Lambda Calculus

Part I11
Typing a la Church

Based on materials provided by H. P. Barendregt

Lambda calculus 3

We shall introduce in a uniform way the eight Lambda
calculi typed a la Church

A 5, A2, AW, A, AP, APw, and APw.

The last one is often called AC the calculus of
constructions. The eight systems form a cube as
follows:

Lambda calculus 3

AR » AP
A2 » AP2
AW » \Pw

Lambda calculus 3

Each edge -, represents the inclusion 0. This cube will
be referred to as the A-cube.

As we have seen, the systems A - and A2 canbe
given also ala Curry. A Curry version exists also for AW

and something similar can be probably given for its
weaker version A.

On the other hand, no natural Curry versions of the
systems AP,AP2, APw and AC seem possible.

Lambda calculus 3

Before we define the systems of the A-cube in a uniform way, we
introduce the systems A — and A2 in the similar way as the Curry
systems have been presented. Then it turns out that two of the systems
of the A-cube are equivalent to them.

Definition.) _, — Church.

“Types T=V|T->T

*Pseudoterms Ay =V AN AV TA

*Bases F={: A, X A withall X
distinct and all A OT.

*Contraction Rule (Ax: AM)N -3 M[x:=N]

*Type assignment N-™M:A is defined as follows:

Lambda calculus 3

Ao

(start rule)

(- —elimination)

(- —introduction)

(x: AOr
MN-x:A

M-M:(A>B) T|-N:A
[|-(MN):B

MNx:Al-M:B
MN-@Ax:AM):(A- B)

Where the basis ', X: A stands for ' 0 {x: A} anditis
necessary that the variable X does not occur in I'. The letters
A, B denote arbitrary types and M,N arbitrary pseudoterms.

Lambda calculus 3

Examples.

|-(Aa: Aa):(A > A
b:B|-(Aa: Ab):(A - B)
b: A|-((Aa: Aa)b): A
c:Ab:B|-(Aa: Ab)c:B
|-(Aa: AAb:B.a):(A- B - A

Lambda calculus 3 7

The system A2-Church

*Types

*Pseudoterms

*Bases

*Contraction rules

*Type assignment

T=V|T - T|OVT

Ay =V [AAL ATV : TA, |AVA,

r={X1:A1,.,.,Xn:A1} with all
X distinctand AOT

(Aa: AM)N -, M[a:= N]
Aa.M)A -, Mla:=A]

N —M:A isdefined as follows :

Lambda calculus 3

A2

(x: HOT
(start rule) M-x:A
e rM-M:(A-B) T|-N:A
(- —elimination) F|-(MN):B
introducti Mx:Al-M:B
(- —introduction) [[-(Ax: AM):(A - B)
L [|-M :(0a.A)
 eliminat BOT
(O —elimination) [|-MB: Ala := BJ
(O —introduction) rj=M:A abFv(r)
M =(Aa.M):(0a.A)
Lambda calculus 3 9

Examples.
|-(Aa:a.a):(a - a)
|- (Aaha:a.a):(do.a - a)
|- (Aara:a.a)A: (A - A)
b: A|-(AaAa:a.a)Ab: A

For more advanced,check that the following reduction holds
|- (AoAa:a.a)Ab - (Aa: Aa)b - b
| = (ABAa: (Ja.a).a(a.a) - B)a): (OBR.(Da.a) - B)

For less advanced

| = (ABAa: (da.a).af): (OBR.(Oa.a) - B)

Without a proof: Church-Rosser property holds for the reduction
of pseudoterms in A\ 2,

Lambda calculus 3 10

Dependency.
Types are dependent on terms and vice versa. There are four cases:

terms depending on terms

terms depending on types
types depending on terms

types depending on types
The first two sorts of dependency are presented in A - and A2.
In A -, wehave

F:A-B M:A = FM:B

Here FM is aterm depending on a term, in particular on M.

In)2, we have

G:Oo.a - a Aatype > GA:A- A
Hence for G =AdAa:a.a, we have GA a term depending on the
type A.

Lambda calculus 3 11

In A - and A2 one has also function abstraction for the two types of
dependence. For the two examples above

Am: AFm: A B
Na.Ga : Oo.a - o

The systems A@ and AP.

We shall show the remaining two dependencies: in particular with
types FAin A& depending on types and FM in AP depending on

terms.
We will also have function abstractions for these dependencies both

in A and AP,

Lambda calculus 3 12

The system Aw: Types depending on types.

O — O is a natural example of a type depending on a type a.

We would like to defineaterm f =Aa OT.00 » a with a new
form of abstraction such that f () =a - a. This will be
possible in Aw. To do this, it is not possible to define types in an
informal metalanguage as we have done so far. It is necessary
generate the type by the system itself.

Kinds and constructors.

Informally, take a constant [gych that o:0 corresponds to ¢ OT.
The informal statement

o,BO0T=(a - B)OT
Now be comes the formal

a:0B:0-(a - PB):0

Lambda calculus 3 13

Now, we can write f =Aa :da — o for the f above. But we
have to ask, where this f live. Neither on the level of terms, nor
among the types.

It is necessary to introduce a new class K, the elements of which are
called kinds.

K=K - K
Hence

gi-0d-0O-4d...

are kinds and

kK={00O-00-0-0...}
It is necessary to introduce one more class [such that k: 1 corresponds

to kOK. If |—k: [and|—F :K,then F iscalled a constructor of
kind k. Each element of T will be a constructor of kind [

Lambda calculus 3 14

Example.
We shall show later on that
[-(Aa:0a - a):(0- D
%/—J
f

Hence the above function f is a constructor of kind []— []

Although the types and terms can be kept separate, we will
consider them as a subset of one general set T of pseudo-
expressions.

Lambda calculus 3 15

Definition. Types and terms of AW:

*Sorts e two constants selected from C.

*Class K=K - K the elements are called kinds.

*A set of pseudoexpressions T

T =V|C|TT |AV:T |T - T

where V is an infinite collection of
variables and C of constants.

Lambda calculus 3 16

Statements, bases - a motivation

As terms and types belong to the same set T, the definition of
statement is modified accordingly, bases have both types of variables
as subjects and have to become linearly ordered. That is why we call
them contexts.

The reason is that in Ay one wants to derive
a:0x:a |[-Xx:a
o:0 |-AX:a.x):(a - a)
But not
X:a,a:0 |—-x:a
x:o |=(a:0x):(0- a)
in which o occurs both free and bound.

Lambda calculus 3

Definition. Contexts for A,
(i) A statement of A& isofform M : A with M,AOT.

(i1) A context is a finite linearly ordered set of statements with
distinct variables as subjects. We shall denote them by I, A....

(ili) <> denotes the empty context. If T =<X : A,..., X : A >
then [,y:B=<x:A,.,X :A,y:B>

(iv) The (type) assignment I'|—,,M : A isderived by the
following axioms and rules. The letter S ranges over sorts.

Lambda calculus 3 18

Aw
(axiom) < -L:o
MN-A:s
(start rule) Mox:Al=x: A xtr

F-A:B I|-C:s
Mx:C|-A:B

(weakening rule) xor

F-A:s I|-B:s
F-(A- B):s

(type/kind formation)

N-rF:(A-B) IMN-a:A
N-rFa:B
MNx:Al-b:B I'|-(A- B):s
MN-@Ax:Ab):(A- B)

(application rule)

(abstraction rule)

F|-A:B [|-B:s B=, B
M-A:B

(conversion rule)

Lambda calculus 3

Examples.

a:0B:00-,,0 - pB:0
o:OB:OX: (A = B) =, X: (@ - B)
o :OB: 0= ,Ax: (@ - B)x): ((a - B) — (@ - B))

Put D=AB:0P - B. Then the following hold.

|-,D:(0-D
a:0-,,(Ax: Da.x): D(Da)

Lambda calculus 3 20

The system AP: Types depending on terms.

A" -, B is an intuitive example of a type depending on a term. In
order to formalize this dependence in AP, we need to extend the class
K of kinds as follows:

if Aisatypeand kOK then A o kOK.

In particular A —, [J isakind andif f:A - Oand alA,
onec has fa:[

The expression fa is a type depending on a term. Moreover, we
have function abstraction for this dependency.

Lambda calculus 3 21

Cartesian products.
Suppose that for each a:A atype B, is given such that there is
an element b, : B,. Then we may want to form the function

Aa: Ab,

that should have as a type the cartesian product
I_I a: AB,
oftypes B,’s.

Once these product types are allowed, the type constructor —
can be eliminated. We can write

(A~ B)=[]a:AB

where a is a variable not occuring in B.

Lambda calculus 3

22

Types and terms of AP.

(1) The set T of pseudo-expressions of AP is defined as follows

T =V|C|TT |AV:T.T |[MV:T.T

Where V is the set of all variables and C that of constants.
No distinction between type variables and term variables is
made.

(if) Among the constants C two elements are called [Jand [].

Lambda calculus 3 23

Assignment rules for AP.

Statements of the form M : A with M, AOT and contexts are
defined as for Aq.

Contexts are finite linearly ordered sequences of statements.

Sorts are two constants denoted by [Jand [1. Again, the letter s
ranges over the set of sorts.

The notion |- is defined by the following axiom and rules.

Lambda calculus 3

24

AP

(axiom)
(start-rule)

(weakening rule)

<>-0: U

M-A:s

—— x@r
MXx:Al=-x: A

MN-A:B MN-cC:s
MNx:C|-A:B

xar

(application rule)

(abstraction rule)

(conversion rule)

MN-A:0 rNx:A|-B:s
(type/kind formation) M-(Nx:AB):s

F-F:(Mx:AB) T|-a:A
I -Fa:B[x:=4a]
Mx:Al-b:B I'|-(Mx:AB):s
[|- (Ax: Ab):(Mx: AB)
F|-A:B [|-B:s BB
M-A:B

Lambda calculus 3 25

Exercises.

A:O-(A- D:O
A:JP:A-Qa:A|l-Pa:l
A:JP:A-0Qa:A|l-Pa- [0

A:0P:A- 0O-Ma: APa - D:
A:0P: A - O-(Qa: Axx: Pa.x):(Ma: A(Pa - Pa))

Lambda calculus 3 26

AP and Logic. (Pragmatics of AP)

Systems similar to AP have been introduced by
N. G. De Bruijn in the 1970s and 1980s in order to represent
mathematical theorems and their proofs.

Idea. Assume that there is a set prop closed under implication.
This can be done by context

I, =<prop:0Imp: prop — prop —» prop >

*We shall write ¢ O @ for Imp Y.

*A variable T :prop — O isdeclared and ¢ : prop
is declared to be valid if T$ is inhabited.

Lambda calculus 3 27

To guarantee that the implication has the right properties, one
assumes L, and [, such that

O.0w:T@OOW) - To - Ty
O ¢w:(To -~ TY) -~ T(¢ O W)

Now for representation of implicational proposition logic
we choose to work in context I, consisting of

I_O

T:prop - O

O.:MNé: proply: prop.T(¢ OW) - T - TY
O;:N¢ : propMy : prop.(To - Ty) - T(d O)

Lambda calculus 3 28

Example.

We want to show that ¢ U ® s valid for all propositions. We
need to show that its translation as a type T(¢ O ¢) is inhabited.

We have

¢:prop T:prop - O (context)
To:0 (application)
T T A To- 1 (assumption)

AX:T9.X): (T - T) ! (abstraction)
(0, 0dAX:TP.x): T(¢p - ¢) (context, application)

Hence

[oop | 2 (0 OOAX:T0.X) : T(d ~)

Lambda calculus 3 29

Simplified notation.

prop------ O
O:eeeeeees -
LIEERERERES I (identity)

Then for O, ¢¢ one can use
AX:(d > WAY: d.xy

and for O, ¢y
AX:(d - P).x

In this way the {-,0} fragment of (manysorted, constructive)
predicate logic can be interpreted in AP. A predicate on a type
with the domain A is represented as the statement P: (A - D).

Lambda calculus 3 30

One defines Pa for a:A to be valid, if it is inhabited.

Quantification is translated as follows
OxOAPX -eeeee > Mx: A.Px
Example.

Formula

(OxO AQy O A.Pxy) — (OxO A.Pxx)

is valid, since its translation is inhabited:

A:OP:A- Ao O |=Az:(Nx: ANy : APxy)AX: A zxX):
([Mx: ANY : A.Pxy] - [Mx: A.Pxx])

Lambda calculus 3 31

The system AP deserved its name because predicate logic can be
interpreted in it.

The method interprets
propositions, formulas ------ types
proofs terms lnhabltlng the types

The method is often called propositions astypes paradigm and it is
used for formulating results in the foundations of mathematics.

Lambda calculus 3 32

Systems of the A-cube: A uniform definition.

(i) The set T of pseudo-expressions of AP is defined as follows
T =V |C|TT |[AV:T.T |NV:T.T

Where V is the set of all variables and C that of constants. No
distinction between type variables and term variables is made.

Weuse A,B,C,...ab,c,... for pseudo-terms and x.,y,z,... for
variables.

(i1) Two constants are selected and denoted by []and [].
They are called sorts. The letter S ranges over the set of sorts.

Lambda calculus 3 33

(iii)) On T the notions of B-conversions and B-reductions are
defined by the following contraction rule

(Ax: A.B)C - B[x:=C]
(iv) A statement is of the form A: B where A /BOT.
We call A the subject and B the predicate of the statement A:B.

A declaration is a statement with a variable as the subject and with a
pseudo-expression as the predicate.

(v) A pseudo-context is a finite ordered sequence of declarations, all
with distinct subjects. The empty pseudo-context is denoted by <>
(usually we do not write it).

Given a pseudo-context [=<X : A,...,X : A >
its extension is defined as follows:

MX:B=<X:A,..,X:A,X:B>.

Lambda calculus 3 34

(vi) The notion I'|— A:B states that A:B can be derived from
the pseudo-context I, in this case we say that A and B are legal
expressions and [is a legal pseudo-context. The notion is
axiomatized by the rules of type assignment.

The rules are divided into two groups:
a) general axiom and rules valid for all systems of A-cube,

b) the specific rules differentiating the eight systems (usually
parametrized [l-introduction rules).

Lambda calculus 3 35

Systems of the A-cube

1. General axiom and rules.

<> =[]
MN-A:s

(start-rule) Mx:Al-x: A

MN-A:B IMN-cC:s
MNLx:C|-A:B

MNM-F:(Nx:AB) I[-a:A

N -Fa:B[x:=a]

(axiom)

xar

xar

(weakening rule)

(application rule)

MNx:A|-b:B I|-({Mx:AB):s
M —=@Ax: Ab):(Mx: AB)

(abstraction rule)

F-A:B |-B:s BB
M-A:B

(conversion rule)

Lambda calculus 3 36

2. The specific rules.
M-A:s MNx:A|-B:s,
(5,8,) rule [|-(Mx: AB):s,

We select four specific rules

@D, @m0, (5,0, (H50)

And the eight systems of A-cube consist of the general rules
together with a specific subsets of the above specific rules.

The sets of specific rules for the eight systems are depicted in the
table below.

System Set of specific rules
A - (01D
A2 om0
AP (gD (4.0
AP2 G.D @D @om
Aw (O (L, 1)
Aw (O D (1, 1)
APw (OHID (S0 I R (A)
APw=AC | (O D «.0D do, (7, 1)

Lambda calculus 3 37 Lambda calculus 3 38
A-cube
System | related system | names and references
Ao Al Simply typed lambda calculus
. [Church 1940]
Aw APw [Barendregt 1984]
A A [Hindley and Seldin 1986]
A2 = Second order (typed) lambda calculus
[Girard 1972]
A2 > AP2 [Reynolds 1974]
A A AP AUT -QE, LF | [de Bruin 1970]
[Harper et al. 1987]
AP2 [Longo and Moggi 1988]
Aw » APw
A POLYREC | [Renardel de Lavalette 1991]
/ / Ao Fa [Girard 1972]
A o » AP AP CC Calculus of constructions

Lambda calculus 3 39

[Coquand and Huet]

Lambda calculus 3

40

Remarks.

(1) Impredicativity. The expression

(MNa:0(a - a))
in A2 as a cartesian product of types, will be a type, too. So
|-(Ma:0@ - a)):0
but since it is a product over all possible types a,

including (Ma:0(a - a)) itself,
there is an essential impredicativity here.

Lambda calculus 3 41

(ii) Terms depending on types and types depending on types in A — .

AX: AX isa term depending on type A
A - A isatypedepending on the type A

butin A _, we have no function abstraction for these dependencies.

(iii) Note that in A - and even in A2 and AW one has no
types depending on terms. The types are given beforehand. Thus
the right-hand side of the cube is essentially more difficult than the
left-hand side because of the mixture of types and terms.

Lambda calculus 3 42

Equivalence of both versions of A -» and A2

Recall the definition A —» B=T1X: A.B where x is notin A, B.

Notice that application rule in the A-cube implies the (- —elimination)
rule:
MN-F:(A- B)=lx:AB MN-a:A
I-(Fa):B[x:=a]=B

Since X does not occur in B. It follows that if we have
A:0B:0a:Ab:B|-M:C:0O
in A > inA-cube then
a:Ab:B|-M:C
is derivable in the original system A — . The notation ' |-M :C:0

stands for the conjunction '|-M :C and ' |-C:0

Lambda calculus 3 43

Lemma.

Consider A — inthe A-cube.If I |= A:0 in this system, then A
is built up from the set {B[(B:D0l} using only - as defined
above.

Proof.

By induction on the generation of | —,

To show that both versions of A2 are the same, we have to define

Oa.A=MNa:0A
Aa.M =Aa :OM

in the A-cube. .

Lambda calculus 3 44

Examples.

(a) in A -, one can derive

A:0 |- (Mx:AA):0O
A:0 |- (Aa:Aa):(Mx: AA
A:0B:0b:B |- (Aa:Ab):(A- B)
where (A - B)=(lMx: A.B)

A:0Ob: A |- ((Aa:Aa)b): A
A:0B:0c:Ab:B |- ((Aa:Aa)bh):A
A:0B:0 |- (Aa:AAb:B.a):(A- (B - A):O

Lambda calculus 3 45

(b) In A2 one can derive

a:0 |- (Aa:a.a):(a - a)
|- (Aa:Mh\a:a.a):(MNa:0@ - a)):0
A:0 |- (Aa:Dh\a:a.a)A:(A- A
A:0Ob:A |- (Aa:[ha:a.a)Ab: A

Notice that for the last line the following reduction holds:

(Aa :h\a:a.a)Ab - (Aa: Aa)b
- b

Lambda calculus 3

46

Connection of 22 with second-order propositional logic.

Exercise.

| = AB:Aa:(Ma:0a).a(Ma:Oa) - Ba): (MP:0O(Ma :Oa) - B)

subject predicate

Simplification: put 0= (Ma : Oa) which is the definition of the
second-order falsum. Using this, we may write

|—(AB:ha:0.ap):(MB:0O0 - B)

subject predicate

The predicate (type) considered as a proposition says: ex falso
sequitur quodlibet (,, anything follows from a false statement*)
and the subject (term) is its proof.

Lambda calculus 3 47

(¢) InA& one can derive e.g.
[-(Aa:0a - a):(0- D:0

{(Aa : .0 - a) is a constructor mapping types into types}

Proof.

@ap a:0 X:d o x:0 0
(Nx:a.a):0 Mx:00: ¢
%/—J %/_J

a-a -0

Aa:0a - a):(0-DO: U

Similarly one can derive
B:0-Aa :Oa - a)p:0O
B:Ox:Bl-AY:B.X):(Aa :Oa - a)p

Lambda calculus 3

«,0)

48

Higher-order constructors.

They are formed in the following way

a:0f:0-0-f(fa):0
a:Dl_(Af O0- Df(fa)):(l:l—» D - [0

Lambda calculus 3 49

(d) AP-Propositions as types.

the following can be derived:
A:0-(A-D: 0]

{If A isatype considered as a set, then A — [J is the kind of
predicates on A.}

(1) if A is anon-empty set, a[J A and P is a predicate on A,
then Pa is a type considered as a proposition which is true if
inhabited, otherwise false.

A:JP:(A-D,a:A|-Pa:O

Lambda calculus 3 50

(i1) if P is a binary predicate on the set A, then Ja[d A Paa is
a proposition.

A:OP:(A- Ao D|-(MNa:APaa):0

(iii) if P and Q are two unary predicates on a set A, then the
predicate P considered as a set is included in Q.

A:00P:A-0Q:A- O -(Ma: A(Pa - Qa)):0
(iv) proposition stating the reflexivity of inclusion.
A:OP:A- O-(Na: A(Pa - Pa)): O
(v) ,,proof* of the reflexivity of inclusion.

A:OP: A O-Aa: ANx:Pa.x):(Ma: A(Pa - Pa)):0

subject
Lambda calculus 3 51

(vi) A type considered as a (true) proposition.

A:0P:A-0Q:O-(Ma:APa - Q) - (Ma: APa) - Q):0

We have proved that the type on the right hand is a proposition, to be
true, we have to assume that A is non-empty.

A:OP:A-0Q:0a,: Al-
(Ax:(Ma: APa - Q)Ay:(Ma: A.Pa).xa,(ya,)Q):
(Mx:(Ma: APa - Q)Ny:(Ma: A.Pa).Q)
(Ma:A.Pa- Q) (Ma:A.Pa)-Q

This proposition as a type states that proposition

(DadA.Pa - Q) - (DaDAPa) - Q

is true in non-empty structures A.
Lambda calculus 3 52

(e) Ao - conjunction

The second-order definition of conjuntion is defined as follows
a&B=nNy:0@ -B-Yy) -y,
{it is definable already in A2}, but in Aw can be derived
a:0B:0-a&pB:0O

Let

AND =Aa :OAB:O0 &P and K =Aa :OAB:OAX:a Ay:B.x

then
|-AND:(0- 0O-0

|-K:(Ma:0nB:0.0 - B - a)

Note that while a&p and K can be derived already in A2,
AND cannot.

Lambda calculus 3

53

The subject of the following assignment is a proof that

ANDGB - O

is a tautology.

a:0B:0-(Ax: ANDaB.xa(Kap)): (ANDaf - a):0

Lambda calculus 3 54

(f) AP2 is corresponding to second-order predicate logic.

In it the following can be derived

A:OP:A-O-Aa:APa-D):(A-D
A:0P:A- A- O-[(MNa: Alb: A.Pab - Pba -) -
- (Ma: A.Paa - [)]: 0

The proposition states that a binary relation that is asymetric
is irreflexive.

Lambda calculus 3

55

(g) \Pa gives the following derivation.

A:0-(AP:A-> Asha:APaa):((A- A-D - (A-D)O0

This constructor assigns to a binary predicate P on A its diagonalization.
The same can be done uniformly in A.

|—(AA:OAP: A A Oha: A.Paa):
(MA:OMNP:A- A-OMNa:ADO

Lambda calculus 3 56

(h) AP® =AC The calculus of constructions.

(i) A constructor can be derived that assigns to a type A and to
a predicate P on A the negation of P.

|- (AA:OAP: A Oha: A.Pa - O):

(i1) Universal quantification done uniformly:

Let ALL=(AA:0OAP: A - O.Na: A.Pa) then

A:OP:A- O-ALLAP:O and (ALL AP)=, (Ma: A.Pa)

Lambda calculus 3 57

Exercises.

a) Define = =Aad :0.0 - 0. Constructaterm M such that in
A®

a:0B:0-M:(a-p) - (=B --a))

b) Find an expression M such that in AP2, we have

A:OP:(A> Ao DJ|-
M :[(Ma: AMb: A.Pab - Pba - 0) - (Ma: APaa - 0)]: O

¢) Find aterm M such thatin AC, we have

A:OP:A- Qa:A|-M :(ALL AP - Pa)

Lambda calculus 3 58

Pure Type systems: A generalization of the A-cube.

* Many systems of typed lambda calculus ala Church can be seen as Pure
Type Systems.

* One of the successes of the notion of Pure Type Systems is concerned
with Logic: eight logical systems are shown to be in correspondence with
the systems on the A-cube.

* The general setting of Pure Type systems makes it easier to give the
required proof

Lambda calculus 3 59

The pure types systems are based on the same set of pseudoterms as
systems of the A-cube.

T =V|C|TT |AV:TT |V :TT

Definition. The specification of a Pure type system consists of a
triple S =(S, A, R) where
» Sis a subset of C, the elements of Sare called sorts.
* Ais a set of axioms of the form
c:s
with cOC and sOS.

R is a set of rules of the form

(s»S,,S;) with s,s,s,0S.

Lambda calculus 3 60

Thw set of variables V is stratified according to sorts into disjoint
infinite subsets V, foreachsort SOS. Hence V =0 {V,|sOS}.
The members of V. are denoted °X, %Y, °zZ,...

Arbitrary variables are still denoted by X.y,z,... if necessary one
writes X=X for x0OV,.

The first version of A2 can be understood as

X,Y,Z ... ranging over Vg

Definition.

The pure type system given by specification S= (§ A, R) is
denoted by AS= MS A, R). Its properties are defined as follows.

«Statements and contexts are defined as for the A-cube

*The notion of type derivations I |—,;A: B is defined by the
following axioms and rules

and
AR Ys .. over V,

Lambda calculus 3 61 Lambda calculus 3 62

AS,AR)
(axioms) <>|-c:s if (c:s)UA The side condition (B =, B) is not decidable. However it can

xoms be replaced by the decidable condition

MN-A:s o LS

(start) Fox:Al-x:A if x=xUF B-B o B-B
MN-A:B M -cC:s . with no effect on the set of derivable statements.
(weakening) | Fox:Cl- ,lo\ 5 if x=°xOr
— A CAI—R- Definition.
(product) rl I:A_Slnr’);.gl B:S (s,s,5)0R | B
|=(Mx: AB):s, (i) Therule (S;,S,) isanabbreviation for (s,S,,S,). In the
Lo MNM-F:(NMx:AB) T|-a:A A-cube only systems with rules of this simple form are used.
(application) [|- Fa:B[x:=a]
_ [,x:A|-b:B T|-(Mx:AB):s (ii) The Pure type system is full if
(abstraction) [|- (Ax: Ab):(Mx: AB)
R=5x5={(s;s,)|s,s, LS}
(conversion) F[-A:B [|-B:s B=,B T
r-A:B
Lambda calculus 3 63 Lambda calculus 3 64

Examples.

S Oo
}\ — A D:T
R (i}
S go
A2 A O: 0
R an,(o,0
S g o
AC A 0. 0
R @, @ ,0,d),(2,0)

It is a full system.

Lambda calculus 3 65

The system of higher order logic [Church 1940] can be
described as follows.

S go,A
AHOL | A 00, A
R @o, (L0, (5, 0)

The system below is a subsystem of A - . An
interesting conjecture of de Bruijn states that
mathematics from before the year 1800 can all be
formalized in it.

S go,A
APAL | A O
R (5, 5,4),dA,0) (U,A,4)

Lambda calculus 3

66

Definition. Legal contexts and legal pseudoterms.

Let I' be a pseudocontext and A a pseudoterm.

(1) T iscalled legal if T |-P:Q for some pseudoterms P,Q.
(ii) A pseudoterm A is called legal if there is a pseudocontext
I' and pseudoterm B such that I-A:B or I]-B:A.

Transitivity lemma.

Let I and A be contexts of which I is legal. Then

[F|-A and A|-A:B]=T |- A:B

Lambda calculus 3 67

Substitution lemma.

Assume Mx:AA|-B:C
and MN-D:A
Then MNA[x:=D] |-B[x:=D]:C[x:=D]

Thinning lemma.

LetT and A be legal contexts and I O A. Then

F-A:B=A|-A:B

Lambda calculus 3

68

Generation lemma

(Hr|-c:C = [BOS[C =, s&(c:9)0A]

@irj-x:C = BOSB=CI[I|-B:s&(x:B)UI
& X=°X]

(i) r|-Mx:AB):C = 0(s,S,S;)OR[MN-A:s &
F,X:A|—B:SZ&C=BS,,]
iv)F|=Ax:A.b):C = [EOSBIIN|-((NMx:AB):s&
Mx:Al-b:B&(C =, (Mx: AB)]
w)r|-(rFa:C = OABII|-F:(NMx:AB)&
MN-a:A&C=; B[x:=a]]

Lambda calculus 3 69

Subject reduction theorem.
N-A:B&A-> A = T[-A:B

Condensing lemma.

If X isnotfreein A, B, C, then

Mx:AA-B:C=T,A[-B:C

Lambda calculus 3 70

Definition. Simply sorted systems.

Let AS = MSAR) be a Pure type system. ASis called
singly sorted if

@(c:s),(C,:s,)0A = s =5,

(i) (85 8,%) (5, 5,8)UR = s =57

Uniqueness of types for singly sorted Pure type systems.

Let ASbe a singly sorted Pure type system. Then

M-A:B&l|-A:B, = B, =B,

Lambda calculus 3 71

Definition. Strong normalization for the A-cube.

Let AS be a Pure type system. We call it strongly normalizing and
write AS |= SN if all legal terms of AS are SN, i.e

MN-A:B => NA)&IN(B)

Theorem. Strong normalization for the A-cube.
For all systems in the A-cube, we have the following
O r|-A:B = SN(A&SN(B)
(1) X : A,.... X A |-B:C=>A,...,A,B,C are SN

Lambda calculus 3 72

Representing logics.

Eight systems of intuitionistic logic correspond in some sense
to the systems in the A-cube: there are four systems of
propositional logic and four systems of many sorted predicate
logic.

PROP propositional logic

PROP2 second-order propositional logic

PROPW weakly higher-order proposition logic

PROP® higher-order proposition logic

PRED predicate logic

PRED2 second-order predicate logic

PREDW® weakly higher-ordered predicate logic

PRED® higher-order predicate logic

*All these systems are minimal logics, the only logical operators are

— and .

» However, for the second- and higher-order systems, the operators
-,&,0 and [are all definable.

» Weakly higher-order logics have variables for higher-order
propositions or predicates but no quantification over them.

* A higher-order propositions have lower order propositions as
arguments.

* All the above logics are intuitionistic. The classical versions of
the logics in the upper plane of the logic-cube (see below) are
obtained by adding as axiom Ud.==a - a.

* The systems form a cube as shown below.

Lambda calculus 3 73 Lambda calculus 3 74
PROF » PREDw
/ A / A
PROP2 »PRED 2 Each system L; on the logic-cube corresponds to the
4 4 system A, on the corresponding vertex. The edges of the
logic-cube represent inclusions of the systems in the same
way as on the A-cube.
PROPw » PREDw
PROP » PRED

This cube will be referred as logic-cube.

Lambda calculus 3 75

Lambda calculus 3 76

Propositions as types: the idea.

A formula in the logic L; on the logic-cube can be
interpreted as a type HP“ in the corresponding A, on the
A-cube .

The transition

A |A

Is called propositions-as-types interpretation of L;.

Soundness.

The propositions-as-types interpretation satisfies the
following soundness result:

If A is provable in PRED, then |A| is inhabited in AP

Lambda calculus 3 71

In fact an inhabitant of HN‘ in AP can be found canonically from a
proof of A in PRED. Different proofs of A are interpreted as
different terms of type HN‘

Soundness can be shown all systems L, with respect to the
corresponding systems A, of the A-cube .

Completness.

Completness is defined naturally: if A is a formula of the
logic L; such that the type HA“ is inhabited in A,,then A
is provable in L.

For the proposition logics it is trivially true. Completnes
was proved for PRED with respect to AP. For PRED®
with respectto AC fails.

Lambda calculus 3 78

