, then
follows from (i) in the proposition on substitutors and equations.

∗∗∗∗∗∗∗∗ σσσσ−−−−ΓΓΓΓ∗∗∗∗====σσσσΓΓΓΓ 0000 MMEU :|)),,((and

Lambda calculus II 161

Definition. Principal pair, principal type.

(i) Let Then (Γ,σ) is a principal pair (pp) for M if .ΛΛΛΛ∈∈∈∈M

´]&´[´:´|)(
:|)(

σσσσ≡≡≡≡σσσσΓΓΓΓ⊆⊆⊆⊆ΓΓΓΓ∗∗∗∗∃∃∃∃⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ
σσσσ−−−−ΓΓΓΓ

∗∗∗∗∗∗∗∗M2
M1

Here }.:,,:{}:,,:{ ∗∗∗∗∗∗∗∗∗∗∗∗ σσσσσσσσ====σσσσσσσσ nn11nn11 xxxx KK

(ii) Let be closed. Then σ is a principal type (pt) for M ifΛΛΛΛ∈∈∈∈M

´][´:|)(
:|)(

σσσσ≡≡≡≡σσσσ∗∗∗∗∃∃∃∃⇒⇒⇒⇒σσσσ−−−−
σσσσ−−−−

∗∗∗∗M2
M1

Lambda calculus II 162

Remarks.

Note that if (Γ,σ) is a principal pair for M, then every variant
(Γ´,σ´) of (Γ,σ), in the obvious sense, is a principal pair for M.

Conversely, if (Γ,σ) and (Γ´,σ´) are both principal pairs for M,
then (Γ´,σ´) is a variant of (Γ,σ) .

Moreover, if (Γ,σ) is a principal pair for M, then).dom(ΓΓΓΓ====)(MFV

Lambda calculus II 163

Principal Type Theorem for Curry. −−−−→→→→λλλλ

(i) There exists (after coding) a recursive function pp such that

 σσσσΓΓΓΓ

====
 typeno has if

exists for typea if for pair principal a
M

MM
Mpp

fail
),(

)(

(ii) There exists (after coding) a recursive function pt such that for
closed terms M one has

σσσσ

====
 typeno has if

exists for typea if for typeprincipal a
M

MM
Mpt

fail
)(

Lambda calculus II 164

Proof.
(i) Let }.:,,:{},,{)(nn11n1 xxxxMFV αααααααα====ΓΓΓΓ==== KK 0 define and

If we put we have,ββββ====σσσσ0

),,(|
:|

:|

00

00

ME
M

MM

σσσσΓΓΓΓ====∗∗∗∗∗∗∗∗∃∃∃∃⇔⇔⇔⇔
σσσσ−−−−ΓΓΓΓ∗∗∗∗∃∃∃∃⇔⇔⇔⇔

σσσσ−−−−ΓΓΓΓσσσσ∃∃∃∃ΓΓΓΓ∃∃∃∃⇔⇔⇔⇔
∗∗∗∗∗∗∗∗

 typea has

Define

====σσσσΓΓΓΓ
∗∗∗∗====σσσσΓΓΓΓσσσσΓΓΓΓ

====
∗∗∗∗∗∗∗∗

 if
 if

failfail)),,((
)),,((),(

)(
00

0000

MEU
MEU

Mpp

Then pp(M) satisfies the statement (i) of the theorem. Indeed, if
M has a type, then
follows from (i) in the proposition on substitutors and equations.

∗∗∗∗∗∗∗∗ σσσσ−−−−ΓΓΓΓ∗∗∗∗====σσσσΓΓΓΓ 0000 MMEU :|)),,((and

Lambda calculus II 161

Definition. Principal pair, principal type.

(i) Let Then (Γ,σ) is a principal pair (pp) for M if .ΛΛΛΛ∈∈∈∈M

´]&´[´:´|)(
:|)(

σσσσ≡≡≡≡σσσσΓΓΓΓ⊆⊆⊆⊆ΓΓΓΓ∗∗∗∗∃∃∃∃⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ
σσσσ−−−−ΓΓΓΓ

∗∗∗∗∗∗∗∗M2
M1

Here }.:,,:{}:,,:{ ∗∗∗∗∗∗∗∗∗∗∗∗ σσσσσσσσ====σσσσσσσσ nn11nn11 xxxx KK

(ii) Let be closed. Then σ is a principal type (pt) for M ifΛΛΛΛ∈∈∈∈M

´][´:|)(
:|)(

σσσσ≡≡≡≡σσσσ∗∗∗∗∃∃∃∃⇒⇒⇒⇒σσσσ−−−−
σσσσ−−−−

∗∗∗∗M2
M1

Lambda calculus II 162

Remarks.

Note that if (Γ,σ) is a principal pair for M, then every variant
(Γ´,σ´) of (Γ,σ), in the obvious sense, is a principal pair for M.

Conversely, if (Γ,σ) and (Γ´,σ´) are both principal pairs for M,
then (Γ´,σ´) is a variant of (Γ,σ) .

Moreover, if (Γ,σ) is a principal pair for M, then).dom(ΓΓΓΓ====)(MFV

Lambda calculus II 163

Principal Type Theorem for Curry. −−−−→→→→λλλλ

(i) There exists (after coding) a recursive function pp such that

 σσσσΓΓΓΓ

====
 typeno has if

exists for typea if for pair principal a
M

MM
Mpp

fail
),(

)(

(ii) There exists (after coding) a recursive function pt such that for
closed terms M one has

σσσσ

====
 typeno has if

exists for typea if for typeprincipal a
M

MM
Mpt

fail
)(

Lambda calculus II 164

Proof.
(i) Let }.:,,:{},,{)(nn11n1 xxxxMFV αααααααα====ΓΓΓΓ==== KK 0 define and

If we put we have,ββββ====σσσσ0

),,(|
:|

:|

00

00

ME
M

MM

σσσσΓΓΓΓ====∗∗∗∗∗∗∗∗∃∃∃∃⇔⇔⇔⇔
σσσσ−−−−ΓΓΓΓ∗∗∗∗∃∃∃∃⇔⇔⇔⇔

σσσσ−−−−ΓΓΓΓσσσσ∃∃∃∃ΓΓΓΓ∃∃∃∃⇔⇔⇔⇔
∗∗∗∗∗∗∗∗

 typea has

Define

====σσσσΓΓΓΓ
∗∗∗∗====σσσσΓΓΓΓσσσσΓΓΓΓ

====
∗∗∗∗∗∗∗∗

 if
 if

failfail)),,((
)),,((),(

)(
00

0000

MEU
MEU

Mpp

Then pp(M) satisfies the statement (i) of the theorem. Indeed, if
M has a type, then
follows from (i) in the proposition on substitutors and equations.

∗∗∗∗∗∗∗∗ σσσσ−−−−ΓΓΓΓ∗∗∗∗====σσσσΓΓΓΓ 0000 MMEU :|)),,((and

Lambda calculus II 161

Definition. Principal pair, principal type.

(i) Let Then (Γ,σ) is a principal pair (pp) for M if .ΛΛΛΛ∈∈∈∈M

´]&´[´:´|)(
:|)(

σσσσ≡≡≡≡σσσσΓΓΓΓ⊆⊆⊆⊆ΓΓΓΓ∗∗∗∗∃∃∃∃⇒⇒⇒⇒σσσσ−−−−ΓΓΓΓ
σσσσ−−−−ΓΓΓΓ

∗∗∗∗∗∗∗∗M2
M1

Here }.:,,:{}:,,:{ ∗∗∗∗∗∗∗∗∗∗∗∗ σσσσσσσσ====σσσσσσσσ nn11nn11 xxxx KK

(ii) Let be closed. Then σ is a principal type (pt) for M ifΛΛΛΛ∈∈∈∈M

´][´:|)(
:|)(

σσσσ≡≡≡≡σσσσ∗∗∗∗∃∃∃∃⇒⇒⇒⇒σσσσ−−−−
σσσσ−−−−

∗∗∗∗M2
M1

Lambda calculus II 162

Remarks.

Note that if (Γ,σ) is a principal pair for M, then every variant
(Γ´,σ´) of (Γ,σ), in the obvious sense, is a principal pair for M.

Conversely, if (Γ,σ) and (Γ´,σ´) are both principal pairs for M,
then (Γ´,σ´) is a variant of (Γ,σ) .

Moreover, if (Γ,σ) is a principal pair for M, then).dom(ΓΓΓΓ====)(MFV

Lambda calculus II 163

Principal Type Theorem for Curry. −−−−→→→→λλλλ

(i) There exists (after coding) a recursive function pp such that

 σσσσΓΓΓΓ

====
 typeno has if

exists for typea if for pair principal a
M

MM
Mpp

fail
),(

)(

(ii) There exists (after coding) a recursive function pt such that for
closed terms M one has

σσσσ

====
 typeno has if

exists for typea if for typeprincipal a
M

MM
Mpt

fail
)(

Lambda calculus II 164

Proof.
(i) Let }.:,,:{},,{)(nn11n1 xxxxMFV αααααααα====ΓΓΓΓ==== KK 0 define and

If we put we have,ββββ====σσσσ0

),,(|
:|

:|

00

00

ME
M

MM

σσσσΓΓΓΓ====∗∗∗∗∗∗∗∗∃∃∃∃⇔⇔⇔⇔
σσσσ−−−−ΓΓΓΓ∗∗∗∗∃∃∃∃⇔⇔⇔⇔

σσσσ−−−−ΓΓΓΓσσσσ∃∃∃∃ΓΓΓΓ∃∃∃∃⇔⇔⇔⇔
∗∗∗∗∗∗∗∗

 typea has

Define

====σσσσΓΓΓΓ
∗∗∗∗====σσσσΓΓΓΓσσσσΓΓΓΓ

====
∗∗∗∗∗∗∗∗

 if
 if

failfail)),,((
)),,((),(

)(
00

0000

MEU
MEU

Mpp

Then pp(M) satisfies the statement (i) of the theorem. Indeed, if
M has a type, then
follows from (i) in the proposition on substitutors and equations.

∗∗∗∗∗∗∗∗ σσσσ−−−−ΓΓΓΓ∗∗∗∗====σσσσΓΓΓΓ 0000 MMEU :|)),,((and

Lambda calculus II 165

To show that is a principal pair, suppose that also),(∗∗∗∗∗∗∗∗ σσσσΓΓΓΓ 00 ´.:´| σσσσ−−−−ΓΓΓΓ M

Let write Then also),(´|~ MFVΓΓΓΓ====ΓΓΓΓ .´~ 0
00
∗∗∗∗σσσσ====σσσσΓΓΓΓ====ΓΓΓΓ ∗∗∗∗ and

00
00 M ∗∗∗∗∗∗∗∗ σσσσ−−−−ΓΓΓΓ :|

Hence by (ii) in the proposition on substitutors and equations, there is

1∗∗∗∗ , acting in the same way as on such that 0∗∗∗∗ 00 σσσσΓΓΓΓ ,).,,(| 001 ME σσσσΓΓΓΓ====∗∗∗∗

By the Unification Theorem is a most general unifier, hence
there is a such that

∗∗∗∗
2∗∗∗∗ .∗∗∗∗∗∗∗∗====∗∗∗∗ o21

Now
´~)(ΓΓΓΓ====ΓΓΓΓ====ΓΓΓΓ====ΓΓΓΓ====ΓΓΓΓ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 012

000

and
´)(σσσσ====σσσσ====σσσσ====σσσσ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 012

000

This completes the case when M has a type.

Lambda calculus II 166

If M has no type, then there is no substitutor satisfying),,,(00 ME σσσσΓΓΓΓ

hence

)()),,((MppMEU 00 ========σσσσΓΓΓΓ fail

(ii) Let M be closed and Then and we
can put

).,()(σσσσΓΓΓΓ====Mpp 0////====ΓΓΓΓ

σσσσ====)(Mpt

Lambda calculus II 167

Proof.

(a) Type checking: given M and σ, we have

])([:| ∗∗∗∗====σσσσ∗∗∗∗∃∃∃∃⇔⇔⇔⇔σσσσ−−−− MptM

This is decidable by a pattern matching algorithm similar to the
unification algorithm.

(b) Typability: given M, then M has a type iff fail.====////)(Mpt

Lambda calculus II 168

Decidability of the inhabitation problem for is shown
equivalent to provability of σ in the minimal intuitionistic
proposition calculus PROP with only as connective and σ
considered as an element of PROP. Using finite Kripke models it
can be shown that provability of σ is decidable.

−−−−→→→→λλλλ

→→→→

Theorem.
the inhabitation problem for that is,−−−−→→→→λλλλ σσσσ−−−−ΛΛΛΛ∈∈∈∈∃∃∃∃ →→→→λλλλ :| MM
is a decidable property of σ.

Lambda calculus II 165

To show that is a principal pair, suppose that also),(∗∗∗∗∗∗∗∗ σσσσΓΓΓΓ 00 ´.:´| σσσσ−−−−ΓΓΓΓ M

Let write Then also),(´|~ MFVΓΓΓΓ====ΓΓΓΓ .´~ 0
00
∗∗∗∗σσσσ====σσσσΓΓΓΓ====ΓΓΓΓ ∗∗∗∗ and

00
00 M ∗∗∗∗∗∗∗∗ σσσσ−−−−ΓΓΓΓ :|

Hence by (ii) in the proposition on substitutors and equations, there is

1∗∗∗∗ , acting in the same way as on such that 0∗∗∗∗ 00 σσσσΓΓΓΓ ,).,,(| 001 ME σσσσΓΓΓΓ====∗∗∗∗

By the Unification Theorem is a most general unifier, hence
there is a such that

∗∗∗∗
2∗∗∗∗ .∗∗∗∗∗∗∗∗====∗∗∗∗ o21

Now
´~)(ΓΓΓΓ====ΓΓΓΓ====ΓΓΓΓ====ΓΓΓΓ====ΓΓΓΓ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 012

000

and
´)(σσσσ====σσσσ====σσσσ====σσσσ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 012

000

This completes the case when M has a type.

Lambda calculus II 166

If M has no type, then there is no substitutor satisfying),,,(00 ME σσσσΓΓΓΓ

hence

)()),,((MppMEU 00 ========σσσσΓΓΓΓ fail

(ii) Let M be closed and Then and we
can put

).,()(σσσσΓΓΓΓ====Mpp 0////====ΓΓΓΓ

σσσσ====)(Mpt

Lambda calculus II 167

Proof.

(a) Type checking: given M and σ, we have

])([:| ∗∗∗∗====σσσσ∗∗∗∗∃∃∃∃⇔⇔⇔⇔σσσσ−−−− MptM

This is decidable by a pattern matching algorithm similar to the
unification algorithm.

(b) Typability: given M, then M has a type iff fail.====////)(Mpt

Lambda calculus II 168

Decidability of the inhabitation problem for is shown
equivalent to provability of σ in the minimal intuitionistic
proposition calculus PROP with only as connective and σ
considered as an element of PROP. Using finite Kripke models it
can be shown that provability of σ is decidable.

−−−−→→→→λλλλ

→→→→

Theorem.
the inhabitation problem for that is,−−−−→→→→λλλλ σσσσ−−−−ΛΛΛΛ∈∈∈∈∃∃∃∃ →→→→λλλλ :| MM
is a decidable property of σ.

Lambda calculus II 165

To show that is a principal pair, suppose that also),(∗∗∗∗∗∗∗∗ σσσσΓΓΓΓ 00 ´.:´| σσσσ−−−−ΓΓΓΓ M

Let write Then also),(´|~ MFVΓΓΓΓ====ΓΓΓΓ .´~ 0
00
∗∗∗∗σσσσ====σσσσΓΓΓΓ====ΓΓΓΓ ∗∗∗∗ and

00
00 M ∗∗∗∗∗∗∗∗ σσσσ−−−−ΓΓΓΓ :|

Hence by (ii) in the proposition on substitutors and equations, there is

1∗∗∗∗ , acting in the same way as on such that 0∗∗∗∗ 00 σσσσΓΓΓΓ ,).,,(| 001 ME σσσσΓΓΓΓ====∗∗∗∗

By the Unification Theorem is a most general unifier, hence
there is a such that

∗∗∗∗
2∗∗∗∗ .∗∗∗∗∗∗∗∗====∗∗∗∗ o21

Now
´~)(ΓΓΓΓ====ΓΓΓΓ====ΓΓΓΓ====ΓΓΓΓ====ΓΓΓΓ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 012

000

and
´)(σσσσ====σσσσ====σσσσ====σσσσ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 012

000

This completes the case when M has a type.

Lambda calculus II 166

If M has no type, then there is no substitutor satisfying),,,(00 ME σσσσΓΓΓΓ

hence

)()),,((MppMEU 00 ========σσσσΓΓΓΓ fail

(ii) Let M be closed and Then and we
can put

).,()(σσσσΓΓΓΓ====Mpp 0////====ΓΓΓΓ

σσσσ====)(Mpt

Lambda calculus II 167

Proof.

(a) Type checking: given M and σ, we have

])([:| ∗∗∗∗====σσσσ∗∗∗∗∃∃∃∃⇔⇔⇔⇔σσσσ−−−− MptM

This is decidable by a pattern matching algorithm similar to the
unification algorithm.

(b) Typability: given M, then M has a type iff fail.====////)(Mpt

Lambda calculus II 168

Decidability of the inhabitation problem for is shown
equivalent to provability of σ in the minimal intuitionistic
proposition calculus PROP with only as connective and σ
considered as an element of PROP. Using finite Kripke models it
can be shown that provability of σ is decidable.

−−−−→→→→λλλλ

→→→→

Theorem.
the inhabitation problem for that is,−−−−→→→→λλλλ σσσσ−−−−ΛΛΛΛ∈∈∈∈∃∃∃∃ →→→→λλλλ :| MM
is a decidable property of σ.

Lambda calculus II 165

To show that is a principal pair, suppose that also),(∗∗∗∗∗∗∗∗ σσσσΓΓΓΓ 00 ´.:´| σσσσ−−−−ΓΓΓΓ M

Let write Then also),(´|~ MFVΓΓΓΓ====ΓΓΓΓ .´~ 0
00
∗∗∗∗σσσσ====σσσσΓΓΓΓ====ΓΓΓΓ ∗∗∗∗ and

00
00 M ∗∗∗∗∗∗∗∗ σσσσ−−−−ΓΓΓΓ :|

Hence by (ii) in the proposition on substitutors and equations, there is

1∗∗∗∗ , acting in the same way as on such that 0∗∗∗∗ 00 σσσσΓΓΓΓ ,).,,(| 001 ME σσσσΓΓΓΓ====∗∗∗∗

By the Unification Theorem is a most general unifier, hence
there is a such that

∗∗∗∗
2∗∗∗∗ .∗∗∗∗∗∗∗∗====∗∗∗∗ o21

Now
´~)(ΓΓΓΓ====ΓΓΓΓ====ΓΓΓΓ====ΓΓΓΓ====ΓΓΓΓ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 012

000

and
´)(σσσσ====σσσσ====σσσσ====σσσσ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 012

000

This completes the case when M has a type.

Lambda calculus II 166

If M has no type, then there is no substitutor satisfying),,,(00 ME σσσσΓΓΓΓ

hence

)()),,((MppMEU 00 ========σσσσΓΓΓΓ fail

(ii) Let M be closed and Then and we
can put

).,()(σσσσΓΓΓΓ====Mpp 0////====ΓΓΓΓ

σσσσ====)(Mpt

Lambda calculus II 167

Proof.

(a) Type checking: given M and σ, we have

])([:| ∗∗∗∗====σσσσ∗∗∗∗∃∃∃∃⇔⇔⇔⇔σσσσ−−−− MptM

This is decidable by a pattern matching algorithm similar to the
unification algorithm.

(b) Typability: given M, then M has a type iff fail.====////)(Mpt

Lambda calculus II 168

Decidability of the inhabitation problem for is shown
equivalent to provability of σ in the minimal intuitionistic
proposition calculus PROP with only as connective and σ
considered as an element of PROP. Using finite Kripke models it
can be shown that provability of σ is decidable.

−−−−→→→→λλλλ

→→→→

Theorem.
the inhabitation problem for that is,−−−−→→→→λλλλ σσσσ−−−−ΛΛΛΛ∈∈∈∈∃∃∃∃ →→→→λλλλ :| MM
is a decidable property of σ.

Lambda calculus II 169

Decidability of the inhabitation problem for is shown
equivalent to provability of σ in the minimal intuitionistic
proposition calculus PROP with only as connective and σ
considered as an element of PROP. Using finite Kripke models it
can be shown that provability of σ is decidable.

−−−−→→→→λλλλ

→→→→

Theorem.
the inhabitation problem for that is,→→→→λλλλ σσσσ−−−−ΛΛΛΛ∈∈∈∈∃∃∃∃ →→→→λλλλ :| MM
is a decidable property of σ.

Proof.

PROPin provable is
-Churchin inhabited is -Curryin inhabited is

σσσσ⇔⇔⇔⇔
→→→→λλλλσσσσ⇔⇔⇔⇔→→→→λλλλσσσσ

Lambda calculus II 170

Now, we consider λ2. The question whether type checking and
typability is open. There is only a result showing that the problem of
typability in λ2 can be reduced to that of type checking.

Proposition.

 decidable is decidable is }:||{}:||):{(σσσσ−−−−σσσσ∃∃∃∃⇒⇒⇒⇒σσσσ−−−−σσσσ λλλλλλλλ MMMM 22

Proof.
One has

)(:).(|:| αααα→→→→ααααλλλλ−−−−⇔⇔⇔⇔σσσσ−−−−σσσσ∃∃∃∃ MyxyM

The implication is obvious, since⇒⇒⇒⇒

σσσσαααα→→→→αααα→→→→σσσσλλλλ−−−− allfor)(:).(| yxy

The other implication follows from the lemma on typability of
subterms.

Lambda calculus II 171

Theorem.

The inhabitation problem for λ2 is undecidable.

Proof.

As for one can show the first equivalence,→→→→λλλλ

PROP2in provable is
Churchin inhabited is Curryin inhabited is

σσσσ⇔⇔⇔⇔
−−−−λλλλσσσσ⇔⇔⇔⇔−−−−λλλλσσσσ 22

where PROP2 is the constructive second-order propositional
calculus. Löb (1976) proved that the last property is undecidable.

Lambda calculus II 172

Theorem.

For λµ one has the following:

(i) Type checking is decidable.

(ii) Typability is trivially decidable, we showed that
every λ-term has a type.

(iii) The inhabitation problem for λµ is trivially
decidable: all types are inhabited.

Lambda calculus II 169

Decidability of the inhabitation problem for is shown
equivalent to provability of σ in the minimal intuitionistic
proposition calculus PROP with only as connective and σ
considered as an element of PROP. Using finite Kripke models it
can be shown that provability of σ is decidable.

−−−−→→→→λλλλ

→→→→

Theorem.
the inhabitation problem for that is,→→→→λλλλ σσσσ−−−−ΛΛΛΛ∈∈∈∈∃∃∃∃ →→→→λλλλ :| MM
is a decidable property of σ.

Proof.

PROPin provable is
-Churchin inhabited is -Curryin inhabited is

σσσσ⇔⇔⇔⇔
→→→→λλλλσσσσ⇔⇔⇔⇔→→→→λλλλσσσσ

Lambda calculus II 170

Now, we consider λ2. The question whether type checking and
typability is open. There is only a result showing that the problem of
typability in λ2 can be reduced to that of type checking.

Proposition.

 decidable is decidable is }:||{}:||):{(σσσσ−−−−σσσσ∃∃∃∃⇒⇒⇒⇒σσσσ−−−−σσσσ λλλλλλλλ MMMM 22

Proof.
One has

)(:).(|:| αααα→→→→ααααλλλλ−−−−⇔⇔⇔⇔σσσσ−−−−σσσσ∃∃∃∃ MyxyM

The implication is obvious, since⇒⇒⇒⇒

σσσσαααα→→→→αααα→→→→σσσσλλλλ−−−− allfor)(:).(| yxy

The other implication follows from the lemma on typability of
subterms.

Lambda calculus II 171

Theorem.

The inhabitation problem for λ2 is undecidable.

Proof.

As for one can show the first equivalence,→→→→λλλλ

PROP2in provable is
Churchin inhabited is Curryin inhabited is

σσσσ⇔⇔⇔⇔
−−−−λλλλσσσσ⇔⇔⇔⇔−−−−λλλλσσσσ 22

where PROP2 is the constructive second-order propositional
calculus. Löb (1976) proved that the last property is undecidable.

Lambda calculus II 172

Theorem.

For λµ one has the following:

(i) Type checking is decidable.

(ii) Typability is trivially decidable, we showed that
every λ-term has a type.

(iii) The inhabitation problem for λµ is trivially
decidable: all types are inhabited.

Lambda calculus II 169

Decidability of the inhabitation problem for is shown
equivalent to provability of σ in the minimal intuitionistic
proposition calculus PROP with only as connective and σ
considered as an element of PROP. Using finite Kripke models it
can be shown that provability of σ is decidable.

−−−−→→→→λλλλ

→→→→

Theorem.
the inhabitation problem for that is,→→→→λλλλ σσσσ−−−−ΛΛΛΛ∈∈∈∈∃∃∃∃ →→→→λλλλ :| MM
is a decidable property of σ.

Proof.

PROPin provable is
-Churchin inhabited is -Curryin inhabited is

σσσσ⇔⇔⇔⇔
→→→→λλλλσσσσ⇔⇔⇔⇔→→→→λλλλσσσσ

Lambda calculus II 170

Now, we consider λ2. The question whether type checking and
typability is open. There is only a result showing that the problem of
typability in λ2 can be reduced to that of type checking.

Proposition.

 decidable is decidable is }:||{}:||):{(σσσσ−−−−σσσσ∃∃∃∃⇒⇒⇒⇒σσσσ−−−−σσσσ λλλλλλλλ MMMM 22

Proof.
One has

)(:).(|:| αααα→→→→ααααλλλλ−−−−⇔⇔⇔⇔σσσσ−−−−σσσσ∃∃∃∃ MyxyM

The implication is obvious, since⇒⇒⇒⇒

σσσσαααα→→→→αααα→→→→σσσσλλλλ−−−− allfor)(:).(| yxy

The other implication follows from the lemma on typability of
subterms.

Lambda calculus II 171

Theorem.

The inhabitation problem for λ2 is undecidable.

Proof.

As for one can show the first equivalence,→→→→λλλλ

PROP2in provable is
Churchin inhabited is Curryin inhabited is

σσσσ⇔⇔⇔⇔
−−−−λλλλσσσσ⇔⇔⇔⇔−−−−λλλλσσσσ 22

where PROP2 is the constructive second-order propositional
calculus. Löb (1976) proved that the last property is undecidable.

Lambda calculus II 172

Theorem.

For λµ one has the following:

(i) Type checking is decidable.

(ii) Typability is trivially decidable, we showed that
every λ-term has a type.

(iii) The inhabitation problem for λµ is trivially
decidable: all types are inhabited.

Lambda calculus II 169

Decidability of the inhabitation problem for is shown
equivalent to provability of σ in the minimal intuitionistic
proposition calculus PROP with only as connective and σ
considered as an element of PROP. Using finite Kripke models it
can be shown that provability of σ is decidable.

−−−−→→→→λλλλ

→→→→

Theorem.
the inhabitation problem for that is,→→→→λλλλ σσσσ−−−−ΛΛΛΛ∈∈∈∈∃∃∃∃ →→→→λλλλ :| MM
is a decidable property of σ.

Proof.

PROPin provable is
-Churchin inhabited is -Curryin inhabited is

σσσσ⇔⇔⇔⇔
→→→→λλλλσσσσ⇔⇔⇔⇔→→→→λλλλσσσσ

Lambda calculus II 170

Now, we consider λ2. The question whether type checking and
typability is open. There is only a result showing that the problem of
typability in λ2 can be reduced to that of type checking.

Proposition.

 decidable is decidable is }:||{}:||):{(σσσσ−−−−σσσσ∃∃∃∃⇒⇒⇒⇒σσσσ−−−−σσσσ λλλλλλλλ MMMM 22

Proof.
One has

)(:).(|:| αααα→→→→ααααλλλλ−−−−⇔⇔⇔⇔σσσσ−−−−σσσσ∃∃∃∃ MyxyM

The implication is obvious, since⇒⇒⇒⇒

σσσσαααα→→→→αααα→→→→σσσσλλλλ−−−− allfor)(:).(| yxy

The other implication follows from the lemma on typability of
subterms.

Lambda calculus II 171

Theorem.

The inhabitation problem for λ2 is undecidable.

Proof.

As for one can show the first equivalence,→→→→λλλλ

PROP2in provable is
Churchin inhabited is Curryin inhabited is

σσσσ⇔⇔⇔⇔
−−−−λλλλσσσσ⇔⇔⇔⇔−−−−λλλλσσσσ 22

where PROP2 is the constructive second-order propositional
calculus. Löb (1976) proved that the last property is undecidable.

Lambda calculus II 172

Theorem.

For λµ one has the following:

(i) Type checking is decidable.

(ii) Typability is trivially decidable, we showed that
every λ-term has a type.

(iii) The inhabitation problem for λµ is trivially
decidable: all types are inhabited.

Lambda calculus II 173

Proof.

(i) Use the same method as for and the fact that T(σ) = T(τ) is
decidable.

→→→→λλλλ

(ii) In a motivation example for λµ, we have shown that every λ-term
has a type .. where, 0 αααα→→→→ααααµαµαµαµα====σσσσσσσσ0

(iii) All types are inhabited by the term Ώ.

Lambda calculus II 174

Lemma. Systems with subject conversion
Let λ- be a system of type assignment satisfying subject conversion
i.e.

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒====σσσσ−−−−ΓΓΓΓ −−−−λλλλββββ−−−−λλλλ :|&:| NNMM

(i) Suppose that some closed terms have the type and
others not. Then the problem of type checking is undecidable.

αααα→→→→αααα

(ii) Suppose that some terms have a type and others not. Then the
problem of typability is undecidable.

Lambda calculus II 175

Proof.

(i) If the set is decidable, then so is the set }:|||),{(σσσσ−−−−σσσσ MM

}.:|||{ αααα→→→→αααα−−−− MM

This set is by assumption closed under = and non-trivial, hence
by the Scott´s theorem is not recursive, a contradiction.

(ii) Similarly.

Lambda calculus II 176

Proposition.

For one has the following∩∩∩∩λλλλ
(i) Type checking problem is undecidable.
(ii) Typability is trivially decidable: all terms have a type.

Proof.

(i) Using the subject conversion for , the statement (i) of
the previous lemma applies and there are facts

∩∩∩∩λλλλ

αααα→→→→αααα−−−−////αααα→→→→αααα−−−− :K|:I| and

(ii) For all .: ωωωωMM has one

It is not known whether inhabitation in is decidable. ∩∩∩∩λλλλ

Lambda calculus II 173

Proof.

(i) Use the same method as for and the fact that T(σ) = T(τ) is
decidable.

→→→→λλλλ

(ii) In a motivation example for λµ, we have shown that every λ-term
has a type .. where, 0 αααα→→→→ααααµαµαµαµα====σσσσσσσσ0

(iii) All types are inhabited by the term Ώ.

Lambda calculus II 174

Lemma. Systems with subject conversion
Let λ- be a system of type assignment satisfying subject conversion
i.e.

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒====σσσσ−−−−ΓΓΓΓ −−−−λλλλββββ−−−−λλλλ :|&:| NNMM

(i) Suppose that some closed terms have the type and
others not. Then the problem of type checking is undecidable.

αααα→→→→αααα

(ii) Suppose that some terms have a type and others not. Then the
problem of typability is undecidable.

Lambda calculus II 175

Proof.

(i) If the set is decidable, then so is the set }:|||),{(σσσσ−−−−σσσσ MM

}.:|||{ αααα→→→→αααα−−−− MM

This set is by assumption closed under = and non-trivial, hence
by the Scott´s theorem is not recursive, a contradiction.

(ii) Similarly.

Lambda calculus II 176

Proposition.

For one has the following∩∩∩∩λλλλ
(i) Type checking problem is undecidable.
(ii) Typability is trivially decidable: all terms have a type.

Proof.

(i) Using the subject conversion for , the statement (i) of
the previous lemma applies and there are facts

∩∩∩∩λλλλ

αααα→→→→αααα−−−−////αααα→→→→αααα−−−− :K|:I| and

(ii) For all .: ωωωωMM has one

It is not known whether inhabitation in is decidable. ∩∩∩∩λλλλ

Lambda calculus II 173

Proof.

(i) Use the same method as for and the fact that T(σ) = T(τ) is
decidable.

→→→→λλλλ

(ii) In a motivation example for λµ, we have shown that every λ-term
has a type .. where, 0 αααα→→→→ααααµαµαµαµα====σσσσσσσσ0

(iii) All types are inhabited by the term Ώ.

Lambda calculus II 174

Lemma. Systems with subject conversion
Let λ- be a system of type assignment satisfying subject conversion
i.e.

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒====σσσσ−−−−ΓΓΓΓ −−−−λλλλββββ−−−−λλλλ :|&:| NNMM

(i) Suppose that some closed terms have the type and
others not. Then the problem of type checking is undecidable.

αααα→→→→αααα

(ii) Suppose that some terms have a type and others not. Then the
problem of typability is undecidable.

Lambda calculus II 175

Proof.

(i) If the set is decidable, then so is the set }:|||),{(σσσσ−−−−σσσσ MM

}.:|||{ αααα→→→→αααα−−−− MM

This set is by assumption closed under = and non-trivial, hence
by the Scott´s theorem is not recursive, a contradiction.

(ii) Similarly.

Lambda calculus II 176

Proposition.

For one has the following∩∩∩∩λλλλ
(i) Type checking problem is undecidable.
(ii) Typability is trivially decidable: all terms have a type.

Proof.

(i) Using the subject conversion for , the statement (i) of
the previous lemma applies and there are facts

∩∩∩∩λλλλ

αααα→→→→αααα−−−−////αααα→→→→αααα−−−− :K|:I| and

(ii) For all .: ωωωωMM has one

It is not known whether inhabitation in is decidable. ∩∩∩∩λλλλ

Lambda calculus II 173

Proof.

(i) Use the same method as for and the fact that T(σ) = T(τ) is
decidable.

→→→→λλλλ

(ii) In a motivation example for λµ, we have shown that every λ-term
has a type .. where, 0 αααα→→→→ααααµαµαµαµα====σσσσσσσσ0

(iii) All types are inhabited by the term Ώ.

Lambda calculus II 174

Lemma. Systems with subject conversion
Let λ- be a system of type assignment satisfying subject conversion
i.e.

σσσσ−−−−ΓΓΓΓ⇒⇒⇒⇒====σσσσ−−−−ΓΓΓΓ −−−−λλλλββββ−−−−λλλλ :|&:| NNMM

(i) Suppose that some closed terms have the type and
others not. Then the problem of type checking is undecidable.

αααα→→→→αααα

(ii) Suppose that some terms have a type and others not. Then the
problem of typability is undecidable.

Lambda calculus II 175

Proof.

(i) If the set is decidable, then so is the set }:|||),{(σσσσ−−−−σσσσ MM

}.:|||{ αααα→→→→αααα−−−− MM

This set is by assumption closed under = and non-trivial, hence
by the Scott´s theorem is not recursive, a contradiction.

(ii) Similarly.

Lambda calculus II 176

Proposition.

For one has the following∩∩∩∩λλλλ
(i) Type checking problem is undecidable.
(ii) Typability is trivially decidable: all terms have a type.

Proof.

(i) Using the subject conversion for , the statement (i) of
the previous lemma applies and there are facts

∩∩∩∩λλλλ

αααα→→→→αααα−−−−////αααα→→→→αααα−−−− :K|:I| and

(ii) For all .: ωωωωMM has one

It is not known whether inhabitation in is decidable. ∩∩∩∩λλλλ

Lambda calculus II 177

Lemma on reduction.
Let be one of the systems á la Curry. Then we have−−−−λλλλ
(i)]´:|&´´[:| σσσσ−−−−ΓΓΓΓ→>→>→>→>∃∃∃∃⇔⇔⇔⇔σσσσ−−−−ΓΓΓΓ −−−−λλλλββββ−−−−λλλλ ++++ MMMMM
(ii) σ is ihabited in σ is inhabited in ⇔⇔⇔⇔−−−−λλλλ ++++ −−−−λλλλ

Proof.
(i) ´.´)(MMMM ββββββββ ====→>→>→>→>⇐⇐⇐⇐ implies since trivialis

.:)(σσσσ⇒⇒⇒⇒ M of derivation on theinduction by
The only interesting case is when the last applied rule is an
application of rule EQ. Suppose

σσσσ
====σσσσ ββββ

:
:

M
MMM 11

The induction hypothesis says that there is ´´ 111 MMM ββββ→>→>→>→> such that
and one has By the Church-Rosser theorem,.´:| σσσσ−−−−ΓΓΓΓ −−−−λλλλ 1M MM1 and ´
have a common reduct, say M ´. But by the subject reduction theorem,
we have and the proof is complete. σσσσ−−−−ΓΓΓΓ −−−−λλλλ ´:| M

Lambda calculus II 178

(ii) By (i).

Proposition. The systems . ++++−−−−λλλλ

For the systems one has the following: ++++−−−−λλλλ

(i) Type checking is undecidable

(ii) Typability is undecidable for but trivially
decidable for

,++++++++ λλλλ→→→→λλλλ 2 and
.++++++++ ∩∩∩∩λλλλλµλµλµλµ and

(iii) The status of the inhabitation problem is the same for both
.−−−−λλλλ−−−−λλλλ ++++ and

Lambda calculus II 179

Proof.

(i) Subject conversion holds for the systems by definition. In
all systems It follows from (i) of the lemma on reduction
and the fact that that type checking is undecidable by (i)
of the lemma on systems

++++−−−−λλλλ
.:I αααα→→→→αααα

αααα→→→→αααα−−−−//// :K|
.−−−−λλλλ

(ii) We have already shown that terms without a normal form have no
type in Hence by the reduction lemma these terms
have no type in Since for these systems there are
terms that have a type by (ii) of lemma on systems with subject
conversion the undecidability of typability for
follows.

.2λλλλ→→→→λλλλ and
.++++++++ λλλλ→→→→λλλλ 2or

2λλλλ→→→→λλλλ and

(iii) By (ii) of the reduction lemma.

Lambda calculus II 180

Lemma. Typing of normal forms.

Let M be a term in normal form. Then

σσσσ−−−−⇒⇒⇒⇒σσσσ−−−− −−−−λλλλ−−−−λλλλ :|:| MMA

Lambda calculus II 177

Lemma on reduction.
Let be one of the systems á la Curry. Then we have−−−−λλλλ
(i)]´:|&´´[:| σσσσ−−−−ΓΓΓΓ→>→>→>→>∃∃∃∃⇔⇔⇔⇔σσσσ−−−−ΓΓΓΓ −−−−λλλλββββ−−−−λλλλ ++++ MMMMM
(ii) σ is ihabited in σ is inhabited in ⇔⇔⇔⇔−−−−λλλλ ++++ −−−−λλλλ

Proof.
(i) ´.´)(MMMM ββββββββ ====→>→>→>→>⇐⇐⇐⇐ implies since trivialis

.:)(σσσσ⇒⇒⇒⇒ M of derivation on theinduction by
The only interesting case is when the last applied rule is an
application of rule EQ. Suppose

σσσσ
====σσσσ ββββ

:
:

M
MMM 11

The induction hypothesis says that there is ´´ 111 MMM ββββ→>→>→>→> such that
and one has By the Church-Rosser theorem,.´:| σσσσ−−−−ΓΓΓΓ −−−−λλλλ 1M MM1 and ´
have a common reduct, say M ´. But by the subject reduction theorem,
we have and the proof is complete. σσσσ−−−−ΓΓΓΓ −−−−λλλλ ´:| M

Lambda calculus II 178

(ii) By (i).

Proposition. The systems . ++++−−−−λλλλ

For the systems one has the following: ++++−−−−λλλλ

(i) Type checking is undecidable

(ii) Typability is undecidable for but trivially
decidable for

,++++++++ λλλλ→→→→λλλλ 2 and
.++++++++ ∩∩∩∩λλλλλµλµλµλµ and

(iii) The status of the inhabitation problem is the same for both
.−−−−λλλλ−−−−λλλλ ++++ and

Lambda calculus II 179

Proof.

(i) Subject conversion holds for the systems by definition. In
all systems It follows from (i) of the lemma on reduction
and the fact that that type checking is undecidable by (i)
of the lemma on systems

++++−−−−λλλλ
.:I αααα→→→→αααα

αααα→→→→αααα−−−−//// :K|
.−−−−λλλλ

(ii) We have already shown that terms without a normal form have no
type in Hence by the reduction lemma these terms
have no type in Since for these systems there are
terms that have a type by (ii) of lemma on systems with subject
conversion the undecidability of typability for
follows.

.2λλλλ→→→→λλλλ and
.++++++++ λλλλ→→→→λλλλ 2or

2λλλλ→→→→λλλλ and

(iii) By (ii) of the reduction lemma.

Lambda calculus II 180

Lemma. Typing of normal forms.

Let M be a term in normal form. Then

σσσσ−−−−⇒⇒⇒⇒σσσσ−−−− −−−−λλλλ−−−−λλλλ :|:| MMA

Lambda calculus II 177

Lemma on reduction.
Let be one of the systems á la Curry. Then we have−−−−λλλλ
(i)]´:|&´´[:| σσσσ−−−−ΓΓΓΓ→>→>→>→>∃∃∃∃⇔⇔⇔⇔σσσσ−−−−ΓΓΓΓ −−−−λλλλββββ−−−−λλλλ ++++ MMMMM
(ii) σ is ihabited in σ is inhabited in ⇔⇔⇔⇔−−−−λλλλ ++++ −−−−λλλλ

Proof.
(i) ´.´)(MMMM ββββββββ ====→>→>→>→>⇐⇐⇐⇐ implies since trivialis

.:)(σσσσ⇒⇒⇒⇒ M of derivation on theinduction by
The only interesting case is when the last applied rule is an
application of rule EQ. Suppose

σσσσ
====σσσσ ββββ

:
:

M
MMM 11

The induction hypothesis says that there is ´´ 111 MMM ββββ→>→>→>→> such that
and one has By the Church-Rosser theorem,.´:| σσσσ−−−−ΓΓΓΓ −−−−λλλλ 1M MM1 and ´
have a common reduct, say M ´. But by the subject reduction theorem,
we have and the proof is complete. σσσσ−−−−ΓΓΓΓ −−−−λλλλ ´:| M

Lambda calculus II 178

(ii) By (i).

Proposition. The systems . ++++−−−−λλλλ

For the systems one has the following: ++++−−−−λλλλ

(i) Type checking is undecidable

(ii) Typability is undecidable for but trivially
decidable for

,++++++++ λλλλ→→→→λλλλ 2 and
.++++++++ ∩∩∩∩λλλλλµλµλµλµ and

(iii) The status of the inhabitation problem is the same for both
.−−−−λλλλ−−−−λλλλ ++++ and

Lambda calculus II 179

Proof.

(i) Subject conversion holds for the systems by definition. In
all systems It follows from (i) of the lemma on reduction
and the fact that that type checking is undecidable by (i)
of the lemma on systems

++++−−−−λλλλ
.:I αααα→→→→αααα

αααα→→→→αααα−−−−//// :K|
.−−−−λλλλ

(ii) We have already shown that terms without a normal form have no
type in Hence by the reduction lemma these terms
have no type in Since for these systems there are
terms that have a type by (ii) of lemma on systems with subject
conversion the undecidability of typability for
follows.

.2λλλλ→→→→λλλλ and
.++++++++ λλλλ→→→→λλλλ 2or

2λλλλ→→→→λλλλ and

(iii) By (ii) of the reduction lemma.

Lambda calculus II 180

Lemma. Typing of normal forms.

Let M be a term in normal form. Then

σσσσ−−−−⇒⇒⇒⇒σσσσ−−−− −−−−λλλλ−−−−λλλλ :|:| MMA

Lambda calculus II 177

Lemma on reduction.
Let be one of the systems á la Curry. Then we have−−−−λλλλ
(i)]´:|&´´[:| σσσσ−−−−ΓΓΓΓ→>→>→>→>∃∃∃∃⇔⇔⇔⇔σσσσ−−−−ΓΓΓΓ −−−−λλλλββββ−−−−λλλλ ++++ MMMMM
(ii) σ is ihabited in σ is inhabited in ⇔⇔⇔⇔−−−−λλλλ ++++ −−−−λλλλ

Proof.
(i) ´.´)(MMMM ββββββββ ====→>→>→>→>⇐⇐⇐⇐ implies since trivialis

.:)(σσσσ⇒⇒⇒⇒ M of derivation on theinduction by
The only interesting case is when the last applied rule is an
application of rule EQ. Suppose

σσσσ
====σσσσ ββββ

:
:

M
MMM 11

The induction hypothesis says that there is ´´ 111 MMM ββββ→>→>→>→> such that
and one has By the Church-Rosser theorem,.´:| σσσσ−−−−ΓΓΓΓ −−−−λλλλ 1M MM1 and ´
have a common reduct, say M ´. But by the subject reduction theorem,
we have and the proof is complete. σσσσ−−−−ΓΓΓΓ −−−−λλλλ ´:| M

Lambda calculus II 178

(ii) By (i).

Proposition. The systems . ++++−−−−λλλλ

For the systems one has the following: ++++−−−−λλλλ

(i) Type checking is undecidable

(ii) Typability is undecidable for but trivially
decidable for

,++++++++ λλλλ→→→→λλλλ 2 and
.++++++++ ∩∩∩∩λλλλλµλµλµλµ and

(iii) The status of the inhabitation problem is the same for both
.−−−−λλλλ−−−−λλλλ ++++ and

Lambda calculus II 179

Proof.

(i) Subject conversion holds for the systems by definition. In
all systems It follows from (i) of the lemma on reduction
and the fact that that type checking is undecidable by (i)
of the lemma on systems

++++−−−−λλλλ
.:I αααα→→→→αααα

αααα→→→→αααα−−−−//// :K|
.−−−−λλλλ

(ii) We have already shown that terms without a normal form have no
type in Hence by the reduction lemma these terms
have no type in Since for these systems there are
terms that have a type by (ii) of lemma on systems with subject
conversion the undecidability of typability for
follows.

.2λλλλ→→→→λλλλ and
.++++++++ λλλλ→→→→λλλλ 2or

2λλλλ→→→→λλλλ and

(iii) By (ii) of the reduction lemma.

Lambda calculus II 180

Lemma. Typing of normal forms.

Let M be a term in normal form. Then

σσσσ−−−−⇒⇒⇒⇒σσσσ−−−− −−−−λλλλ−−−−λλλλ :|:| MMA

Lambda calculus II 181

Lemma. Typing of normal forms.

Let M be a term in normal form. Then

σσσσ−−−−⇒⇒⇒⇒σσσσ−−−− −−−−λλλλ−−−−λλλλ :|:| MMA

Proof.

By induction on the given derivation, using the fact that).(MM A∈∈∈∈

Lambda calculus II 182

Proposition. Systems .A−−−−λλλλ

For systems we have the following:,A−−−−λλλλ

(i) The problem of type checking is undecidable for the systems ,A→→→→λλλλ
. and AAA ∩∩∩∩λλλλλµλµλµλµλλλλ ,2

(ii) The problem of typability is undecidable for the systems
and but it is trivially decidable for the systems

,A→→→→λλλλ
,A2λλλλ AA ∩∩∩∩λλλλλµλµλµλµ and

(all terms are typable).

(iii) The problem of inhabitation is trivially decidable for all four systems
includin the rule A (all types are inhabited).

Lambda calculus II 183

Proof.

(i) By lemma on typing normal forms and the fact that
in all four basic Curry systems and (i) of subject conversion systems
lemma, we get undecidability.

αααα→→→→αααα−−−−//// :K|

(ii) similarly.

(iii) The inhabitation problem becomes trivial: in all four systems
one has for all types σ. This follows from the facts thatσσσσΩΩΩΩ−−−− :|

),)((:Y| σσσσ→→→→σσσσ→→→→σσσσ−−−− →→→→λλλλ A A−−−−λλλλΩΩΩΩ====ββββ and YI is closed
under the rule EQ.

Lambda calculus II 181

Lemma. Typing of normal forms.

Let M be a term in normal form. Then

σσσσ−−−−⇒⇒⇒⇒σσσσ−−−− −−−−λλλλ−−−−λλλλ :|:| MMA

Proof.

By induction on the given derivation, using the fact that).(MM A∈∈∈∈

Lambda calculus II 182

Proposition. Systems .A−−−−λλλλ

For systems we have the following:,A−−−−λλλλ

(i) The problem of type checking is undecidable for the systems ,A→→→→λλλλ
. and AAA ∩∩∩∩λλλλλµλµλµλµλλλλ ,2

(ii) The problem of typability is undecidable for the systems
and but it is trivially decidable for the systems

,A→→→→λλλλ
,A2λλλλ AA ∩∩∩∩λλλλλµλµλµλµ and

(all terms are typable).

(iii) The problem of inhabitation is trivially decidable for all four systems
includin the rule A (all types are inhabited).

Lambda calculus II 183

Proof.

(i) By lemma on typing normal forms and the fact that
in all four basic Curry systems and (i) of subject conversion systems
lemma, we get undecidability.

αααα→→→→αααα−−−−//// :K|

(ii) similarly.

(iii) The inhabitation problem becomes trivial: in all four systems
one has for all types σ. This follows from the facts thatσσσσΩΩΩΩ−−−− :|

),)((:Y| σσσσ→→→→σσσσ→→→→σσσσ−−−− →→→→λλλλ A A−−−−λλλλΩΩΩΩ====ββββ and YI is closed
under the rule EQ.

Lambda calculus II 181

Lemma. Typing of normal forms.

Let M be a term in normal form. Then

σσσσ−−−−⇒⇒⇒⇒σσσσ−−−− −−−−λλλλ−−−−λλλλ :|:| MMA

Proof.

By induction on the given derivation, using the fact that).(MM A∈∈∈∈

Lambda calculus II 182

Proposition. Systems .A−−−−λλλλ

For systems we have the following:,A−−−−λλλλ

(i) The problem of type checking is undecidable for the systems ,A→→→→λλλλ
. and AAA ∩∩∩∩λλλλλµλµλµλµλλλλ ,2

(ii) The problem of typability is undecidable for the systems
and but it is trivially decidable for the systems

,A→→→→λλλλ
,A2λλλλ AA ∩∩∩∩λλλλλµλµλµλµ and

(all terms are typable).

(iii) The problem of inhabitation is trivially decidable for all four systems
includin the rule A (all types are inhabited).

Lambda calculus II 183

Proof.

(i) By lemma on typing normal forms and the fact that
in all four basic Curry systems and (i) of subject conversion systems
lemma, we get undecidability.

αααα→→→→αααα−−−−//// :K|

(ii) similarly.

(iii) The inhabitation problem becomes trivial: in all four systems
one has for all types σ. This follows from the facts thatσσσσΩΩΩΩ−−−− :|

),)((:Y| σσσσ→→→→σσσσ→→→→σσσσ−−−− →→→→λλλλ A A−−−−λλλλΩΩΩΩ====ββββ and YI is closed
under the rule EQ.

Lambda calculus II 181

Lemma. Typing of normal forms.

Let M be a term in normal form. Then

σσσσ−−−−⇒⇒⇒⇒σσσσ−−−− −−−−λλλλ−−−−λλλλ :|:| MMA

Proof.

By induction on the given derivation, using the fact that).(MM A∈∈∈∈

Lambda calculus II 182

Proposition. Systems .A−−−−λλλλ

For systems we have the following:,A−−−−λλλλ

(i) The problem of type checking is undecidable for the systems ,A→→→→λλλλ
. and AAA ∩∩∩∩λλλλλµλµλµλµλλλλ ,2

(ii) The problem of typability is undecidable for the systems
and but it is trivially decidable for the systems

,A→→→→λλλλ
,A2λλλλ AA ∩∩∩∩λλλλλµλµλµλµ and

(all terms are typable).

(iii) The problem of inhabitation is trivially decidable for all four systems
includin the rule A (all types are inhabited).

Lambda calculus II 183

Proof.

(i) By lemma on typing normal forms and the fact that
in all four basic Curry systems and (i) of subject conversion systems
lemma, we get undecidability.

αααα→→→→αααα−−−−//// :K|

(ii) similarly.

(iii) The inhabitation problem becomes trivial: in all four systems
one has for all types σ. This follows from the facts thatσσσσΩΩΩΩ−−−− :|

),)((:Y| σσσσ→→→→σσσσ→→→→σσσσ−−−− →→→→λλλλ A A−−−−λλλλΩΩΩΩ====ββββ and YI is closed
under the rule EQ.

