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Lambda Calculus

Part III

Typing a la Church

Based on materials provided by H. P. Barendregt
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We shall introduce in a uniform way the eight Lambda 
calculi  typed a la Church

.P  and ωωωωλλλλωωωωλλλλλλλλλωλωλωλωωωωωλλλλλλλλ→→→→λλλλ ,,,,,, PP2

The last one is often called            the calculus of 
constructions. The eight systems form a cube as 
follows:   

Cλλλλ
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P

P

2P2

P

λλλλ→→→→λλλλ

ωωωωλλλλωωωωλλλλ

λλλλλλλλ

ωωωωλλλλλωλωλωλω
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Each edge         represents the inclusion         This cube will 
be referred to as the λ-cube.

→→→→ .⊆⊆⊆⊆

As we have seen, the systems                           can be 
given also a la Curry. A Curry version exists also for

2λλλλ→→→→λλλλ   and  
λωλωλωλω

and something similar can be probably given for its 
weaker version .ωωωωλλλλ

On the other hand, no natural Curry versions of the 
systems                                             seem possible.C   and   λλλλωωωωλλλλλλλλλλλλ P2PP ,,
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Before we define the systems of the λ-cube in a uniform way, we 
introduce the systems                         in the similar way as the Curry 
systems have been presented.  Then it turns out that two of the systems 
of the λ-cube are equivalent to them.

2λλλλ→→→→λλλλ   and  

Definition.              Church .−−−−→→→→λλλλ

�Types

�Pseudoterms

�Bases                                                           with all                              
distinct and all

�Contraction Rule

�Type assignment                                            is defined as follows:                    

}:,,:{ nn11 AxAx K====ΓΓΓΓ ix
.T∈∈∈∈iA

]:[).:( NxMNMAx ====→→→→λλλλ ββββ

AM :| −−−−ΓΓΓΓ

TT|VT →→→→====

ΛΛΛΛλλλλΛΛΛΛΛΛΛΛ====ΛΛΛΛ T.:|| TTT VV
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→→→→λλλλ

(start rule) Ax
Ax

:|
):(

−−−−ΓΓΓΓ
ΓΓΓΓ∈∈∈∈

n)eliminatio−−−−→→→→(
BMN

ANBAM
:)(|

:|)(:|
−−−−ΓΓΓΓ

−−−−ΓΓΓΓ→→→→−−−−ΓΓΓΓ

on)introducti−−−−→→→→( )(:).:(|
:|:,

BAMAx
BMAx
→→→→λλλλ−−−−ΓΓΓΓ

−−−−ΓΓΓΓ

Where the basis                                                          and it is 
necessary that the variable x does not occur in Γ. The letters 
A, B denote arbitrary types and M,N arbitrary pseudoterms.  

}:{:, AxAx ∪∪∪∪ΓΓΓΓΓΓΓΓ for   stands  
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Examples.

)(:).:.:(|
:).:(|:,:

:)).:((|:
)(:).:(|:
)(:).:(|

ABAaBbAa
BcbAaBbAc

AbaAaAb
BAbAaBb
AAaAa

→→→→→→→→λλλλλλλλ−−−−
λλλλ−−−−
λλλλ−−−−

→→→→λλλλ−−−−
→→→→λλλλ−−−−
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The system  λ2-Church  

�Types

�Pseudoterms

�Bases                                                           with all  
distinct and

�Contraction rules 

�Type assignment        

}:,,:{ nn11 AxAx K====ΓΓΓΓ
ix T∈∈∈∈iA

]:[).(
]:[).:(

AMAM
NaMNMAa

====αααα→→→→ααααΛΛΛΛ

====→→→→λλλλ

ββββ

ββββ

VT|TT|VT ∀∀∀∀→→→→====

TTTTTT V|T:|T|| ΛΛΛΛΛΛΛΛΛΛΛΛλλλλΛΛΛΛΛΛΛΛΛΛΛΛ====ΛΛΛΛ VV

:follows as defined is   AM :| −−−−ΓΓΓΓ
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2λλλλ

Ax
Ax

:|
):(

−−−−ΓΓΓΓ
ΓΓΓΓ∈∈∈∈

n)eliminatio−−−−→→→→(
BMN

ANBAM
:)(|

:|)(:|
−−−−ΓΓΓΓ

−−−−ΓΓΓΓ→→→→−−−−ΓΓΓΓ

on)introducti−−−−→→→→( )(:).:(|
:|:,

BAMAx
BMAx
→→→→λλλλ−−−−ΓΓΓΓ

−−−−ΓΓΓΓ

(start rule)

n)eliminatio−−−−∀∀∀∀(

on)introducti−−−−∀∀∀∀(

T
]:[:|

).(:| ∈∈∈∈
====αααα−−−−ΓΓΓΓ

αααα∀∀∀∀−−−−ΓΓΓΓ B
BAMB

AM

)(
).(:).(|

:| ΓΓΓΓ∉∉∉∉αααα
αααα∀∀∀∀ααααΛΛΛΛ−−−−ΓΓΓΓ

−−−−ΓΓΓΓ FV
AM

AM

Lambda calculus 3 10

Examples.

AAbaaAb
AAAaa

aa
aa

:).:(|:
)(:).:(|

).(:).:(|
)(:).:(|

αααααλαλαλαλΛΛΛΛ−−−−
→→→→αααααλαλαλαλΛΛΛΛ−−−−

αααα→→→→αααααααα∀∀∀∀αααααλαλαλαλΛΛΛΛ−−−−
αααα→→→→ααααααααλλλλ−−−−

For more advanced,check that the following reduction  holds

))..((:))).(()..(:(|
).:().:(|

ββββ→→→→αααααααα∀∀∀∀ββββ∀∀∀∀ββββ→→→→αααααααα∀∀∀∀αααααααα∀∀∀∀βλβλβλβλΛΛΛΛ−−−−
→→→→λλλλ→→→→αααααλαλαλαλΛΛΛΛ−−−−
aaa

bbaAaAbaa

For less advanced
))..((:))..(:(| ββββ→→→→αααααααα∀∀∀∀ββββ∀∀∀∀αβαβαβαβαααααααα∀∀∀∀βλβλβλβλΛΛΛΛ−−−− a

Without a proof:  Church-Rosser property holds for the reduction 
of pseudoterms in  .2λλλλ
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Dependency.

Types are dependent on terms and vice versa. There are four cases:

terms depending on terms
terms depending on types
types depending on terms
types depending on types

The first two sorts of dependency are presented in .2λλλλ→→→→λλλλ   and  
In           , we have→→→→λλλλ

BFMAMBAF ::: ⇒⇒⇒⇒→→→→

Here   FM is a term depending on a term, in particular on M.

In        , we have2λλλλ
AAGAAG →→→→⇒⇒⇒⇒αααα→→→→αααααααα∀∀∀∀ :.:     typea  

Hence for                                we have GA a term depending on the 
type  A.

,.: aaG αααααλαλαλαλΛΛΛΛ≡≡≡≡
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In                           one has also function abstraction for the two types of 
dependence. For the two examples above

2λλλλ→→→→λλλλ   and  

αααα→→→→αααααααα∀∀∀∀ααααααααΛΛΛΛ
→→→→λλλλ

.:.
:.:

G
BAFmAm

The systems          and ωωωωλλλλ .Pλλλλ

We shall show the remaining two dependencies: in particular with
types FA in         depending on types and FM   in         depending on 
terms.

ωωωωλλλλ Pλλλλ

We will also have function abstractions for these dependencies  both 
in          and         ωωωωλλλλ .Pλλλλ
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The system          Types depending on types.:ωωωωλλλλ

αααα→→→→αααα is a natural example of a type depending on a type  α.

We would like to define a term with a new 
form of abstraction such that                            This will be 
possible in           To do this, it is not possible to define types in an 
informal metalanguage as we have done so far. It is necessary 
generate the type  by the system itself.

αααα→→→→αααα∈∈∈∈λαλαλαλα==== .Tf
.)( αααα→→→→αααα====ααααf

.ωωωωλλλλ

Kinds and constructors.

Informally, take a constant T.: ∈∈∈∈σσσσ∗∗∗∗σσσσ∗∗∗∗    toscorrespond     such that    
The informal statement

T)(T, ∈∈∈∈ββββ→→→→αααα⇒⇒⇒⇒∈∈∈∈ββββαααα

Now be comes the formal

∗∗∗∗ββββ→→→→αααα−−−−∗∗∗∗ββββ∗∗∗∗αααα :)(|:,:
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Now, we can write                                 for the f  above.  But we 
have to ask, where this f  live. Neither on the level of terms, nor 
among the types.

αααα→→→→αααα∗∗∗∗λαλαλαλα≡≡≡≡ .:f

It is necessary to introduce a new class K, the elements of which are 
called kinds.

KKK →→→→∗∗∗∗==== |
Hence 

K,,, ∗∗∗∗→→→→∗∗∗∗→→→→∗∗∗∗∗∗∗∗→→→→∗∗∗∗∗∗∗∗
are kinds and

K = },,,{ K∗∗∗∗→→→→∗∗∗∗→→→→∗∗∗∗∗∗∗∗→→→→∗∗∗∗∗∗∗∗

It is necessary to introduce one more class � such that k : �  corresponds 
to              If             �  and                               is called a  constructor of 
kind   k. Each element of  T  will be a constructor of kind   

.K∈∈∈∈k :| k−−−− FkF  then  ,:| −−−−
.∗∗∗∗
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Example.

We shall show later on that

)(:).:(| ∗∗∗∗→→→→∗∗∗∗αααα→→→→αααα∗∗∗∗λαλαλαλα−−−− 44 344 21
f

Hence the above function   f  is a constructor of kind .∗∗∗∗→→→→∗∗∗∗

Although the types and terms can be kept separate, we will 
consider them as a subset of one general set         of pseudo-
expressions.

T
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Definition. Types and terms of :ωωωωλλλλ

�Sorts                         , �          two constants selected from C.

�Class                                                      the elements are called kinds.

�A set of pseudoexpressions                         

∗∗∗∗
KKK →→→→∗∗∗∗==== |

T

TTTTTT →→→→λλλλ==== |:||| VCV

where  V is an infinite collection of 
variables and C of constants.
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Statements, bases - a motivation

As terms and types belong to the same set      , the definition of 
statement is modified accordingly, bases have both types of variables 
as subjects and have to become linearly ordered. That is why we call 
them contexts.            

T

The reason is that in          one wants to derive  ωωωωλλλλ

)(:).:(|:
:|:,:

αααα→→→→ααααααααλλλλ−−−−∗∗∗∗αααα
αααα−−−−αααα∗∗∗∗αααα

xx
xx

But not

)(:).:(|:
:|:,:

αααα→→→→∗∗∗∗∗∗∗∗λαλαλαλα−−−−αααα
αααα−−−−∗∗∗∗αααααααα

xx
xx

in which α   occurs both free and bound.
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Definition. Contexts for .ωωωωλλλλ

(i) A statement of            is of form  ωωωωλλλλ T.∈∈∈∈AMAM ,:    with   

(ii) A context is a finite linearly ordered set of statements with 
distinct variables as subjects.  We shall denote them by  K., ∆∆∆∆ΓΓΓΓ

(iii) <> denotes the empty context. If >>>><<<<====ΓΓΓΓ nn11 AxAx :,,: K

then >>>><<<<====ΓΓΓΓ ByAxAxBy nn11 :,:,,::, K

(iv)  The (type)  assignment                               is derived by the 
following axioms and rules. The letter s ranges over sorts.

AM :| ωωωωλλλλ−−−−ΓΓΓΓ
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ωωωωλλλλ

axiom)( :| ∗∗∗∗−−−−<><><><> �

rule)start( ΓΓΓΓ∉∉∉∉
−−−−ΓΓΓΓ

−−−−ΓΓΓΓ x
AxAx

sA
:|:,

:|

rule)weakening( ΓΓΓΓ∉∉∉∉
−−−−ΓΓΓΓ

−−−−ΓΓΓΓ−−−−ΓΓΓΓ x
BACx

sCBA
:|:,

:|:|

formation) type/kind(
sBA

sBsA
:)(|

:|:|
→→→→−−−−ΓΓΓΓ

−−−−ΓΓΓΓ−−−−ΓΓΓΓ

rule)n applicatio(
BFa

AaBAF
:|

:|)(:|
−−−−ΓΓΓΓ

−−−−ΓΓΓΓ→→→→−−−−ΓΓΓΓ

rule)nabstractio(
)(:).:(|

:)(|:|:,
BAbAx

sBABbAx
→→→→λλλλ−−−−ΓΓΓΓ

→→→→−−−−ΓΓΓΓ−−−−ΓΓΓΓ

rule)conversion(
´:|

´´:|:|
BA

BBsBBA
−−−−ΓΓΓΓ

====−−−−ΓΓΓΓ−−−−ΓΓΓΓ ββββ
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Examples.

))()((:)).(:(|:,:
)(:|)(:,:,:

:|:,:

ββββ→→→→αααα→→→→ββββ→→→→ααααββββ→→→→ααααλλλλ−−−−∗∗∗∗ββββ∗∗∗∗αααα
ββββ→→→→αααα−−−−ββββ→→→→αααα∗∗∗∗ββββ∗∗∗∗αααα

∗∗∗∗ββββ→→→→αααα−−−−∗∗∗∗ββββ∗∗∗∗αααα

ωωωωλλλλ

ωωωωλλλλ

ωωωωλλλλ

xx
xx

Put                                     Then the following hold.   ..: ββββ→→→→ββββ∗∗∗∗λβλβλβλβ≡≡≡≡D

)(:).:(|:
)(:|

ααααααααλλλλ−−−−∗∗∗∗αααα
∗∗∗∗→→→→∗∗∗∗−−−−

ωωωωλλλλ

ωωωωλλλλ

DDxDx
D
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The system λP: Types depending on terms.

BAn →→→→ is an intuitive example of a type depending on a term. In 
order to formalize this dependence in   λP,  we need to extend the class 
K of kinds as follows: 

if  A is a type and              then    K∈∈∈∈k K.∈∈∈∈→→→→ kA

In particular                  is a kind  and if ∗∗∗∗→→→→A    and  ,: AaAf ∈∈∈∈∗∗∗∗→→→→

The expression  fa  is a type depending on a term. Moreover, we 
have function abstraction for this dependency.

.: ∗∗∗∗fa  has one 
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Cartesian products.

Suppose that for each   a:A  a type          is given such that there is 
an element                Then we may want to form the function   

aB
.: aa Bb

abAa .:λλλλ

that should have as a type the cartesian product

∏∏∏∏ aBAa .:
of types  s.´aB

Once these product types are allowed, the type constructor             
can be eliminated. We can write

→→→→

∏∏∏∏≡≡≡≡→→→→ BAaBA .:)(

where  a is a variable not occuring in B.
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Types and terms of λP.

(i) The set         of pseudo-expressions of λP is defined as follows  T

T.TT.TTTT :|:||| VVCV ΠΠΠΠλλλλ≡≡≡≡

Where   V  is the set of all variables and C  that of constants. 
No distinction between type variables and term variables is 
made.

(ii) Among the constants C two elements are called      and �.      ∗∗∗∗
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Assignment rules for λP.

Statements of the form                                         and contexts are 
defined as for

T∈∈∈∈AMAM ,:   with  
.ωωωωλλλλ

Contexts are finite linearly ordered sequences of statements.

Sorts are two constants denoted by       and  �.  Again, the letter s
ranges over the set of sorts.     

∗∗∗∗

The notion        is defined by the following axiom and rules. −−−−|
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λP

:| ∗∗∗∗−−−−<><><><>
(axiom)

(start-rule)

(weakening rule)

(type/kind formation)

(application rule)

(abstraction rule)

(conversion rule)

ΓΓΓΓ∉∉∉∉
−−−−ΓΓΓΓ

−−−−ΓΓΓΓ x
AxAx

sA
:|:,

:|

ΓΓΓΓ∉∉∉∉
−−−−ΓΓΓΓ

−−−−ΓΓΓΓ−−−−ΓΓΓΓ x
BACx

sCBA
:|:,

:|:|

sBAx
sBAxA

:).:(|
:|:,:|

ΠΠΠΠ−−−−ΓΓΓΓ
−−−−ΓΓΓΓ∗∗∗∗−−−−ΓΓΓΓ

]:[:|
:|).:(:|

axBFa
AaBAxF

====−−−−ΓΓΓΓ
−−−−ΓΓΓΓΠΠΠΠ−−−−ΓΓΓΓ

).:(:).:(|
:).:(|:|:,

BAxbAx
sBAxBbAx

ΠΠΠΠλλλλ−−−−ΓΓΓΓ
ΠΠΠΠ−−−−ΓΓΓΓ−−−−ΓΓΓΓ

´:|
´´:|:|

BA
BBsBBA

−−−−ΓΓΓΓ
====−−−−ΓΓΓΓ−−−−ΓΓΓΓ ββββ

�
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Exercises.

)).(:(:).::(|:,:
:).:(|:,:

:|:,:,:
:|:,:,:

:)(|:

PaPaAaxPaxAaAPA
PaAaAPA

PaAaAPA
PaAaAPA

AA

→→→→ΠΠΠΠλλλλλλλλ−−−−∗∗∗∗→→→→∗∗∗∗
∗∗∗∗→→→→ΠΠΠΠ−−−−∗∗∗∗→→→→∗∗∗∗

∗∗∗∗→→→→−−−−∗∗∗∗→→→→∗∗∗∗
∗∗∗∗−−−−∗∗∗∗→→→→∗∗∗∗

∗∗∗∗→→→→−−−−∗∗∗∗ �

�
�
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λP and Logic.       (Pragmatics of λP)

Systems similar to  λP  have been introduced by                     
N. G. De Bruijn in the 1970s and 1980s in order to represent 
mathematical theorems and their proofs.

Idea. Assume that there is a set  prop closed under implication.
This can be done by context

>>>>→→→→→→→→∗∗∗∗<<<<≡≡≡≡ΓΓΓΓ propproppropprop0 :,: Imp

�We shall write

�A variable                             is declared  and           
is declared to be valid if          is inhabited.  

.Imp ϕψϕψϕψϕψψψψψ⊃⊃⊃⊃ϕϕϕϕ for     

∗∗∗∗→→→→propT : prop:ϕϕϕϕ
ϕϕϕϕT
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To guarantee that the implication has the right properties, one 
assumes                       such thatie ⊃⊃⊃⊃⊃⊃⊃⊃   and  

)()(:
)(:

ψψψψ⊃⊃⊃⊃ϕϕϕϕ→→→→ψψψψ→→→→ϕϕϕϕϕψϕψϕψϕψ⊃⊃⊃⊃
ψψψψ→→→→ϕϕϕϕ→→→→ψψψψ⊃⊃⊃⊃ϕϕϕϕϕψϕψϕψϕψ⊃⊃⊃⊃

TTT
TTT

i

e

Now for representation of implicational proposition logic 
we choose to work in context               consisting ofpropΓΓΓΓ

)().(:::
)(.:::

:

ψψψψ⊃⊃⊃⊃ϕϕϕϕ→→→→ψψψψ→→→→ϕϕϕϕψψψψΠΠΠΠϕϕϕϕΠΠΠΠ⊃⊃⊃⊃
ψψψψ→→→→ϕϕϕϕ→→→→ψψψψ⊃⊃⊃⊃ϕϕϕϕψψψψΠΠΠΠϕϕϕϕΠΠΠΠ⊃⊃⊃⊃

∗∗∗∗→→→→
ΓΓΓΓ

TTTpropprop
TTTpropprop

propT

i

e

0
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Example.

We want to show that                is valid for  all propositions. We 
need to show that its translation as a type                   is inhabited. 

ϕϕϕϕ⊃⊃⊃⊃ϕϕϕϕ
)( ϕϕϕϕ⊃⊃⊃⊃ϕϕϕϕT

We have

)(:)).:((
)(:).:(

:
:
::

ϕϕϕϕ→→→→ϕϕϕϕϕϕϕϕλλλλϕϕϕϕϕϕϕϕ⊃⊃⊃⊃
ϕϕϕϕ→→→→ϕϕϕϕϕϕϕϕλλλλ

ϕϕϕϕ
∗∗∗∗ϕϕϕϕ

∗∗∗∗→→→→ϕϕϕϕ

TxTx
TTxTx

Tx
T

propTprop

i

1 1

(context)
(application)
(assumption)

(abstraction)

(context, application)

Hence
)(:)).:((| ϕϕϕϕ→→→→ϕϕϕϕϕϕϕϕλλλλϕϕϕϕϕϕϕϕ⊃⊃⊃⊃−−−−ΓΓΓΓ λλλλ TxTxiPprop
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Simplified notation.

(identity)   ILLL

LLL

LL

T

prop
→→→→⊃⊃⊃⊃
∗∗∗∗

Then for             one can use                                                       ϕψϕψϕψϕψ⊃⊃⊃⊃ e

xyyx .:)(: ϕϕϕϕλλλλψψψψ→→→→ϕϕϕϕλλλλ

and for ϕψϕψϕψϕψ⊃⊃⊃⊃ i

xx ).(: ψψψψ→→→→ϕϕϕϕλλλλ

In this way the             fragment of (manysorted, constructive)  
predicate logic can be interpreted in λP.   A predicate on a type 
with the domain   A  is represented as the statement  

},{ ∀∀∀∀→→→→

).(: ∗∗∗∗→→→→AP
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One defines Pa for  a:A to be valid, if it is inhabited.

Quantification is translated as follows

PxAxPxAx .:. ΠΠΠΠ>>>>∈∈∈∈∀∀∀∀ LL

Example.

Formula
).().( PxxAxPxyAyAx ∈∈∈∈∀∀∀∀→→→→∈∈∈∈∀∀∀∀∈∈∈∈∀∀∀∀

is valid, since its translation is inhabited:

]).:[].::([
:).:).::(:(|:,:

PxxAxPxyAYAx
zxxAxPxyAyAxzAAPA

ΠΠΠΠ→→→→ΠΠΠΠΠΠΠΠ
λλλλΠΠΠΠΠΠΠΠλλλλ−−−−∗∗∗∗→→→→→→→→∗∗∗∗
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The system  λP  deserved its name because predicate logic can be 
interpreted in it.

The method interprets

 types theinhabiting termsproofs

   types   formulas ns,propositio

LLLLLLLL

LL

The method is often called propositions as types paradigm and it is 
used for formulating results in the foundations of mathematics.
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Systems of the λ-cube:  A uniform definition.

(i) The set of pseudo-expressions of  λP is defined as follows  T

T.TT.TTTT :|:||| VVCV ΠΠΠΠλλλλ≡≡≡≡

Where   V is the set of all variables and  C that of constants. No
distinction between type variables and term variables is made.

We use   A,B,C,�a,b,c,�  for pseudo-terms and   x,y,z,�  for 
variables.

(ii) Two constants are selected and denoted by and  �.
They are called  sorts.  The letter  s ranges over the set of sorts.     

∗∗∗∗
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(iv) A statement is of the form                                        
We call A  the subject  and   B  the  predicate of the statement A:B.

A declaration is a statement with a variable as the subject and with a 
pseudo-expression as the predicate.

T.∈∈∈∈BABA ,:       where

(v)  A pseudo-context is a finite ordered sequence of declarations, all 
with distinct subjects. The empty pseudo-context is denoted by <>  
(usually we do not write it).

Given a pseudo-context 

its extension is defined as follows:

>>>>=<=<=<=<ΓΓΓΓ nn11 AxAx :,,: K

.:,:,,::, >>>><<<<====ΓΓΓΓ BxAxAxBx nn11 K

(iii)   On the notions of  β-conversions and  β-reductions are
defined by the following contraction rule

T

]:[).:( CxBCBAx ====→→→→λλλλ
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(vi) The notion                        states that   A:B can be derived from 
the pseudo-context  Γ, in this case we say that  A and  B are legal 
expressions and          is a legal pseudo-context. The notion is 
axiomatized by the rules of type assignment.

BA :| −−−−ΓΓΓΓ

ΓΓΓΓ

The rules  are divided into two groups: 

a) general axiom and rules valid for all systems of λ-cube, 

b) the specific rules differentiating the eight systems (usually 
parametrized   Π-introduction rules).
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Systems of the λ-cube

1. General axiom and rules.

(axiom) :| ∗∗∗∗−−−−<><><><> �

(start-rule) ΓΓΓΓ∉∉∉∉
−−−−ΓΓΓΓ

−−−−ΓΓΓΓ x
AxAx

sA
:|:,

:|

(weakening rule) ΓΓΓΓ∉∉∉∉
−−−−ΓΓΓΓ

−−−−ΓΓΓΓ−−−−ΓΓΓΓ x
BACx

sCBA
:|:,

:|:|

(application rule) ]:[:|
:|).:(:|

axBFa
AaBAxF

====−−−−ΓΓΓΓ
−−−−ΓΓΓΓΠΠΠΠ−−−−ΓΓΓΓ

(abstraction rule) ).:(:).:(|
:).:(|:|:,

BAxbAx
sBAxBbAx

ΠΠΠΠλλλλ−−−−ΓΓΓΓ
ΠΠΠΠ−−−−ΓΓΓΓ−−−−ΓΓΓΓ

(conversion rule)
´:|

´´:|:|
BA

BBsBBA
−−−−ΓΓΓΓ

====−−−−ΓΓΓΓ−−−−ΓΓΓΓ ββββ
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2. The specific rules.

rule   ),( 21 ss
2

21

sBAx
sBAxsA

:).:(|
:|:,:|

ΠΠΠΠ−−−−ΓΓΓΓ
−−−−ΓΓΓΓ−−−−ΓΓΓΓ

We select four specific rules  

),(),,(),,(),,( ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ � � � �

And the eight systems of λ-cube consist of the general rules 
together with a specific subsets of the above specific rules.

The sets of specific rules for the eight systems are depicted in the 
table below.
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System Set of specific rules

CP
P

2P
P
2

λλλλ====ωωωωλλλλ
ωωωωλλλλ

λωλωλωλω
ωωωωλλλλ

λλλλ
λλλλ
λλλλ

→→→→λλλλ (    ,    )∗∗∗∗ ∗∗∗∗

∗∗∗∗
(    ,    )      (� ,    )∗∗∗∗ ∗∗∗∗
(    ,    )                         (     ,�)

∗∗∗∗

∗∗∗∗
∗∗∗∗

∗∗∗∗

(    ,    )     (� ,    )       (    , �)          (�, �) 

∗∗∗∗∗∗∗∗ ∗∗∗∗ ∗∗∗∗
(    ,    )                                               (�, �) ∗∗∗∗ ∗∗∗∗
(    ,    )       (� ,    )                            (�, �) ∗∗∗∗ ∗∗∗∗ ∗∗∗∗
(    ,    )                           (� ,    )        (�, �) ∗∗∗∗ ∗∗∗∗ ∗∗∗∗

(    ,    )       (� ,    )       (    , �) 

∗∗∗∗ ∗∗∗∗∗∗∗∗
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P

P

2P2

P

λλλλ→→→→λλλλ

ωωωωλλλλωωωωλλλλ

λλλλλλλλ

ωωωωλλλλλωλωλωλω

λ-cube
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System     related system     names and references
Simply typed lambda calculus
[Church 1940]
[Barendregt 1984]
[Hindley and Seldin   1986]
Second order (typed) lambda calculus 
[Girard 1972]
[Reynolds 1974]
[de Bruin 1970]
[Harper et al.  1987]

[Longo and Moggi 1988]

[Renardel de Lavalette 1991]

[Girard 1972]

Calculus of constructions
[Coquand and Huet]

ττττλλλλ→→→→λλλλ

F2λλλλ

LFQEAUTP ,−−−−λλλλ

2Pλλλλ

POLYRECωωωωλλλλ

ωωωωλωλωλωλω F

CCPωωωωλλλλ
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Remarks.

(i) Impredicativity. The expression

)).(:( αααα→→→→αααα∗∗∗∗ααααΠΠΠΠ

in λ2 as a cartesian product of types, will be a type, too.  So

∗∗∗∗αααα→→→→αααα∗∗∗∗ααααΠΠΠΠ−−−− :)).(:(|

but since it is a product over all possible types α, 
including                                 itself,)).(:( αααα→→→→αααα∗∗∗∗ααααΠΠΠΠ
there is an essential impredicativity here.
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(ii) Terms depending on types and types depending on types in .→→→→λλλλ

AAA
AxAx

   typeon the depending  typea is    
  on type depending  terma is   

→→→→
λλλλ .:

but in           we have no function abstraction  for these dependencies.→→→→λλλλ

(iii) Note that in                                                    one has no 
types depending on terms. The types are given beforehand. Thus 
the right-hand side of the cube is essentially more difficult than the 
left-hand side because of the mixture of types and terms.

ωωωωλλλλλλλλ→→→→λλλλ     and  in   even and  2
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Equivalence of both versions of              and  .2λλλλ→→→→λλλλ

Recall the definition                                     where x is not in A, B.BAxBA .:ΠΠΠΠ≡≡≡≡→→→→

Notice that application rule in the λ-cube implies the                               
rule:

n)eliminatio−−−−→→→→(

BaxBFa
AaBAxBAF

≡≡≡≡====−−−−ΓΓΓΓ
−−−−ΓΓΓΓΠΠΠΠ≡≡≡≡→→→→−−−−ΓΓΓΓ

]:[:)(|
:|.:)(:|

Since x does not occur in B. It follows that if we have

∗∗∗∗−−−−∗∗∗∗∗∗∗∗ ::|:,:,:,: CMBbAaBA

in            in λ-cube then→→→→λλλλ
CMBbAa :|:,: −−−−

is derivable in the original system              The notation  .→→→→λλλλ
 

 ∗∗∗∗−−−−ΓΓΓΓ ::| CM

.:|:| ∗∗∗∗−−−−ΓΓΓΓ−−−−ΓΓΓΓ CCM    and  n  conjunctio for the stands
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Lemma.

Consider            in the  λ-cube. If                       in this system, then  A
is  built up from the set using only         as defined 
above.  

→→→→λλλλ ∗∗∗∗−−−−ΓΓΓΓ :| A
}):(|{ ΓΓΓΓ∈∈∈∈∗∗∗∗BB →→→→

Proof.

By induction on the generation of  .| −−−−

To show that both versions of   λ2  are the same, we have to define

MM
AA

.:.
.:.

∗∗∗∗λαλαλαλα≡≡≡≡ααααΛΛΛΛ
∗∗∗∗ααααΠΠΠΠ≡≡≡≡αααα∀∀∀∀

in the λ-cube. .
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Examples.

(a) in           one can derive→→→→λλλλ

)(:).:(|:,:,:
).:(:).:(|:

:).:(|:

BAbAaBbBA
AAxaAaA

AAxA

→→→→λλλλ−−−−∗∗∗∗∗∗∗∗
ΠΠΠΠλλλλ−−−−∗∗∗∗
∗∗∗∗ΠΠΠΠ−−−−∗∗∗∗

).:()( BAxBA ΠΠΠΠ≡≡≡≡→→→→  where

∗∗∗∗→→→→→→→→λλλλλλλλ−−−−∗∗∗∗∗∗∗∗
λλλλ−−−−∗∗∗∗∗∗∗∗
λλλλ−−−−∗∗∗∗

:))((:).::(|:,:
:)).:((|:,:,:,:
:)).:((|:,:

ABAaBbAaBA
AbaAaBbAcBA
AbaAaAbA
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(b) In λ2  one can derive

AAbaaAbA
AAAaaA

aa
aa

:).::(|:,:
)(:).::(|:

:)).(:(:).::(|
)(:).:(|:

ααααλλλλ∗∗∗∗λαλαλαλα−−−−∗∗∗∗
→→→→ααααλλλλ∗∗∗∗λαλαλαλα−−−−∗∗∗∗

∗∗∗∗αααα→→→→αααα∗∗∗∗ααααΠΠΠΠααααλλλλ∗∗∗∗λαλαλαλα−−−−
αααα→→→→ααααααααλλλλ−−−−∗∗∗∗αααα

Notice that for the last line the following reduction holds:

b
baAaAbaa

→→→→
λλλλ→→→→ααααλλλλ∗∗∗∗λαλαλαλα ).:().::(
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Connection of λ2  with second-order propositional logic.

Exercise.

4444 34444 2144444444 344444444 21
predicatesubject

2 aaaa )).:.(:(:))).:(()..:(::(| ββββ→→→→αααα∗∗∗∗ααααΠΠΠΠ∗∗∗∗ββββΠΠΠΠββββ→→→→αααα∗∗∗∗ααααΠΠΠΠ∗∗∗∗ααααΠΠΠΠλλλλ∗∗∗∗λβλβλβλβ−−−−λλλλ

Simplification: put                           which is the definition of the 
second-order falsum.  Using this, we may write

).:( αααα∗∗∗∗ααααΠΠΠΠ≡≡≡≡⊥⊥⊥⊥

44 344 2144 344 21
predicatesubject

aa ).:(:).::(| ββββ→→→→⊥⊥⊥⊥∗∗∗∗ββββΠΠΠΠββββ⊥⊥⊥⊥λλλλ∗∗∗∗λβλβλβλβ−−−−

The predicate (type) considered as a proposition says:   ex falso
sequitur quodlibet  („anything  follows from a false statement�) 
and the subject (term) is its proof.
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(c) In          one can derive e.g.ωωωωλλλλ

:)(:).:(| ∗∗∗∗→→→→∗∗∗∗αααα→→→→αααα∗∗∗∗λαλαλαλα−−−− �

).:( αααα→→→→αααα∗∗∗∗λαλαλαλα{                            is a constructor mapping types into types}

4434421
αααα→→→→αααα

∗∗∗∗ααααααααΠΠΠΠ
αααα∗∗∗∗αααα

:).:(
::

x
x

:).:(
:::

43421
∗∗∗∗→→→→∗∗∗∗
∗∗∗∗∗∗∗∗ΠΠΠΠ

∗∗∗∗∗∗∗∗∗∗∗∗
x

x

:)(:).:( ∗∗∗∗→→→→∗∗∗∗αααα→→→→αααα∗∗∗∗λαλαλαλα

� �

�

Similarly one can derive

ββββαααα→→→→αααα∗∗∗∗λαλαλαλαββββλλλλ−−−−ββββ∗∗∗∗ββββ
∗∗∗∗ββββαααα→→→→αααα∗∗∗∗λαλαλαλα−−−−∗∗∗∗ββββ

).:(:).:(|:,:
:).:(|:

xyx

),( ∗∗∗∗∗∗∗∗ ),(� �
�

Proof.
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Higher-order constructors.

They are formed in the following way

∗∗∗∗→→→→∗∗∗∗→→→→∗∗∗∗∗∗∗∗→→→→∗∗∗∗λλλλ−−−−∗∗∗∗αααα
∗∗∗∗αααα−−−−∗∗∗∗→→→→∗∗∗∗∗∗∗∗αααα

)(:))(.:(|:
:)(|:,:

faff
fff
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(d) λP-Propositions as types.  

the following can be derived:

:)(|: ∗∗∗∗→→→→−−−−∗∗∗∗ AA �

{If  A is a type considered as a set,  then                 is the kind of 
predicates on  A.}

∗∗∗∗→→→→A

(i) if  A is a non-empty set,             and  P  is a predicate on  A,  
then  Pa  is a type considered as a proposition which is true if 
inhabited, otherwise false. 

Aa ∈∈∈∈

∗∗∗∗−−−−∗∗∗∗→→→→∗∗∗∗ :|:),(:,: PaAaAPA
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(ii)  if P  is a  binary predicate on the set  A,  then                        is  
a proposition.  

PaaAa ∈∈∈∈∀∀∀∀

∗∗∗∗ΠΠΠΠ−−−−∗∗∗∗→→→→→→→→∗∗∗∗ :).:(|)(:,: PaaAaAAPA

(iii)  if P and Q are two unary predicates on a set  A,  then the 
predicate P considered as a set is included in Q.  

∗∗∗∗→→→→ΠΠΠΠ−−−−∗∗∗∗→→→→∗∗∗∗→→→→∗∗∗∗ :)).(:(|:,:,: QaPaAaAQAPA

(iv) proposition stating the reflexivity of inclusion.

∗∗∗∗→→→→ΠΠΠΠ−−−−∗∗∗∗→→→→∗∗∗∗ :))(:(|:,: PaPaAaAPA

(v) �proof� of the reflexivity of inclusion.

∗∗∗∗→→→→ΠΠΠΠλλλλλλλλ−−−−∗∗∗∗→→→→∗∗∗∗ :)).(:(:).::(|:,: PaPaAa
subject

xPaxAaAPA
444 3444 21
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(vi) A type considered as a (true) proposition.

∗∗∗∗→→→→ΠΠΠΠ→→→→→→→→ΠΠΠΠ−−−−∗∗∗∗∗∗∗∗→→→→∗∗∗∗ :)).:().:((|:,:,: QPaAaQPaAaQAPA

We have proved that the type on the right hand is a proposition, to be 
true, we have to assume that A is non-empty.

44444444 344444444 21
QPaAaQPaAa

QPaAayQPaAax
QyaxaPaAayQPaAax

AaQAPA

00

0

→→→→ΠΠΠΠ→→→→→→→→ΠΠΠΠ
ΠΠΠΠΠΠΠΠ→→→→ΠΠΠΠΠΠΠΠ

ΠΠΠΠλλλλ→→→→ΠΠΠΠλλλλ
−−−−∗∗∗∗∗∗∗∗→→→→∗∗∗∗

).:().:(
))..:(:).:(:(

:))()..:(:).:(:(
|:,:,:,:

This proposition as a type states that proposition

QPaAaQPaAa →→→→∈∈∈∈∀∀∀∀→→→→→→→→∈∈∈∈∀∀∀∀ ).().(

is true in non-empty structures A.



Lambda calculus 3 53

(e) λω - conjunction

The second-order definition of  conjuntion is defined as follows

∗∗∗∗ββββαααα−−−−∗∗∗∗ββββ∗∗∗∗αααα :&|:,:

,).(:& γγγγ→→→→γγγγ→→→→ββββ→→→→αααα∗∗∗∗γγγγΠΠΠΠ≡≡≡≡ββββαααα

{it is definable already in λ2}, but in λω can be derived

Let

xyxKAND .::::&.:: ββββλλλλααααλλλλ∗∗∗∗λβλβλβλβ∗∗∗∗λαλαλαλα≡≡≡≡ββββαααα∗∗∗∗λβλβλβλβ∗∗∗∗λαλαλαλα≡≡≡≡    and   

then

).::(:|
)(:|

αααα→→→→ββββ→→→→αααα∗∗∗∗ββββΠΠΠΠ∗∗∗∗ααααΠΠΠΠ−−−−
∗∗∗∗→→→→∗∗∗∗→→→→∗∗∗∗−−−−

K
AND

Note that while   α&β and  K  can be derived already in λ2,  
AND  cannot.
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The subject of the following assignment is a proof that

αααα→→→→αβαβαβαβAND
is  a tautology.

∗∗∗∗αααα→→→→αβαβαβαβαβαβαβαβαααααβαβαβαβλλλλ−−−−∗∗∗∗ββββ∗∗∗∗αααα :)(:))(.:(|:,: ANDKxANDx
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(f)  λP2  is corresponding to second-order predicate logic.

In it the following can be derived

∗∗∗∗⊥⊥⊥⊥→→→→ΠΠΠΠ→→→→
→→→→⊥⊥⊥⊥→→→→→→→→ΠΠΠΠΠΠΠΠ−−−−∗∗∗∗→→→→→→→→∗∗∗∗

∗∗∗∗→→→→⊥⊥⊥⊥→→→→λλλλ−−−−∗∗∗∗→→→→∗∗∗∗

:)].:(
).::[(|:,:

)(:).:(|:,:

PaaAa
PbaPabAbAaAAPA

APaAaAPA

The proposition  states  that  a binary  relation  that is asymetric 
is  irreflexive.
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(g) λPω  gives the following derivation.

:))()((:).::(|: ∗∗∗∗→→→→→→→→∗∗∗∗→→→→→→→→λλλλ∗∗∗∗→→→→→→→→λλλλ−−−−∗∗∗∗ AAAPaaAaAAPA

This constructor assigns to a binary predicate P on  A its diagonalization. 
The same can be done uniformly in A.

:).:::(
:).:::(|
∗∗∗∗ΠΠΠΠ∗∗∗∗→→→→→→→→ΠΠΠΠ∗∗∗∗ΠΠΠΠ

λλλλ∗∗∗∗→→→→→→→→λλλλ∗∗∗∗λλλλ−−−−
AaAAPA

PaaAaAAPA

�

�
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(h)  λPω = λC   The calculus of constructions.

(i) A  constructor can be derived that assigns to a type  A and to 
a predicate P  on  A the negation of P.

:))().(:(
:).:::(|

∗∗∗∗→→→→→→→→∗∗∗∗→→→→∗∗∗∗ΠΠΠΠ
⊥⊥⊥⊥→→→→λλλλ∗∗∗∗→→→→λλλλ∗∗∗∗λλλλ−−−−

AAA
PaAaAPA

(ii) Universal quantification done uniformly:

Let                                                             then).:.::( PaAaAPAALL ΠΠΠΠ∗∗∗∗→→→→λλλλ∗∗∗∗λλλλ≡≡≡≡

).:()(:|:,: PaAaAPALLAPALLAPA ΠΠΠΠ====∗∗∗∗−−−−∗∗∗∗→→→→∗∗∗∗ ββββ   and   

�
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Exercises.

a) Define                                       Construct a term  M such that in 
λω

..: ⊥⊥⊥⊥→→→→αααα∗∗∗∗λαλαλαλα≡≡≡≡¬¬¬¬

))()((:|:,: αααα¬¬¬¬→→→→ββββ¬¬¬¬→→→→ββββ→→→→αααα−−−−∗∗∗∗ββββ∗∗∗∗αααα M

b) Find an expression M such that in λP2, we have

−−−−∗∗∗∗→→→→→→→→∗∗∗∗ |)(:,: AAPA

∗∗∗∗⊥⊥⊥⊥→→→→ΠΠΠΠ→→→→⊥⊥⊥⊥→→→→→→→→ΠΠΠΠΠΠΠΠ :)]:().::[(: PaaAaPbaPabAbAaM

c)  Find a term  M  such that in λC, we have

)(:|:,:,: PaAPALLMAaAPA →→→→−−−−∗∗∗∗→→→→∗∗∗∗
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Pure Type systems: A generalization of the  λ-cube.

� Many systems of typed lambda calculus a la Church can be seen as Pure 
Type Systems.

� One of the successes of the notion of Pure Type Systems is concerned 
with Logic: eight logical systems are shown to be in correspondence with 
the systems on the λ-cube.

� The general setting of Pure Type systems makes it easier to give the 
required proof
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The pure types systems are based on the same set of pseudoterms as 
systems of the λ-cube.

TTTTTT T :|:||| VVCV ΠΠΠΠλλλλ====

Definition. The specification of a Pure type system  consists of a 
triple    S = (S, A, R) where

� S is a subset of   C,  the elements of S are called sorts.

� A is a set of axioms of the form

c : s

with

R is a set of rules of the form

.SsCc ∈∈∈∈∈∈∈∈   and  

.,,),,( Sssssss 321321 ∈∈∈∈   with   
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Thw set of variables V is stratified according to sorts into disjoint 
infinite subsets                                       Hence                                    
The members of          are denoted                    

.SsVs ∈∈∈∈sort  each for   }.|{ SsVV s ∈∈∈∈∪∪∪∪====
 sV K,,, zyx sss

Arbitrary variables are still denoted by  x,y,z,… if necessary one 
writes  .s

s Vxxx ∈∈∈∈≡≡≡≡ for    

The first version of   λ2 can be understood as

x,y,z,… ranging over                                  

and

over V

∗∗∗∗V

K,,, γγγγββββαααα
�
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Definition.

The pure type system given by specification S = (S, A, R) is 
denoted by  λS = λ(S, A, R). Its properties are defined as follows. 

�Statements and contexts are defined as for the λ-cube

�The notion of type derivations                     is defined by the
following axioms and rules                           

BAS :| λλλλ−−−−ΓΓΓΓ
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),,( RASλλλλ

(axioms)

(start)

(weakening)

(product)

(application)

(abstraction)

(conversion)

sc :| −−−−<><><><> Asc ∈∈∈∈):(  if

AxAx
sA
:|:,

:|
−−−−ΓΓΓΓ

−−−−ΓΓΓΓ ΓΓΓΓ∉∉∉∉≡≡≡≡ xx s  if

BACx
sCBA

:|:,
:|:|

−−−−ΓΓΓΓ
−−−−ΓΓΓΓ−−−−ΓΓΓΓ ΓΓΓΓ∉∉∉∉≡≡≡≡ xx s  if

3

21

sBAx
sBAxsA

:).:(|
:|:,:|

ΠΠΠΠ−−−−ΓΓΓΓ
−−−−ΓΓΓΓ−−−−ΓΓΓΓ Rsss 321 ∈∈∈∈),,(

]:[:|
:|).:(:|

axBFa
AaBAxF

====−−−−ΓΓΓΓ
−−−−ΓΓΓΓΠΠΠΠ−−−−ΓΓΓΓ

).:(:).:(|
:).:(|:|:,

BAxbAx
sBAxBbAx

ΠΠΠΠλλλλ−−−−ΓΓΓΓ
ΠΠΠΠ−−−−ΓΓΓΓ−−−−ΓΓΓΓ

´:|
´´:|:|

BA
BBsBBA

−−−−ΓΓΓΓ
====−−−−ΓΓΓΓ−−−−ΓΓΓΓ ββββ
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The side condition                        is not decidable. However it can 
be replaced by the decidable condition

´)( BB ββββ====

´´ BBBB →→→→→→→→ or       

with no effect on the set of derivable statements.

Definition.

(i)  The rule                                                            In the 
λ-cube only systems with rules of this simple form are used.

).,,(),( 22121 sssss for  on abbreviatian  is   

(ii) The Pure type system is full if

}.,|),{( SssssSSR 2121 ∈∈∈∈====××××====
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Examples.

),(
:
,

∗∗∗∗∗∗∗∗
∗∗∗∗→→→→λλλλ
∗∗∗∗

R
A
S �

�

),(),,(
:

,

∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗λλλλ
∗∗∗∗

R
A2
S �

�

�

),(),,(),,(),,(
:
,

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗λλλλ
∗∗∗∗

R
AC
S �

�

� � � �

It is a full system.
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The system of higher order logic [Church 1940] can be 
described as follows.

),(),,(),,(
:,:

,,

∗∗∗∗∗∗∗∗∗∗∗∗
∆∆∆∆∗∗∗∗λλλλ

∆∆∆∆∗∗∗∗

R
AHOL
S �

� �

� � �

The system below is a subsystem of             An 
interesting conjecture of de Bruijn states that 
mathematics from before the year 1800 can all be 
formalized in it.

.→→→→λλλλ

),,(),,(),,,(
:

,,

∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∗∗∗∗∆∆∆∆
∗∗∗∗λλλλ

∆∆∆∆∗∗∗∗

R
APAL
S �

�
� � �
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Definition. Legal contexts and legal pseudoterms.

Let  Γ  be a pseudocontext and A  a pseudoterm.                          

(i) Γ  is called legal if   Γ |- P:Q  for some pseudoterms P,Q.       
(ii) A pseudoterm A  is called legal if there is a pseudocontext 
Γ  and pseudoterm  B  such that   Γ|-A:B  or Γ|-B:A.

Transitivity lemma.

Let                         be contexts of which Γ is legal. Then ∆∆∆∆ΓΓΓΓ    and  

BABA :|]:||[ −−−−ΓΓΓΓ⇒⇒⇒⇒−−−−∆∆∆∆∆∆∆∆−−−−ΓΓΓΓ   and  
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Substitution lemma.

Assume  CBAx :|,:, −−−−∆∆∆∆ΓΓΓΓ

and AD :| −−−−ΓΓΓΓ

Then ]:[:]:[|]:[, DxCDxBDx ========−−−−====∆∆∆∆ΓΓΓΓ

Thinning lemma.

Let Γ  and        be legal contexts and                 Then∆∆∆∆ .∆∆∆∆⊆⊆⊆⊆ΓΓΓΓ

BABA :|:| −−−−∆∆∆∆⇒⇒⇒⇒−−−−ΓΓΓΓ
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Generation lemma

]):(&[:|)( AscsCSsCci ∈∈∈∈====∈∈∈∈∃∃∃∃⇒⇒⇒⇒−−−−ΓΓΓΓ ββββ

]&

):(&:|[:|

xx

BxsBCBSsCx
s≡≡≡≡

ΓΓΓΓ∈∈∈∈−−−−ΓΓΓΓ====∃∃∃∃∈∈∈∈∃∃∃∃⇒⇒⇒⇒−−−−ΓΓΓΓ ββββ (ii)

]&:|:,
&:|[),,(:).:(|

32

1321

sCsBAx
sARsssCBAx

ββββ====−−−−ΓΓΓΓ
−−−−ΓΓΓΓ∈∈∈∈∃∃∃∃⇒⇒⇒⇒ΠΠΠΠ−−−−ΓΓΓΓ (iii)

)].:((&:|:,
&:).:(|[:).:(|

BAxCBbAx
sBAxBSsCbAx

ΠΠΠΠ====−−−−ΓΓΓΓ
ΠΠΠΠ−−−−ΓΓΓΓ∃∃∃∃∈∈∈∈∃∃∃∃⇒⇒⇒⇒λλλλ−−−−ΓΓΓΓ

ββββ

 (iv)

]]:[&:|
&).:(:|[,:)(|
axBCAa

BAxFBACFa
========−−−−ΓΓΓΓ

ΠΠΠΠ−−−−ΓΓΓΓ∃∃∃∃⇒⇒⇒⇒−−−−ΓΓΓΓ

ββββ

  (v)

Lambda calculus 3 70

Subject reduction theorem.

BAAABA ´:|´&:| −−−−ΓΓΓΓ⇒⇒⇒⇒→>→>→>→>−−−−ΓΓΓΓ ββββ

Condensing lemma.

If   x is not free in ∆, B, C, then

CBCBAx :|,:|,:, −−−−∆∆∆∆ΓΓΓΓ⇒⇒⇒⇒−−−−∆∆∆∆ΓΓΓΓ
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Definition. Simply sorted systems.

Let  λS =  λ(S,A,R) be a Pure type system. λS is called 
singly sorted if

´´),,),,,

):(),:(

33321321

212211

ssRssssss

ssAscsc

≡≡≡≡⇒⇒⇒⇒∈∈∈∈

≡≡≡≡⇒⇒⇒⇒∈∈∈∈

(( (ii)

 (i)

Uniqueness of types for singly sorted Pure type systems.

Let λS be a singly sorted Pure type system.  Then

2121 BBBABA ββββ====⇒⇒⇒⇒−−−−ΓΓΓΓ−−−−ΓΓΓΓ :|&:|
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Definition.  Strong normalization for the λ-cube.

Let  λS be a Pure type system. We call it strongly normalizing and 
write λS |= SN  if all legal terms of λS are SN,  i.e

)(&)(:| BSNASNBA ⇒⇒⇒⇒−−−−ΓΓΓΓ

Theorem. Strong normalization  for the λ-cube.

For all systems in the   λ-cube, we have the following

)(&)(:| BSNASNBA ⇒⇒⇒⇒−−−−ΓΓΓΓ  (i)

SNCBAACBAxAx n1nn11   are    (ii) ,,,,:|:,,: KK ⇒⇒⇒⇒−−−−
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Representing logics.

Eight systems of intuitionistic logic correspond in some sense 
to the systems in the λ-cube: there are four systems of 
propositional logic and four systems of many sorted predicate 
logic.

PROP           propositional logic
PROP2         second-order propositional logic
PROP        weakly higher-order proposition logic
PROPω         higher-order proposition logic
PRED           predicate logic
PRED2         second-order predicate logic
PRED           weakly higher-ordered predicate logic
PREDω        higher-order predicate logic              

ωωωω

ωωωω
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�All these systems are minimal logics, the only logical operators are                 
→→→→ and .∀∀∀∀
� However, for the second- and higher-order systems, the operators

∃∃∃∃∨∨∨∨¬¬¬¬    and&,, are all definable.

� Weakly higher-order logics have variables for higher-order 
propositions or predicates but no quantification over them.

� A higher-order propositions have lower order propositions as 
arguments.

� All the above logics are intuitionistic. The classical versions of 
the logics in the upper plane of the logic-cube (see below) are 
obtained by adding as axiom

� The systems form a cube as shown below.

.. αααα→→→→αααα¬¬¬¬¬¬¬¬αααα∀∀∀∀
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PREDPROP

PREDPROP

2PRED2PROP

PREDPROP

ωωωωωωωω

ωωωωωωωω

This cube will be referred as  logic-cube.
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Each system         on the logic-cube corresponds to the 
system         on the corresponding vertex. The edges   of the 
logic-cube represent inclusions of the systems in the same 
way as on the λ-cube.

iL
iλλλλ
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Propositions as types:  the idea.

A formula in the logic       on the logic-cube can be 
interpreted as  a type         in the corresponding         on  the 
λ-cube .

iL
A iλλλλ

The transition
AA a

Is called propositions-as-types interpretation of  .iL

Soundness.  
The propositions-as-types interpretation satisfies the 
following soundness result: 

If A  is provable in PRED, then         is inhabited in λP  A
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In fact an inhabitant of        in λP   can be found canonically from a 
proof of A in PRED. Different proofs of  A  are interpreted as 
different terms of type

A

.A

Soundness can be shown all systems        with respect to the 
corresponding systems         of the λ-cube . 

iL
iλλλλ

Completness.

Completness is defined naturally: if A  is a formula of the 
logic        such that the type         is inhabited in        then A
is provable in  

iL A ,iλλλλ
.iL

For the proposition logics it is trivially true.  Completnes 
was proved for PRED with respect to λP.   For    PREDω 
with respect to    λC   fails. 


