
Lambda calculus 3 1

Lambda Calculus

Part III

Typing a la Church

Based on materials provided by H. P. Barendregt

Lambda calculus 3 2

We shall introduce in a uniform way the eight Lambda
calculi typed a la Church

.P and ωωωωλλλλωωωωλλλλλλλλλωλωλωλωωωωωλλλλλλλλ→→→→λλλλ ,,,,,, PP2

The last one is often called the calculus of
constructions. The eight systems form a cube as
follows:

Cλλλλ

Lambda calculus 3 3

P

P

2P2

P

λλλλ→→→→λλλλ

ωωωωλλλλωωωωλλλλ

λλλλλλλλ

ωωωωλλλλλωλωλωλω

Lambda calculus 3 4

Each edge represents the inclusion This cube will
be referred to as the λ-cube.

→→→→ .⊆⊆⊆⊆

As we have seen, the systems can be
given also a la Curry. A Curry version exists also for

2λλλλ→→→→λλλλ and
λωλωλωλω

and something similar can be probably given for its
weaker version .ωωωωλλλλ

On the other hand, no natural Curry versions of the
systems seem possible.C and λλλλωωωωλλλλλλλλλλλλ P2PP ,,

Lambda calculus 3 5

Before we define the systems of the λ-cube in a uniform way, we
introduce the systems in the similar way as the Curry
systems have been presented. Then it turns out that two of the systems
of the λ-cube are equivalent to them.

2λλλλ→→→→λλλλ and

Definition. Church .−−−−→→→→λλλλ

�Types

�Pseudoterms

�Bases with all
distinct and all

�Contraction Rule

�Type assignment is defined as follows:

}:,,:{ nn11 AxAx K====ΓΓΓΓ ix
.T∈∈∈∈iA

]:[).:(NxMNMAx ====→→→→λλλλ ββββ

AM :| −−−−ΓΓΓΓ

TT|VT →→→→====

ΛΛΛΛλλλλΛΛΛΛΛΛΛΛ====ΛΛΛΛ T.:|| TTT VV

Lambda calculus 3 6

→→→→λλλλ

(start rule) Ax
Ax

:|
):(

−−−−ΓΓΓΓ
ΓΓΓΓ∈∈∈∈

n)eliminatio−−−−→→→→(
BMN

ANBAM
:)(|

:|)(:|
−−−−ΓΓΓΓ

−−−−ΓΓΓΓ→→→→−−−−ΓΓΓΓ

on)introducti−−−−→→→→()(:).:(|
:|:,

BAMAx
BMAx
→→→→λλλλ−−−−ΓΓΓΓ

−−−−ΓΓΓΓ

Where the basis and it is
necessary that the variable x does not occur in Γ. The letters
A, B denote arbitrary types and M,N arbitrary pseudoterms.

}:{:, AxAx ∪∪∪∪ΓΓΓΓΓΓΓΓ for stands

Lambda calculus 3 7

Examples.

)(:).:.:(|
:).:(|:,:

:)).:((|:
)(:).:(|:
)(:).:(|

ABAaBbAa
BcbAaBbAc

AbaAaAb
BAbAaBb
AAaAa

→→→→→→→→λλλλλλλλ−−−−
λλλλ−−−−
λλλλ−−−−

→→→→λλλλ−−−−
→→→→λλλλ−−−−

Lambda calculus 3 8

The system λ2-Church

�Types

�Pseudoterms

�Bases with all
distinct and

�Contraction rules

�Type assignment

}:,,:{ nn11 AxAx K====ΓΓΓΓ
ix T∈∈∈∈iA

]:[).(
]:[).:(

AMAM
NaMNMAa

====αααα→→→→ααααΛΛΛΛ

====→→→→λλλλ

ββββ

ββββ

VT|TT|VT ∀∀∀∀→→→→====

TTTTTT V|T:|T|| ΛΛΛΛΛΛΛΛΛΛΛΛλλλλΛΛΛΛΛΛΛΛΛΛΛΛ====ΛΛΛΛ VV

:follows as defined is AM :| −−−−ΓΓΓΓ

Lambda calculus 3 9

2λλλλ

Ax
Ax

:|
):(

−−−−ΓΓΓΓ
ΓΓΓΓ∈∈∈∈

n)eliminatio−−−−→→→→(
BMN

ANBAM
:)(|

:|)(:|
−−−−ΓΓΓΓ

−−−−ΓΓΓΓ→→→→−−−−ΓΓΓΓ

on)introducti−−−−→→→→()(:).:(|
:|:,

BAMAx
BMAx
→→→→λλλλ−−−−ΓΓΓΓ

−−−−ΓΓΓΓ

(start rule)

n)eliminatio−−−−∀∀∀∀(

on)introducti−−−−∀∀∀∀(

T
]:[:|

).(:| ∈∈∈∈
====αααα−−−−ΓΓΓΓ

αααα∀∀∀∀−−−−ΓΓΓΓ B
BAMB

AM

)(
).(:).(|

:| ΓΓΓΓ∉∉∉∉αααα
αααα∀∀∀∀ααααΛΛΛΛ−−−−ΓΓΓΓ

−−−−ΓΓΓΓ FV
AM

AM

Lambda calculus 3 10

Examples.

AAbaaAb
AAAaa

aa
aa

:).:(|:
)(:).:(|

).(:).:(|
)(:).:(|

αααααλαλαλαλΛΛΛΛ−−−−
→→→→αααααλαλαλαλΛΛΛΛ−−−−

αααα→→→→αααααααα∀∀∀∀αααααλαλαλαλΛΛΛΛ−−−−
αααα→→→→ααααααααλλλλ−−−−

For more advanced,check that the following reduction holds

))..((:))).(()..(:(|
).:().:(|

ββββ→→→→αααααααα∀∀∀∀ββββ∀∀∀∀ββββ→→→→αααααααα∀∀∀∀αααααααα∀∀∀∀βλβλβλβλΛΛΛΛ−−−−
→→→→λλλλ→→→→αααααλαλαλαλΛΛΛΛ−−−−
aaa

bbaAaAbaa

For less advanced
))..((:))..(:(| ββββ→→→→αααααααα∀∀∀∀ββββ∀∀∀∀αβαβαβαβαααααααα∀∀∀∀βλβλβλβλΛΛΛΛ−−−− a

Without a proof: Church-Rosser property holds for the reduction
of pseudoterms in .2λλλλ

Lambda calculus 3 11

Dependency.

Types are dependent on terms and vice versa. There are four cases:

terms depending on terms
terms depending on types
types depending on terms
types depending on types

The first two sorts of dependency are presented in .2λλλλ→→→→λλλλ and
In , we have→→→→λλλλ

BFMAMBAF ::: ⇒⇒⇒⇒→→→→

Here FM is a term depending on a term, in particular on M.

In , we have2λλλλ
AAGAAG →→→→⇒⇒⇒⇒αααα→→→→αααααααα∀∀∀∀ :.: typea

Hence for we have GA a term depending on the
type A.

,.: aaG αααααλαλαλαλΛΛΛΛ≡≡≡≡

Lambda calculus 3 12

In one has also function abstraction for the two types of
dependence. For the two examples above

2λλλλ→→→→λλλλ and

αααα→→→→αααααααα∀∀∀∀ααααααααΛΛΛΛ
→→→→λλλλ

.:.
:.:

G
BAFmAm

The systems and ωωωωλλλλ .Pλλλλ

We shall show the remaining two dependencies: in particular with
types FA in depending on types and FM in depending on
terms.

ωωωωλλλλ Pλλλλ

We will also have function abstractions for these dependencies both
in and ωωωωλλλλ .Pλλλλ

Lambda calculus 3 13

The system Types depending on types.:ωωωωλλλλ

αααα→→→→αααα is a natural example of a type depending on a type α.

We would like to define a term with a new
form of abstraction such that This will be
possible in To do this, it is not possible to define types in an
informal metalanguage as we have done so far. It is necessary
generate the type by the system itself.

αααα→→→→αααα∈∈∈∈λαλαλαλα==== .Tf
.)(αααα→→→→αααα====ααααf

.ωωωωλλλλ

Kinds and constructors.

Informally, take a constant T.: ∈∈∈∈σσσσ∗∗∗∗σσσσ∗∗∗∗ toscorrespond such that
The informal statement

T)(T, ∈∈∈∈ββββ→→→→αααα⇒⇒⇒⇒∈∈∈∈ββββαααα

Now be comes the formal

∗∗∗∗ββββ→→→→αααα−−−−∗∗∗∗ββββ∗∗∗∗αααα :)(|:,:

Lambda calculus 3 14

Now, we can write for the f above. But we
have to ask, where this f live. Neither on the level of terms, nor
among the types.

αααα→→→→αααα∗∗∗∗λαλαλαλα≡≡≡≡ .:f

It is necessary to introduce a new class K, the elements of which are
called kinds.

KKK →→→→∗∗∗∗==== |
Hence

K,,, ∗∗∗∗→→→→∗∗∗∗→→→→∗∗∗∗∗∗∗∗→→→→∗∗∗∗∗∗∗∗
are kinds and

K = },,,{ K∗∗∗∗→→→→∗∗∗∗→→→→∗∗∗∗∗∗∗∗→→→→∗∗∗∗∗∗∗∗

It is necessary to introduce one more class � such that k : � corresponds
to If � and is called a constructor of
kind k. Each element of T will be a constructor of kind

.K∈∈∈∈k :| k−−−− FkF then ,:| −−−−
.∗∗∗∗

Lambda calculus 3 15

Example.

We shall show later on that

)(:).:(| ∗∗∗∗→→→→∗∗∗∗αααα→→→→αααα∗∗∗∗λαλαλαλα−−−− 44 344 21
f

Hence the above function f is a constructor of kind .∗∗∗∗→→→→∗∗∗∗

Although the types and terms can be kept separate, we will
consider them as a subset of one general set of pseudo-
expressions.

T

Lambda calculus 3 16

Definition. Types and terms of :ωωωωλλλλ

�Sorts , � two constants selected from C.

�Class the elements are called kinds.

�A set of pseudoexpressions

∗∗∗∗
KKK →→→→∗∗∗∗==== |

T

TTTTTT →→→→λλλλ==== |:||| VCV

where V is an infinite collection of
variables and C of constants.

Lambda calculus 3 17

Statements, bases - a motivation

As terms and types belong to the same set , the definition of
statement is modified accordingly, bases have both types of variables
as subjects and have to become linearly ordered. That is why we call
them contexts.

T

The reason is that in one wants to derive ωωωωλλλλ

)(:).:(|:
:|:,:

αααα→→→→ααααααααλλλλ−−−−∗∗∗∗αααα
αααα−−−−αααα∗∗∗∗αααα

xx
xx

But not

)(:).:(|:
:|:,:

αααα→→→→∗∗∗∗∗∗∗∗λαλαλαλα−−−−αααα
αααα−−−−∗∗∗∗αααααααα

xx
xx

in which α occurs both free and bound.

Lambda calculus 3 18

Definition. Contexts for .ωωωωλλλλ

(i) A statement of is of form ωωωωλλλλ T.∈∈∈∈AMAM ,: with

(ii) A context is a finite linearly ordered set of statements with
distinct variables as subjects. We shall denote them by K., ∆∆∆∆ΓΓΓΓ

(iii) <> denotes the empty context. If >>>><<<<====ΓΓΓΓ nn11 AxAx :,,: K

then >>>><<<<====ΓΓΓΓ ByAxAxBy nn11 :,:,,::, K

(iv) The (type) assignment is derived by the
following axioms and rules. The letter s ranges over sorts.

AM :| ωωωωλλλλ−−−−ΓΓΓΓ

Lambda calculus 3 19

ωωωωλλλλ

axiom)(:| ∗∗∗∗−−−−<><><><> �

rule)start(ΓΓΓΓ∉∉∉∉
−−−−ΓΓΓΓ

−−−−ΓΓΓΓ x
AxAx

sA
:|:,

:|

rule)weakening(ΓΓΓΓ∉∉∉∉
−−−−ΓΓΓΓ

−−−−ΓΓΓΓ−−−−ΓΓΓΓ x
BACx

sCBA
:|:,

:|:|

formation) type/kind(
sBA

sBsA
:)(|

:|:|
→→→→−−−−ΓΓΓΓ

−−−−ΓΓΓΓ−−−−ΓΓΓΓ

rule)n applicatio(
BFa

AaBAF
:|

:|)(:|
−−−−ΓΓΓΓ

−−−−ΓΓΓΓ→→→→−−−−ΓΓΓΓ

rule)nabstractio(
)(:).:(|

:)(|:|:,
BAbAx

sBABbAx
→→→→λλλλ−−−−ΓΓΓΓ

→→→→−−−−ΓΓΓΓ−−−−ΓΓΓΓ

rule)conversion(
´:|

´´:|:|
BA

BBsBBA
−−−−ΓΓΓΓ

====−−−−ΓΓΓΓ−−−−ΓΓΓΓ ββββ

Lambda calculus 3 20

Examples.

))()((:)).(:(|:,:
)(:|)(:,:,:

:|:,:

ββββ→→→→αααα→→→→ββββ→→→→ααααββββ→→→→ααααλλλλ−−−−∗∗∗∗ββββ∗∗∗∗αααα
ββββ→→→→αααα−−−−ββββ→→→→αααα∗∗∗∗ββββ∗∗∗∗αααα

∗∗∗∗ββββ→→→→αααα−−−−∗∗∗∗ββββ∗∗∗∗αααα

ωωωωλλλλ

ωωωωλλλλ

ωωωωλλλλ

xx
xx

Put Then the following hold. ..: ββββ→→→→ββββ∗∗∗∗λβλβλβλβ≡≡≡≡D

)(:).:(|:
)(:|

ααααααααλλλλ−−−−∗∗∗∗αααα
∗∗∗∗→→→→∗∗∗∗−−−−

ωωωωλλλλ

ωωωωλλλλ

DDxDx
D

Lambda calculus 3 21

The system λP: Types depending on terms.

BAn →→→→ is an intuitive example of a type depending on a term. In
order to formalize this dependence in λP, we need to extend the class
K of kinds as follows:

if A is a type and then K∈∈∈∈k K.∈∈∈∈→→→→ kA

In particular is a kind and if ∗∗∗∗→→→→A and ,: AaAf ∈∈∈∈∗∗∗∗→→→→

The expression fa is a type depending on a term. Moreover, we
have function abstraction for this dependency.

.: ∗∗∗∗fa has one

Lambda calculus 3 22

Cartesian products.

Suppose that for each a:A a type is given such that there is
an element Then we may want to form the function

aB
.: aa Bb

abAa .:λλλλ

that should have as a type the cartesian product

∏∏∏∏ aBAa .:
of types s.´aB

Once these product types are allowed, the type constructor
can be eliminated. We can write

→→→→

∏∏∏∏≡≡≡≡→→→→ BAaBA .:)(

where a is a variable not occuring in B.

Lambda calculus 3 23

Types and terms of λP.

(i) The set of pseudo-expressions of λP is defined as follows T

T.TT.TTTT :|:||| VVCV ΠΠΠΠλλλλ≡≡≡≡

Where V is the set of all variables and C that of constants.
No distinction between type variables and term variables is
made.

(ii) Among the constants C two elements are called and �. ∗∗∗∗

Lambda calculus 3 24

Assignment rules for λP.

Statements of the form and contexts are
defined as for

T∈∈∈∈AMAM ,: with
.ωωωωλλλλ

Contexts are finite linearly ordered sequences of statements.

Sorts are two constants denoted by and �. Again, the letter s
ranges over the set of sorts.

∗∗∗∗

The notion is defined by the following axiom and rules. −−−−|

Lambda calculus 3 25

λP

:| ∗∗∗∗−−−−<><><><>
(axiom)

(start-rule)

(weakening rule)

(type/kind formation)

(application rule)

(abstraction rule)

(conversion rule)

ΓΓΓΓ∉∉∉∉
−−−−ΓΓΓΓ

−−−−ΓΓΓΓ x
AxAx

sA
:|:,

:|

ΓΓΓΓ∉∉∉∉
−−−−ΓΓΓΓ

−−−−ΓΓΓΓ−−−−ΓΓΓΓ x
BACx

sCBA
:|:,

:|:|

sBAx
sBAxA

:).:(|
:|:,:|

ΠΠΠΠ−−−−ΓΓΓΓ
−−−−ΓΓΓΓ∗∗∗∗−−−−ΓΓΓΓ

]:[:|
:|).:(:|

axBFa
AaBAxF

====−−−−ΓΓΓΓ
−−−−ΓΓΓΓΠΠΠΠ−−−−ΓΓΓΓ

).:(:).:(|
:).:(|:|:,

BAxbAx
sBAxBbAx

ΠΠΠΠλλλλ−−−−ΓΓΓΓ
ΠΠΠΠ−−−−ΓΓΓΓ−−−−ΓΓΓΓ

´:|
´´:|:|

BA
BBsBBA

−−−−ΓΓΓΓ
====−−−−ΓΓΓΓ−−−−ΓΓΓΓ ββββ

�

Lambda calculus 3 26

Exercises.

)).(:(:).::(|:,:
:).:(|:,:

:|:,:,:
:|:,:,:

:)(|:

PaPaAaxPaxAaAPA
PaAaAPA

PaAaAPA
PaAaAPA

AA

→→→→ΠΠΠΠλλλλλλλλ−−−−∗∗∗∗→→→→∗∗∗∗
∗∗∗∗→→→→ΠΠΠΠ−−−−∗∗∗∗→→→→∗∗∗∗

∗∗∗∗→→→→−−−−∗∗∗∗→→→→∗∗∗∗
∗∗∗∗−−−−∗∗∗∗→→→→∗∗∗∗

∗∗∗∗→→→→−−−−∗∗∗∗ �

�
�

Lambda calculus 3 27

λP and Logic. (Pragmatics of λP)

Systems similar to λP have been introduced by
N. G. De Bruijn in the 1970s and 1980s in order to represent
mathematical theorems and their proofs.

Idea. Assume that there is a set prop closed under implication.
This can be done by context

>>>>→→→→→→→→∗∗∗∗<<<<≡≡≡≡ΓΓΓΓ propproppropprop0 :,: Imp

�We shall write

�A variable is declared and
is declared to be valid if is inhabited.

.Imp ϕψϕψϕψϕψψψψψ⊃⊃⊃⊃ϕϕϕϕ for

∗∗∗∗→→→→propT : prop:ϕϕϕϕ
ϕϕϕϕT

Lambda calculus 3 28

To guarantee that the implication has the right properties, one
assumes such thatie ⊃⊃⊃⊃⊃⊃⊃⊃ and

)()(:
)(:

ψψψψ⊃⊃⊃⊃ϕϕϕϕ→→→→ψψψψ→→→→ϕϕϕϕϕψϕψϕψϕψ⊃⊃⊃⊃
ψψψψ→→→→ϕϕϕϕ→→→→ψψψψ⊃⊃⊃⊃ϕϕϕϕϕψϕψϕψϕψ⊃⊃⊃⊃

TTT
TTT

i

e

Now for representation of implicational proposition logic
we choose to work in context consisting ofpropΓΓΓΓ

)().(:::
)(.:::

:

ψψψψ⊃⊃⊃⊃ϕϕϕϕ→→→→ψψψψ→→→→ϕϕϕϕψψψψΠΠΠΠϕϕϕϕΠΠΠΠ⊃⊃⊃⊃
ψψψψ→→→→ϕϕϕϕ→→→→ψψψψ⊃⊃⊃⊃ϕϕϕϕψψψψΠΠΠΠϕϕϕϕΠΠΠΠ⊃⊃⊃⊃

∗∗∗∗→→→→
ΓΓΓΓ

TTTpropprop
TTTpropprop

propT

i

e

0

Lambda calculus 3 29

Example.

We want to show that is valid for all propositions. We
need to show that its translation as a type is inhabited.

ϕϕϕϕ⊃⊃⊃⊃ϕϕϕϕ
)(ϕϕϕϕ⊃⊃⊃⊃ϕϕϕϕT

We have

)(:)).:((
)(:).:(

:
:
::

ϕϕϕϕ→→→→ϕϕϕϕϕϕϕϕλλλλϕϕϕϕϕϕϕϕ⊃⊃⊃⊃
ϕϕϕϕ→→→→ϕϕϕϕϕϕϕϕλλλλ

ϕϕϕϕ
∗∗∗∗ϕϕϕϕ

∗∗∗∗→→→→ϕϕϕϕ

TxTx
TTxTx

Tx
T

propTprop

i

1 1

(context)
(application)
(assumption)

(abstraction)

(context, application)

Hence
)(:)).:((| ϕϕϕϕ→→→→ϕϕϕϕϕϕϕϕλλλλϕϕϕϕϕϕϕϕ⊃⊃⊃⊃−−−−ΓΓΓΓ λλλλ TxTxiPprop

Lambda calculus 3 30

Simplified notation.

(identity) ILLL

LLL

LL

T

prop
→→→→⊃⊃⊃⊃
∗∗∗∗

Then for one can use ϕψϕψϕψϕψ⊃⊃⊃⊃ e

xyyx .:)(: ϕϕϕϕλλλλψψψψ→→→→ϕϕϕϕλλλλ

and for ϕψϕψϕψϕψ⊃⊃⊃⊃ i

xx).(: ψψψψ→→→→ϕϕϕϕλλλλ

In this way the fragment of (manysorted, constructive)
predicate logic can be interpreted in λP. A predicate on a type
with the domain A is represented as the statement

},{ ∀∀∀∀→→→→

).(: ∗∗∗∗→→→→AP

Lambda calculus 3 31

One defines Pa for a:A to be valid, if it is inhabited.

Quantification is translated as follows

PxAxPxAx .:. ΠΠΠΠ>>>>∈∈∈∈∀∀∀∀ LL

Example.

Formula
).().(PxxAxPxyAyAx ∈∈∈∈∀∀∀∀→→→→∈∈∈∈∀∀∀∀∈∈∈∈∀∀∀∀

is valid, since its translation is inhabited:

]).:[].::([
:).:).::(:(|:,:

PxxAxPxyAYAx
zxxAxPxyAyAxzAAPA

ΠΠΠΠ→→→→ΠΠΠΠΠΠΠΠ
λλλλΠΠΠΠΠΠΠΠλλλλ−−−−∗∗∗∗→→→→→→→→∗∗∗∗

Lambda calculus 3 32

The system λP deserved its name because predicate logic can be
interpreted in it.

The method interprets

 types theinhabiting termsproofs

 types formulas ns,propositio

LLLLLLLL

LL

The method is often called propositions as types paradigm and it is
used for formulating results in the foundations of mathematics.

Lambda calculus 3 33

Systems of the λ-cube: A uniform definition.

(i) The set of pseudo-expressions of λP is defined as follows T

T.TT.TTTT :|:||| VVCV ΠΠΠΠλλλλ≡≡≡≡

Where V is the set of all variables and C that of constants. No
distinction between type variables and term variables is made.

We use A,B,C,�a,b,c,� for pseudo-terms and x,y,z,� for
variables.

(ii) Two constants are selected and denoted by and �.
They are called sorts. The letter s ranges over the set of sorts.

∗∗∗∗

Lambda calculus 3 34

(iv) A statement is of the form
We call A the subject and B the predicate of the statement A:B.

A declaration is a statement with a variable as the subject and with a
pseudo-expression as the predicate.

T.∈∈∈∈BABA ,: where

(v) A pseudo-context is a finite ordered sequence of declarations, all
with distinct subjects. The empty pseudo-context is denoted by <>
(usually we do not write it).

Given a pseudo-context

its extension is defined as follows:

>>>>=<=<=<=<ΓΓΓΓ nn11 AxAx :,,: K

.:,:,,::, >>>><<<<====ΓΓΓΓ BxAxAxBx nn11 K

(iii) On the notions of β-conversions and β-reductions are
defined by the following contraction rule

T

]:[).:(CxBCBAx ====→→→→λλλλ

Lambda calculus 3 35

(vi) The notion states that A:B can be derived from
the pseudo-context Γ, in this case we say that A and B are legal
expressions and is a legal pseudo-context. The notion is
axiomatized by the rules of type assignment.

BA :| −−−−ΓΓΓΓ

ΓΓΓΓ

The rules are divided into two groups:

a) general axiom and rules valid for all systems of λ-cube,

b) the specific rules differentiating the eight systems (usually
parametrized Π-introduction rules).

Lambda calculus 3 36

Systems of the λ-cube

1. General axiom and rules.

(axiom) :| ∗∗∗∗−−−−<><><><> �

(start-rule) ΓΓΓΓ∉∉∉∉
−−−−ΓΓΓΓ

−−−−ΓΓΓΓ x
AxAx

sA
:|:,

:|

(weakening rule) ΓΓΓΓ∉∉∉∉
−−−−ΓΓΓΓ

−−−−ΓΓΓΓ−−−−ΓΓΓΓ x
BACx

sCBA
:|:,

:|:|

(application rule)]:[:|
:|).:(:|

axBFa
AaBAxF

====−−−−ΓΓΓΓ
−−−−ΓΓΓΓΠΠΠΠ−−−−ΓΓΓΓ

(abstraction rule)).:(:).:(|
:).:(|:|:,

BAxbAx
sBAxBbAx

ΠΠΠΠλλλλ−−−−ΓΓΓΓ
ΠΠΠΠ−−−−ΓΓΓΓ−−−−ΓΓΓΓ

(conversion rule)
´:|

´´:|:|
BA

BBsBBA
−−−−ΓΓΓΓ

====−−−−ΓΓΓΓ−−−−ΓΓΓΓ ββββ

Lambda calculus 3 37

2. The specific rules.

rule),(21 ss
2

21

sBAx
sBAxsA

:).:(|
:|:,:|

ΠΠΠΠ−−−−ΓΓΓΓ
−−−−ΓΓΓΓ−−−−ΓΓΓΓ

We select four specific rules

),(),,(),,(),,(∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ � � � �

And the eight systems of λ-cube consist of the general rules
together with a specific subsets of the above specific rules.

The sets of specific rules for the eight systems are depicted in the
table below.

Lambda calculus 3 38

System Set of specific rules

CP
P

2P
P
2

λλλλ====ωωωωλλλλ
ωωωωλλλλ

λωλωλωλω
ωωωωλλλλ

λλλλ
λλλλ
λλλλ

→→→→λλλλ (,)∗∗∗∗ ∗∗∗∗

∗∗∗∗
(,) (� ,)∗∗∗∗ ∗∗∗∗
(,) (,�)

∗∗∗∗

∗∗∗∗
∗∗∗∗

∗∗∗∗

(,) (� ,) (, �) (�, �)

∗∗∗∗∗∗∗∗ ∗∗∗∗ ∗∗∗∗
(,) (�, �) ∗∗∗∗ ∗∗∗∗
(,) (� ,) (�, �) ∗∗∗∗ ∗∗∗∗ ∗∗∗∗
(,) (� ,) (�, �) ∗∗∗∗ ∗∗∗∗ ∗∗∗∗

(,) (� ,) (, �)

∗∗∗∗ ∗∗∗∗∗∗∗∗

Lambda calculus 3 39

P

P

2P2

P

λλλλ→→→→λλλλ

ωωωωλλλλωωωωλλλλ

λλλλλλλλ

ωωωωλλλλλωλωλωλω

λ-cube

Lambda calculus 3 40

System related system names and references
Simply typed lambda calculus
[Church 1940]
[Barendregt 1984]
[Hindley and Seldin 1986]
Second order (typed) lambda calculus
[Girard 1972]
[Reynolds 1974]
[de Bruin 1970]
[Harper et al. 1987]

[Longo and Moggi 1988]

[Renardel de Lavalette 1991]

[Girard 1972]

Calculus of constructions
[Coquand and Huet]

ττττλλλλ→→→→λλλλ

F2λλλλ

LFQEAUTP ,−−−−λλλλ

2Pλλλλ

POLYRECωωωωλλλλ

ωωωωλωλωλωλω F

CCPωωωωλλλλ

Lambda calculus 3 41

Remarks.

(i) Impredicativity. The expression

)).(:(αααα→→→→αααα∗∗∗∗ααααΠΠΠΠ

in λ2 as a cartesian product of types, will be a type, too. So

∗∗∗∗αααα→→→→αααα∗∗∗∗ααααΠΠΠΠ−−−− :)).(:(|

but since it is a product over all possible types α,
including itself,)).(:(αααα→→→→αααα∗∗∗∗ααααΠΠΠΠ
there is an essential impredicativity here.

Lambda calculus 3 42

(ii) Terms depending on types and types depending on types in .→→→→λλλλ

AAA
AxAx

 typeon the depending typea is
 on type depending terma is

→→→→
λλλλ .:

but in we have no function abstraction for these dependencies.→→→→λλλλ

(iii) Note that in one has no
types depending on terms. The types are given beforehand. Thus
the right-hand side of the cube is essentially more difficult than the
left-hand side because of the mixture of types and terms.

ωωωωλλλλλλλλ→→→→λλλλ and in even and 2

Lambda calculus 3 43

Equivalence of both versions of and .2λλλλ→→→→λλλλ

Recall the definition where x is not in A, B.BAxBA .:ΠΠΠΠ≡≡≡≡→→→→

Notice that application rule in the λ-cube implies the
rule:

n)eliminatio−−−−→→→→(

BaxBFa
AaBAxBAF

≡≡≡≡====−−−−ΓΓΓΓ
−−−−ΓΓΓΓΠΠΠΠ≡≡≡≡→→→→−−−−ΓΓΓΓ

]:[:)(|
:|.:)(:|

Since x does not occur in B. It follows that if we have

∗∗∗∗−−−−∗∗∗∗∗∗∗∗ ::|:,:,:,: CMBbAaBA

in in λ-cube then→→→→λλλλ
CMBbAa :|:,: −−−−

is derivable in the original system The notation .→→→→λλλλ

 ∗∗∗∗−−−−ΓΓΓΓ ::| CM

.:|:| ∗∗∗∗−−−−ΓΓΓΓ−−−−ΓΓΓΓ CCM and n conjunctio for the stands
Lambda calculus 3 44

Lemma.

Consider in the λ-cube. If in this system, then A
is built up from the set using only as defined
above.

→→→→λλλλ ∗∗∗∗−−−−ΓΓΓΓ :| A
}):(|{ ΓΓΓΓ∈∈∈∈∗∗∗∗BB →→→→

Proof.

By induction on the generation of .| −−−−

To show that both versions of λ2 are the same, we have to define

MM
AA

.:.
.:.

∗∗∗∗λαλαλαλα≡≡≡≡ααααΛΛΛΛ
∗∗∗∗ααααΠΠΠΠ≡≡≡≡αααα∀∀∀∀

in the λ-cube. .

Lambda calculus 3 45

Examples.

(a) in one can derive→→→→λλλλ

)(:).:(|:,:,:
).:(:).:(|:

:).:(|:

BAbAaBbBA
AAxaAaA

AAxA

→→→→λλλλ−−−−∗∗∗∗∗∗∗∗
ΠΠΠΠλλλλ−−−−∗∗∗∗
∗∗∗∗ΠΠΠΠ−−−−∗∗∗∗

).:()(BAxBA ΠΠΠΠ≡≡≡≡→→→→ where

∗∗∗∗→→→→→→→→λλλλλλλλ−−−−∗∗∗∗∗∗∗∗
λλλλ−−−−∗∗∗∗∗∗∗∗
λλλλ−−−−∗∗∗∗

:))((:).::(|:,:
:)).:((|:,:,:,:
:)).:((|:,:

ABAaBbAaBA
AbaAaBbAcBA
AbaAaAbA

Lambda calculus 3 46

(b) In λ2 one can derive

AAbaaAbA
AAAaaA

aa
aa

:).::(|:,:
)(:).::(|:

:)).(:(:).::(|
)(:).:(|:

ααααλλλλ∗∗∗∗λαλαλαλα−−−−∗∗∗∗
→→→→ααααλλλλ∗∗∗∗λαλαλαλα−−−−∗∗∗∗

∗∗∗∗αααα→→→→αααα∗∗∗∗ααααΠΠΠΠααααλλλλ∗∗∗∗λαλαλαλα−−−−
αααα→→→→ααααααααλλλλ−−−−∗∗∗∗αααα

Notice that for the last line the following reduction holds:

b
baAaAbaa

→→→→
λλλλ→→→→ααααλλλλ∗∗∗∗λαλαλαλα).:().::(

Lambda calculus 3 47

Connection of λ2 with second-order propositional logic.

Exercise.

4444 34444 2144444444 344444444 21
predicatesubject

2 aaaa)).:.(:(:))).:(()..:(::(| ββββ→→→→αααα∗∗∗∗ααααΠΠΠΠ∗∗∗∗ββββΠΠΠΠββββ→→→→αααα∗∗∗∗ααααΠΠΠΠ∗∗∗∗ααααΠΠΠΠλλλλ∗∗∗∗λβλβλβλβ−−−−λλλλ

Simplification: put which is the definition of the
second-order falsum. Using this, we may write

).:(αααα∗∗∗∗ααααΠΠΠΠ≡≡≡≡⊥⊥⊥⊥

44 344 2144 344 21
predicatesubject

aa).:(:).::(| ββββ→→→→⊥⊥⊥⊥∗∗∗∗ββββΠΠΠΠββββ⊥⊥⊥⊥λλλλ∗∗∗∗λβλβλβλβ−−−−

The predicate (type) considered as a proposition says: ex falso
sequitur quodlibet („anything follows from a false statement�)
and the subject (term) is its proof.

Lambda calculus 3 48

(c) In one can derive e.g.ωωωωλλλλ

:)(:).:(| ∗∗∗∗→→→→∗∗∗∗αααα→→→→αααα∗∗∗∗λαλαλαλα−−−− �

).:(αααα→→→→αααα∗∗∗∗λαλαλαλα{ is a constructor mapping types into types}

4434421
αααα→→→→αααα

∗∗∗∗ααααααααΠΠΠΠ
αααα∗∗∗∗αααα

:).:(
::

x
x

:).:(
:::

43421
∗∗∗∗→→→→∗∗∗∗
∗∗∗∗∗∗∗∗ΠΠΠΠ

∗∗∗∗∗∗∗∗∗∗∗∗
x

x

:)(:).:(∗∗∗∗→→→→∗∗∗∗αααα→→→→αααα∗∗∗∗λαλαλαλα

� �

�

Similarly one can derive

ββββαααα→→→→αααα∗∗∗∗λαλαλαλαββββλλλλ−−−−ββββ∗∗∗∗ββββ
∗∗∗∗ββββαααα→→→→αααα∗∗∗∗λαλαλαλα−−−−∗∗∗∗ββββ

).:(:).:(|:,:
:).:(|:

xyx

),(∗∗∗∗∗∗∗∗),(� �
�

Proof.

Lambda calculus 3 49

Higher-order constructors.

They are formed in the following way

∗∗∗∗→→→→∗∗∗∗→→→→∗∗∗∗∗∗∗∗→→→→∗∗∗∗λλλλ−−−−∗∗∗∗αααα
∗∗∗∗αααα−−−−∗∗∗∗→→→→∗∗∗∗∗∗∗∗αααα

)(:))(.:(|:
:)(|:,:

faff
fff

Lambda calculus 3 50

(d) λP-Propositions as types.

the following can be derived:

:)(|: ∗∗∗∗→→→→−−−−∗∗∗∗ AA �

{If A is a type considered as a set, then is the kind of
predicates on A.}

∗∗∗∗→→→→A

(i) if A is a non-empty set, and P is a predicate on A,
then Pa is a type considered as a proposition which is true if
inhabited, otherwise false.

Aa ∈∈∈∈

∗∗∗∗−−−−∗∗∗∗→→→→∗∗∗∗ :|:),(:,: PaAaAPA

Lambda calculus 3 51

(ii) if P is a binary predicate on the set A, then is
a proposition.

PaaAa ∈∈∈∈∀∀∀∀

∗∗∗∗ΠΠΠΠ−−−−∗∗∗∗→→→→→→→→∗∗∗∗ :).:(|)(:,: PaaAaAAPA

(iii) if P and Q are two unary predicates on a set A, then the
predicate P considered as a set is included in Q.

∗∗∗∗→→→→ΠΠΠΠ−−−−∗∗∗∗→→→→∗∗∗∗→→→→∗∗∗∗ :)).(:(|:,:,: QaPaAaAQAPA

(iv) proposition stating the reflexivity of inclusion.

∗∗∗∗→→→→ΠΠΠΠ−−−−∗∗∗∗→→→→∗∗∗∗ :))(:(|:,: PaPaAaAPA

(v) �proof� of the reflexivity of inclusion.

∗∗∗∗→→→→ΠΠΠΠλλλλλλλλ−−−−∗∗∗∗→→→→∗∗∗∗ :)).(:(:).::(|:,: PaPaAa
subject

xPaxAaAPA
444 3444 21

Lambda calculus 3 52

(vi) A type considered as a (true) proposition.

∗∗∗∗→→→→ΠΠΠΠ→→→→→→→→ΠΠΠΠ−−−−∗∗∗∗∗∗∗∗→→→→∗∗∗∗ :)).:().:((|:,:,: QPaAaQPaAaQAPA

We have proved that the type on the right hand is a proposition, to be
true, we have to assume that A is non-empty.

44444444 344444444 21
QPaAaQPaAa

QPaAayQPaAax
QyaxaPaAayQPaAax

AaQAPA

00

0

→→→→ΠΠΠΠ→→→→→→→→ΠΠΠΠ
ΠΠΠΠΠΠΠΠ→→→→ΠΠΠΠΠΠΠΠ

ΠΠΠΠλλλλ→→→→ΠΠΠΠλλλλ
−−−−∗∗∗∗∗∗∗∗→→→→∗∗∗∗

).:().:(
))..:(:).:(:(

:))()..:(:).:(:(
|:,:,:,:

This proposition as a type states that proposition

QPaAaQPaAa →→→→∈∈∈∈∀∀∀∀→→→→→→→→∈∈∈∈∀∀∀∀).().(

is true in non-empty structures A.

Lambda calculus 3 53

(e) λω - conjunction

The second-order definition of conjuntion is defined as follows

∗∗∗∗ββββαααα−−−−∗∗∗∗ββββ∗∗∗∗αααα :&|:,:

,).(:& γγγγ→→→→γγγγ→→→→ββββ→→→→αααα∗∗∗∗γγγγΠΠΠΠ≡≡≡≡ββββαααα

{it is definable already in λ2}, but in λω can be derived

Let

xyxKAND .::::&.:: ββββλλλλααααλλλλ∗∗∗∗λβλβλβλβ∗∗∗∗λαλαλαλα≡≡≡≡ββββαααα∗∗∗∗λβλβλβλβ∗∗∗∗λαλαλαλα≡≡≡≡ and

then

).::(:|
)(:|

αααα→→→→ββββ→→→→αααα∗∗∗∗ββββΠΠΠΠ∗∗∗∗ααααΠΠΠΠ−−−−
∗∗∗∗→→→→∗∗∗∗→→→→∗∗∗∗−−−−

K
AND

Note that while α&β and K can be derived already in λ2,
AND cannot.

Lambda calculus 3 54

The subject of the following assignment is a proof that

αααα→→→→αβαβαβαβAND
is a tautology.

∗∗∗∗αααα→→→→αβαβαβαβαβαβαβαβαααααβαβαβαβλλλλ−−−−∗∗∗∗ββββ∗∗∗∗αααα :)(:))(.:(|:,: ANDKxANDx

Lambda calculus 3 55

(f) λP2 is corresponding to second-order predicate logic.

In it the following can be derived

∗∗∗∗⊥⊥⊥⊥→→→→ΠΠΠΠ→→→→
→→→→⊥⊥⊥⊥→→→→→→→→ΠΠΠΠΠΠΠΠ−−−−∗∗∗∗→→→→→→→→∗∗∗∗

∗∗∗∗→→→→⊥⊥⊥⊥→→→→λλλλ−−−−∗∗∗∗→→→→∗∗∗∗

:)].:(
).::[(|:,:

)(:).:(|:,:

PaaAa
PbaPabAbAaAAPA

APaAaAPA

The proposition states that a binary relation that is asymetric
is irreflexive.

Lambda calculus 3 56

(g) λPω gives the following derivation.

:))()((:).::(|: ∗∗∗∗→→→→→→→→∗∗∗∗→→→→→→→→λλλλ∗∗∗∗→→→→→→→→λλλλ−−−−∗∗∗∗ AAAPaaAaAAPA

This constructor assigns to a binary predicate P on A its diagonalization.
The same can be done uniformly in A.

:).:::(
:).:::(|
∗∗∗∗ΠΠΠΠ∗∗∗∗→→→→→→→→ΠΠΠΠ∗∗∗∗ΠΠΠΠ

λλλλ∗∗∗∗→→→→→→→→λλλλ∗∗∗∗λλλλ−−−−
AaAAPA

PaaAaAAPA

�

�

Lambda calculus 3 57

(h) λPω = λC The calculus of constructions.

(i) A constructor can be derived that assigns to a type A and to
a predicate P on A the negation of P.

:))().(:(
:).:::(|

∗∗∗∗→→→→→→→→∗∗∗∗→→→→∗∗∗∗ΠΠΠΠ
⊥⊥⊥⊥→→→→λλλλ∗∗∗∗→→→→λλλλ∗∗∗∗λλλλ−−−−

AAA
PaAaAPA

(ii) Universal quantification done uniformly:

Let then).:.::(PaAaAPAALL ΠΠΠΠ∗∗∗∗→→→→λλλλ∗∗∗∗λλλλ≡≡≡≡

).:()(:|:,: PaAaAPALLAPALLAPA ΠΠΠΠ====∗∗∗∗−−−−∗∗∗∗→→→→∗∗∗∗ ββββ and

�

Lambda calculus 3 58

Exercises.

a) Define Construct a term M such that in
λω

..: ⊥⊥⊥⊥→→→→αααα∗∗∗∗λαλαλαλα≡≡≡≡¬¬¬¬

))()((:|:,: αααα¬¬¬¬→→→→ββββ¬¬¬¬→→→→ββββ→→→→αααα−−−−∗∗∗∗ββββ∗∗∗∗αααα M

b) Find an expression M such that in λP2, we have

−−−−∗∗∗∗→→→→→→→→∗∗∗∗ |)(:,: AAPA

∗∗∗∗⊥⊥⊥⊥→→→→ΠΠΠΠ→→→→⊥⊥⊥⊥→→→→→→→→ΠΠΠΠΠΠΠΠ :)]:().::[(: PaaAaPbaPabAbAaM

c) Find a term M such that in λC, we have

)(:|:,:,: PaAPALLMAaAPA →→→→−−−−∗∗∗∗→→→→∗∗∗∗

Lambda calculus 3 59

Pure Type systems: A generalization of the λ-cube.

� Many systems of typed lambda calculus a la Church can be seen as Pure
Type Systems.

� One of the successes of the notion of Pure Type Systems is concerned
with Logic: eight logical systems are shown to be in correspondence with
the systems on the λ-cube.

� The general setting of Pure Type systems makes it easier to give the
required proof

Lambda calculus 3 60

The pure types systems are based on the same set of pseudoterms as
systems of the λ-cube.

TTTTTT T :|:||| VVCV ΠΠΠΠλλλλ====

Definition. The specification of a Pure type system consists of a
triple S = (S, A, R) where

� S is a subset of C, the elements of S are called sorts.

� A is a set of axioms of the form

c : s

with

R is a set of rules of the form

.SsCc ∈∈∈∈∈∈∈∈ and

.,,),,(Sssssss 321321 ∈∈∈∈ with

Lambda calculus 3 61

Thw set of variables V is stratified according to sorts into disjoint
infinite subsets Hence
The members of are denoted

.SsVs ∈∈∈∈sort each for }.|{ SsVV s ∈∈∈∈∪∪∪∪====
 sV K,,, zyx sss

Arbitrary variables are still denoted by x,y,z,… if necessary one
writes .s

s Vxxx ∈∈∈∈≡≡≡≡ for

The first version of λ2 can be understood as

x,y,z,… ranging over

and

over V

∗∗∗∗V

K,,, γγγγββββαααα
�

Lambda calculus 3 62

Definition.

The pure type system given by specification S = (S, A, R) is
denoted by λS = λ(S, A, R). Its properties are defined as follows.

�Statements and contexts are defined as for the λ-cube

�The notion of type derivations is defined by the
following axioms and rules

BAS :| λλλλ−−−−ΓΓΓΓ

Lambda calculus 3 63

),,(RASλλλλ

(axioms)

(start)

(weakening)

(product)

(application)

(abstraction)

(conversion)

sc :| −−−−<><><><> Asc ∈∈∈∈):(if

AxAx
sA
:|:,

:|
−−−−ΓΓΓΓ

−−−−ΓΓΓΓ ΓΓΓΓ∉∉∉∉≡≡≡≡ xx s if

BACx
sCBA

:|:,
:|:|

−−−−ΓΓΓΓ
−−−−ΓΓΓΓ−−−−ΓΓΓΓ ΓΓΓΓ∉∉∉∉≡≡≡≡ xx s if

3

21

sBAx
sBAxsA

:).:(|
:|:,:|

ΠΠΠΠ−−−−ΓΓΓΓ
−−−−ΓΓΓΓ−−−−ΓΓΓΓ Rsss 321 ∈∈∈∈),,(

]:[:|
:|).:(:|

axBFa
AaBAxF

====−−−−ΓΓΓΓ
−−−−ΓΓΓΓΠΠΠΠ−−−−ΓΓΓΓ

).:(:).:(|
:).:(|:|:,

BAxbAx
sBAxBbAx

ΠΠΠΠλλλλ−−−−ΓΓΓΓ
ΠΠΠΠ−−−−ΓΓΓΓ−−−−ΓΓΓΓ

´:|
´´:|:|

BA
BBsBBA

−−−−ΓΓΓΓ
====−−−−ΓΓΓΓ−−−−ΓΓΓΓ ββββ

Lambda calculus 3 64

The side condition is not decidable. However it can
be replaced by the decidable condition

´)(BB ββββ====

´´ BBBB →→→→→→→→ or

with no effect on the set of derivable statements.

Definition.

(i) The rule In the
λ-cube only systems with rules of this simple form are used.

).,,(),(22121 sssss for on abbreviatian is

(ii) The Pure type system is full if

}.,|),{(SssssSSR 2121 ∈∈∈∈====××××====

Lambda calculus 3 65

Examples.

),(
:
,

∗∗∗∗∗∗∗∗
∗∗∗∗→→→→λλλλ
∗∗∗∗

R
A
S �

�

),(),,(
:

,

∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗λλλλ
∗∗∗∗

R
A2
S �

�

�

),(),,(),,(),,(
:
,

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗λλλλ
∗∗∗∗

R
AC
S �

�

� � � �

It is a full system.

Lambda calculus 3 66

The system of higher order logic [Church 1940] can be
described as follows.

),(),,(),,(
:,:

,,

∗∗∗∗∗∗∗∗∗∗∗∗
∆∆∆∆∗∗∗∗λλλλ

∆∆∆∆∗∗∗∗

R
AHOL
S �

� �

� � �

The system below is a subsystem of An
interesting conjecture of de Bruijn states that
mathematics from before the year 1800 can all be
formalized in it.

.→→→→λλλλ

),,(),,(),,,(
:

,,

∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∗∗∗∗∆∆∆∆
∗∗∗∗λλλλ

∆∆∆∆∗∗∗∗

R
APAL
S �

�
� � �

Lambda calculus 3 67

Definition. Legal contexts and legal pseudoterms.

Let Γ be a pseudocontext and A a pseudoterm.

(i) Γ is called legal if Γ |- P:Q for some pseudoterms P,Q.
(ii) A pseudoterm A is called legal if there is a pseudocontext
Γ and pseudoterm B such that Γ|-A:B or Γ|-B:A.

Transitivity lemma.

Let be contexts of which Γ is legal. Then ∆∆∆∆ΓΓΓΓ and

BABA :|]:||[−−−−ΓΓΓΓ⇒⇒⇒⇒−−−−∆∆∆∆∆∆∆∆−−−−ΓΓΓΓ and

Lambda calculus 3 68

Substitution lemma.

Assume CBAx :|,:, −−−−∆∆∆∆ΓΓΓΓ

and AD :| −−−−ΓΓΓΓ

Then]:[:]:[|]:[, DxCDxBDx ========−−−−====∆∆∆∆ΓΓΓΓ

Thinning lemma.

Let Γ and be legal contexts and Then∆∆∆∆ .∆∆∆∆⊆⊆⊆⊆ΓΓΓΓ

BABA :|:| −−−−∆∆∆∆⇒⇒⇒⇒−−−−ΓΓΓΓ

Lambda calculus 3 69

Generation lemma

]):(&[:|)(AscsCSsCci ∈∈∈∈====∈∈∈∈∃∃∃∃⇒⇒⇒⇒−−−−ΓΓΓΓ ββββ

]&

):(&:|[:|

xx

BxsBCBSsCx
s≡≡≡≡

ΓΓΓΓ∈∈∈∈−−−−ΓΓΓΓ====∃∃∃∃∈∈∈∈∃∃∃∃⇒⇒⇒⇒−−−−ΓΓΓΓ ββββ (ii)

]&:|:,
&:|[),,(:).:(|

32

1321

sCsBAx
sARsssCBAx

ββββ====−−−−ΓΓΓΓ
−−−−ΓΓΓΓ∈∈∈∈∃∃∃∃⇒⇒⇒⇒ΠΠΠΠ−−−−ΓΓΓΓ (iii)

)].:((&:|:,
&:).:(|[:).:(|

BAxCBbAx
sBAxBSsCbAx

ΠΠΠΠ====−−−−ΓΓΓΓ
ΠΠΠΠ−−−−ΓΓΓΓ∃∃∃∃∈∈∈∈∃∃∃∃⇒⇒⇒⇒λλλλ−−−−ΓΓΓΓ

ββββ

 (iv)

]]:[&:|
&).:(:|[,:)(|
axBCAa

BAxFBACFa
========−−−−ΓΓΓΓ

ΠΠΠΠ−−−−ΓΓΓΓ∃∃∃∃⇒⇒⇒⇒−−−−ΓΓΓΓ

ββββ

 (v)

Lambda calculus 3 70

Subject reduction theorem.

BAAABA ´:|´&:| −−−−ΓΓΓΓ⇒⇒⇒⇒→>→>→>→>−−−−ΓΓΓΓ ββββ

Condensing lemma.

If x is not free in ∆, B, C, then

CBCBAx :|,:|,:, −−−−∆∆∆∆ΓΓΓΓ⇒⇒⇒⇒−−−−∆∆∆∆ΓΓΓΓ

Lambda calculus 3 71

Definition. Simply sorted systems.

Let λS = λ(S,A,R) be a Pure type system. λS is called
singly sorted if

´´),,),,,

):(),:(

33321321

212211

ssRssssss

ssAscsc

≡≡≡≡⇒⇒⇒⇒∈∈∈∈

≡≡≡≡⇒⇒⇒⇒∈∈∈∈

(((ii)

 (i)

Uniqueness of types for singly sorted Pure type systems.

Let λS be a singly sorted Pure type system. Then

2121 BBBABA ββββ====⇒⇒⇒⇒−−−−ΓΓΓΓ−−−−ΓΓΓΓ :|&:|

Lambda calculus 3 72

Definition. Strong normalization for the λ-cube.

Let λS be a Pure type system. We call it strongly normalizing and
write λS |= SN if all legal terms of λS are SN, i.e

)(&)(:| BSNASNBA ⇒⇒⇒⇒−−−−ΓΓΓΓ

Theorem. Strong normalization for the λ-cube.

For all systems in the λ-cube, we have the following

)(&)(:| BSNASNBA ⇒⇒⇒⇒−−−−ΓΓΓΓ (i)

SNCBAACBAxAx n1nn11 are (ii) ,,,,:|:,,: KK ⇒⇒⇒⇒−−−−

Lambda calculus 3 73

Representing logics.

Eight systems of intuitionistic logic correspond in some sense
to the systems in the λ-cube: there are four systems of
propositional logic and four systems of many sorted predicate
logic.

PROP propositional logic
PROP2 second-order propositional logic
PROP weakly higher-order proposition logic
PROPω higher-order proposition logic
PRED predicate logic
PRED2 second-order predicate logic
PRED weakly higher-ordered predicate logic
PREDω higher-order predicate logic

ωωωω

ωωωω

Lambda calculus 3 74

�All these systems are minimal logics, the only logical operators are
→→→→ and .∀∀∀∀
� However, for the second- and higher-order systems, the operators

∃∃∃∃∨∨∨∨¬¬¬¬ and&,, are all definable.

� Weakly higher-order logics have variables for higher-order
propositions or predicates but no quantification over them.

� A higher-order propositions have lower order propositions as
arguments.

� All the above logics are intuitionistic. The classical versions of
the logics in the upper plane of the logic-cube (see below) are
obtained by adding as axiom

� The systems form a cube as shown below.

.. αααα→→→→αααα¬¬¬¬¬¬¬¬αααα∀∀∀∀

Lambda calculus 3 75

PREDPROP

PREDPROP

2PRED2PROP

PREDPROP

ωωωωωωωω

ωωωωωωωω

This cube will be referred as logic-cube.

Lambda calculus 3 76

Each system on the logic-cube corresponds to the
system on the corresponding vertex. The edges of the
logic-cube represent inclusions of the systems in the same
way as on the λ-cube.

iL
iλλλλ

Lambda calculus 3 77

Propositions as types: the idea.

A formula in the logic on the logic-cube can be
interpreted as a type in the corresponding on the
λ-cube .

iL
A iλλλλ

The transition
AA a

Is called propositions-as-types interpretation of .iL

Soundness.
The propositions-as-types interpretation satisfies the
following soundness result:

If A is provable in PRED, then is inhabited in λP A

Lambda calculus 3 78

In fact an inhabitant of in λP can be found canonically from a
proof of A in PRED. Different proofs of A are interpreted as
different terms of type

A

.A

Soundness can be shown all systems with respect to the
corresponding systems of the λ-cube .

iL
iλλλλ

Completness.

Completness is defined naturally: if A is a formula of the
logic such that the type is inhabited in then A
is provable in

iL A ,iλλλλ
.iL

For the proposition logics it is trivially true. Completnes
was proved for PRED with respect to λP. For PREDω
with respect to λC fails.

