Modeling and Solving AI Problems in Picat

Roman Barták, Neng-Fa Zhou

Pair up all the matching
 numbers on the grid with single continuous lines (or paths).

- The lines cannot branch off or cross over each other, and
- the numbers have to fall at the end of each line (i.e., not in the middle).

It is considered all the cells in the grid are filled.

43	43	43		43	43	4 A	43	4	43	43	4 s	4	43	4 s	43	43	43	43	4	s	3	43	43	4 A	43	48	4	4		43	43	4 s	43	43	43	24	24	24	24	24	49	49	48	48	49	
43	12	12		12	12	12	2	12	12	12	12	2	12	12	12	12	15	15	13	51	5	56	56	56	56	56	5	56	6	56	57	57	57	57	48	24	25	25	25	24	48	24	24	24	48	
43	12	5		5	5	5		5	5	10	10	0	10	10	10	10	15	17	62	2 :	5	56	61	60	18	33		31		56	57	50	50	57	4 A	24	24	24	25	24	49	24	39	24	48	
43	12	12		12	12	12	12	12	5	10	15	5	15	15	13	15	15	17	62	2	5	61	61	60	13	33		33		56	57	50	57	57	43	59	59	24	2	24	24	24	39	24	49	
43	14	14		14	14	14		12	5	10	15	51	17	17	17	17	17	17	62	2 :	5	60	60	60	13	33		33		56	57	50	57	46	43	47	59	24	25	25	25	25	39	39	49	
48	14	13		13	13	14		12	5	10	15	5	17	16	16	16	16	18	18	1 1	a	13	13	14	13	33		33		31	57	50	57	46	4 4	47	59	24	24	24	24	25	25	39	39	
43	4	13		4	13	13	12	12	5	10	15	5 :	1716	16	17	17	17	19	18	$\bigcirc 1$	9	55	55	55	53	33		35		35	57	50	57	46	43	47	47	47	47	47	24	24	25	25	39	
48	14	13		4	7	7		12	5	10	15	5	17	16	17	13	13	13	13	3	9	55	54	54	53	3		$3:$		57	57	50	57	46	46	46	46	46	46	47	47	24	24	25	38	
43	14	13		4	7	:2	12	12	5	10	15		17	16	17	13	1	42	4	2 1	9	55	54	53	53	52		3.		35	35	50	57	57	23	23	23	23	46	46	47	47	24	25	39	
43	14	13		4	7	12	12	4	5	10	15	5	17	16	17	13		4			-	55	54	54	52	52		32		32	35	50	50	50	23	45	45	23	23	46	53	53	24	25	39	
43	14	13		4	7	10	12	:	5	10	15	5	17	16	17	13		4	4	2 1	9	55	55	54	52	21		2.		32	51	51	51	50	23	45	26	26	23	46	46	53	24	25	39	
43	14	13		4	7	10	14	4	5	10	15		17	16	17	13		4			-	19	19	54	52	21		32		32	51	50	50	50	23	45	26	23	23	53	53	53	24	25	39	
43	14	13		4	7	10		10	t0	10	15	5	17	16	17	13		4	4	42	2	42	52	52	52	21		5		51	51	50	23	23	23	45	26	23	2	24	24	24	24	25	39	
43	14	13		4	7	9			Q	-	15	51	17	16	17	13		4				42	42	42	42	21		5		50	50	50	23	29	45	45	26	23	24	25	25	25	25	25	39	
43	14	13		4	T	-		4	6	-	15	5 :	17	16	17	13						41	22	22	22	21		5		50	23	23	23	28	29	29	26	23	24	25	28	23	28	28	39	
48	14	13		4	7	3		3	6	-	15	5	17	17	17	13	13	13			6	41	22	34	22	21		4	4	50	23	30	30	30	30	29	26	23	24	25	27	27	27	2 B	38	
48	. 4	2		4	7	7		7	6	-	15	5	4	4	4	4	4	13			6	41	22	3 A	22	21		4		43	23	31	31	31	30	29	26	23	24	25	26	26	27	28	38	
43	14	13		4	4	6		6	6	-	15	5	4	13	13	13	4	13			6	36	33	38	2.	21		4		27	27	27	27	$3:$	30	29	26	23	2	25	25	26	27	28	38	
4 4	14	13		13	4	4		4	4	-	15	5	4	13	14	13	4	13				37	38	20	4	4		4		43	43	43	27	31	30	29	26	23	24	24	24	26	27	28	39	
43	4	4		13	13	13		13	4	4			4	13	14	13	1	13	31			37	38	20	39	38				39	40	23	27	30	30	29	26	23	23	23	23	26	27	23	39	
43	1	. 4		14	14	14		13	13	13	13	1	13	13	14	13	4	4		13		37	38	20	31	37		4		38	40	23	27	29	28	28	26	26	2	26	26	26	27	28	39	
43						14		14	14	14	1		14	14	14	13	13	13	31	13		37	33	38	38	37		39		39	40	23	27	27	${ }^{27}$	27	27	27	27	27	27	27	27	2 A	39	
43																						37	37	37	37	37				40	40	28	28	2 L	28	28	28	23	28	28	28	2 s	23	28	39	
43	43	43		43	43	43		4	43	43	43		43	4 S	43	4 S	43	4		4	4	43	43	43	4	43				39	38	39	39	39	39	39	39	39	39	39	39	39	39	39	39	

Solved with the sat module of Picat and the Lingeling solver in $\mathbf{4 0}$ s.

Numberlink: Picat encoding

```
import sat.
```

numberlink (NP,NR,NC,InputM) =>
$\mathrm{M}=$ new_array (NP, NR,NC) ,
M : : 0..1,
\% no two numbers occupy the same square
foreach (J in 1..NR, K in 1..NC)
$\operatorname{sum}([M[I, J, K]: I$ in 1..NP]) \#=1
end,
\% connectivity constraints
foreach(I in 1..NP, J in $1 . . N R, K$ in $1 . . N C)$
Neibs $=[\mathrm{M}[\mathrm{I}, \mathrm{J} 1, \mathrm{~K} 1]:(\mathrm{J}, \mathrm{K} 1)$ in $[(J-1, K),(J+1, K),(J, K-1),(J, K+1)]$,
$\mathrm{J} 1>=1, \mathrm{~K} 1>=1$, J1=<NR, $\mathrm{K} 1=<\mathrm{NC}]$,
(InputM[J,K]==I ->
$\mathrm{M}[\mathrm{I}, \mathrm{J}, \mathrm{K}]$ \#=1, sum(Neibs) \#= 1
;
M[I,J,K] \#=> sum(Neibs) \#= 2
)
end,
solve (M).

Part I: From Prolog to Picat
 - Introduction to Picat's programming constructs
 - Behind the scene
 Part II. Combinatorial (optimization) problems in Picat
 - A very short introduction to SAT, CP, MIP modules
 - Examples of combinatorial (optimization) problems and their encodings in Picat
 - Behind the scene

Part III. Classical action planning in Picat

- A very short introduction to formal models of classical planning problems
- Examples of planning problems and their encodings in Picat
- Behind the scene

Wrap up

Part I:

FROM PROLOG TO PICAT

Why the name "PICAT"?

- $\underline{\text { Pattern-matching, } \underline{I} \text { ntuitive, } \underline{\text { Constraints, }}, \underline{\text { Actors }}, \underline{T} \text { abling }}$

Core logic programming concepts:

- logic variables (arrays and maps are terms)
- implicit pattern-matching and explicit unification
- explicit non-determinism

Language constructs for scripting and modeling:

- functions, loops, list and array comprehensions, and assignments

Facilities for combinatorial search:

- tabling for dynamic programming
- the cp, sat, and mip modules for CSPs
- the planner module for planning

A variable name begins with a capital letter or the underscore.


```
Picat> var(X)
yes
Picat> X = a, var(X)
no
Picat> X.put_attr(a,1), attr_var(X)
yes
Picat> X.put_attr(a,1), Val = X.get_attr(a)
Val = 1
yes
Picat> import cp
Picat> X :: 1..10, dvar(X)
X = DV_010b48_1..10
yes
```

An unquoted atom name begins with a lower-case letter. A character is a single-letter atom.


```
Picat> atom(abc)
yes
Picat> atom('_abc')
yes
Picat> char(a)
yes
Picat> Code = ord(a)
Code = 97
```

Picat> A = chr(97)
A = a

```
Picat> int(123)
yes
Picat> Big = 99999999999999999999999
Big = 99999999999999999999999
Picat> X = Ob111101
x = 61
Picat> X = 0xff0
X = 4080
Picat> real(1.23)
yes
Picat> X = 1.23e10
X = 12300000000.0
```


Lists are singly-linked lists.

Picat> $L=[a, b, c]$, list(L)
$L=[a, b, c]$
yes
Picat> L = new list(3)

$L=\left[_101 c 8, \ldots 101 \mathrm{~d} 8, \ldots 101 \mathrm{e} 8\right]$
Picat> L = 1..2. 10
$\mathrm{L}=[1,3,5,7,9]$

Picat> $L=[X: X$ in 1.. 10 , even (X)]
$L=[2,4,6,8,10]$

Picat> $L=[a, b, c]$, Len $=$ len (L)
$L=[a, b, c]$
Len $=3$

Picat> $L=[a, b]++[c, d]$
$L=[a, b, c, d]$

Strings are lists of characters.


```
Picat> S = "hello"
S = [h,e,l,l,o]
Picat> S = "hello" ++ "Picat"
S = [h,e,l,l,o,'P',i,c,a,t]
Picat> S = to_string (abc)
\(S=[a, b, c]\)
Picat> S = to_radix_string \((123,16)\)
S = ['7','B']
Picat> X = to_int("123")
X = 123
Picat> X = parse_term("[1, 2, 3]")
\(\mathrm{X}=[1,2,3]\)
```

```
Picat> S = $student(mary,cs,3.8)
S = student(mary,cs,3.8)
Picat> S = new_struct(mary,3)
S = mary(_12ad0,_12ad8,_12ae0)
Picat> S = $f(a), A = arity(S), N = name(S)
A = 1
N}=\mathbf{f
Picat> And = (a,b)
And = (a,b)
Picat> Or = (a;b)
Or = (a;b)
Picat> Constr = (X #= Y)
Constr = (_10f18 #= _10f20)
```

term

```
Picat> \(A=\{a, b, c\}, \operatorname{array}(A)\)
\(A=\{a, b, c\}\)
yes
Picat> A = new_array (3)
\(\mathrm{A}=\) \{_10528, _10530, 10538\(\}\)
Picat> A = new_array \((3,3)\)
\(A=\left\{\left\{\_f d b 0, \ldots f \mathrm{db} 8, \ldots \mathrm{fdc} 0\right\}, \ldots\right\}\)
Picat> \(A=\{X: X\) in 1..10, even (X) \}
\(A=\{2,4,6,8,10\}\)
Picat> \(L=[a, b, c], A=\) to_array (L)
\(L=[a, b, c]\)
\(A=\{a, b, c\}\)
Picat> \(A=\{a, b\}++\{c, d\}\)
\(A=\{a, b, c, d\}\)
```


Maps and sets are hash tables.


```
Picat> M = new_map([ichi=1, ni=2]), map(M)
M = (map) [ni = 2,ichi = 1]
yes
Picat> M = new_map([ni=2]), Ni = M.get(ni)
Ni = 2
Picat> M = new_map(), M.put(ni,2)
M = (map)[ni = 2]
Picat> M = new_map(), Ni = M.get(ni,unknown)
M = (map) []
Ni = unknown
```

Picat> S = new_set([a,b,c])
$S=(\operatorname{map})[c, b, a]$
Picat> S = new_set([a,b,c]), S.has_key(b)
yes
$X[I 1, . . ., I n]$: X references a compound value

Linear-time access of list elements.

```
Picat> L = [a,b,c,d], X = L[4]
X = d
```

Constant-time access of structure and array elements.

```
Picat> S = \$student(mary,cs,3.8), GPA = s[3]
GPA \(=3.8\)
```

```
Picat> A = {{1, 2, 3}, {4, 5, 6}}, B = A[2, 3]
```

$\mathrm{B}=6$

```
\(\left[T: E_{1}\right.\) in \(D_{1}, \operatorname{Cond}_{n}, \ldots, E_{n}\) in \(\left.D_{n}, \operatorname{Cond}_{n}\right]\)
Picat> \(\mathrm{L}=[\mathrm{X}: \mathrm{X}\) in 1..10, even (X)]
\(\mathrm{L}=[2,4,6,8,10]\)
Picat> \(\mathrm{L}=[(\mathrm{A}, \mathrm{I}): \mathrm{A}\) in \([\mathrm{a}, \mathrm{b}]\), I in 1..2].
\(L=[(a, 1),(a, 2),(b, 1),(b, 2)]\)
Picat> L = [(A,I) : \{A,I\} in zip([a,b],1..2)]
\(L=[(a, 1),(b, 2)]\)
Picat> L = [X : I in 1..5] \(\quad\) \% \(X\) is local
L = [_bee8,_bef0,_bef8,_bf00,_bf08]
Picat> \(\mathrm{X}=\) _, \(\mathrm{L}=[\mathrm{X}: \mathrm{I}\) in 1..5] \% \(X\) is non-local
\(\mathrm{L}=[\mathrm{X}, \mathrm{X}, \mathrm{X}, \overline{\mathrm{X}}, \mathrm{X}]\)
```

O.f(t1,...,tn)
-- means module qualified call if O is atom
-- means $f\left(0, t 1, \ldots, \mathrm{tn}_{\mathrm{n}}\right)$ otherwise.

```
Picat> Y = 13.to_binary_string()
Y = [ '1', '1' , '0', '1']
Picat> Y = 13.to_binary_string().reverse()
Y = ['1', '0', '1' , '1']
% X becomes an attributed variable
Picat> X.put_attr(age, 35), X.put_attr(weight, 205), A =
    X.get_attr(age)
A = 35
% X is a map
Picat> X = new_map([age=35, weight=205]), X.put(gender, male)
X = (map) ([age=35, weight=205, gender=male])
Picat> S = $point(1.0, 2.0), Name = S.name, Arity = S.len
Name = point
Arity = 2
Picat> Pi = math.pi % module qualifier
Pi = 3.14159
```

```
Picat> X = 1
X=1
Picat> $f(a,b) = $f(a,b)
yes
Picat> [H|T] = [a,b,c]
H=a
T=[b,c]
Picat> $f(X,Y) = $f(a,b)
    \longleftarrowmatching
X=a
Y=b
Picat> $f(X,b)=$f(a,Y) \longleftarrow &ull unification
X=a
Y=b
Picat> X = $f(X)
    \longleftarrow
    without occur checking
```

Picat> member (X, [1, 2, 3])
$\mathrm{X}=1$? ;
$\mathrm{X}=2$? ;
$\mathrm{X}=3$? ;
no

Picat> between (1, 3, X)

Picat> select(X,[1,2,3],R)
Picat> nth (I, [1, 2, 3] , E)
Picat> append(L1,L2,[1,2,3])

Control backtracking

Picat> once (member (X, [1, 2, 3]))

Picat> call (member, $\mathrm{X},[1,2,3]$)
Picat> Sin $=$ apply $($ sin, 0.5$)$
Sin $=0.479425538604203$

Picat> $R=$ map(to_real, $[1,2,3]$)
$R=[1.0,2.0,3.0]$

Picat> L = findall (X, member (X, $[1,2,3])$)
$L=[1,2,3]$
Picat> time (_ = 1..1000000)
CPU time $0.0 \overline{3} 3$ seconds.

Picat> maxof (member (X, [1, 3, 2]), X)
X $=3$

```
Picat> X = read_int()
123
\(x=123\)
```

Picat> X = read_file_lines()
hello
Picat
$X=\left[[h, e, l, l, o],\left[P^{\prime}, i, c, a, t\right]\right]$
Picat> S = open("t"), Line = S.read_line(),
S.close()
$\mathrm{S}=$ (stream) [10002]
Line $=\left[h, e, l, l, 0, ' \quad ', P^{\prime}, i, c, a, t\right]$

```
Picat> X = sign(-2)
X = -1
```

Picat> $x=\sin (p i() / 3)$
X = 0.866025403784439
Picat> X = sqrt(5)
$\mathrm{X}=2.23606797749979$
Picat> X = factorial(30)
$\mathrm{X}=265252859812191058636308480000000$
Picat> $\mathrm{X}=\operatorname{gcd}(100000,388)$
X $=4$
Picat> X = primes (17)
$x=[2,3,5,7,11,13,17]$

```
Picat> import util
Picat> Ts = split("ab cd ef"), S = Ts.join()
Ts = [[a,b],[c,d],[e,f]]
S = [a,b,' ',c,d,' ',e,f]
Picat> permutation([1,2,3],P)
P = [1,2,3] ?;
P = [1,3,2] ?
Picat> Ps = permutations([1,2,3])
Ps = [[1,2,3],[2,1,3],[2,3,1],[1,3,2],[3,1,2],[3,2,1]]
```

Picat> (2 > 1, $2<3$)
yes

Picat> (X = a; X = b) \% disjunction
X = a ? ;
$X=b$

Picat> not X = a
\% negation

Picat> if var(X) then writeln(var) else writeln(no) end var

Picat> (var(X) -> writeln(var); writeln(no))
var

Picat> $X=$ cond $(2>1, a, b) \quad$ \% conditional exp
X = a

foreach(E_{1} in D_{1}, Cond $_{1}, \ldots, E_{n}$ in D_{n}, Cond $_{n}$) Goal

end
Variables that occur within a loop but not before in its outer scope are local to each iteration

```
Picat> A = new_array(5), foreach(I in 1..5) A[I] = X end
A = {_15bd0,_15bd8,_15be0,_15be8,_15bf0}
Picat> X = _, A = new_array(5), foreach(I in 1..5) A[I] = X end
A = {X,X,X,X,X}
```


$\mathrm{X}\left[\mathrm{I}_{1}, \ldots, \mathrm{I}_{\mathrm{n}}\right]:=\operatorname{Exp}$

Destructively update the component to Exp. Undo the update upon backtracking.

Var := Exp

The compiler changes it to Var' $=$ Exp and replaces all subsequent occurrences of Var in the scope by Var' .

```
Picat> X = 0, X := X + 1, X := X + 2, write(X).
Picat> X = 0, X1 = x + 1, x2 = x1 + 2, write(X2).
```


while (Cond)
 Goal
 end

```
Picat> X = read_int(), while (X !== 0) x := read_int() end
```


Logic Programming in Picat

Non-backtrackable
Head, Cond => Body.

Backtrackable

Head, Cond ?=> Body.

```
member (X,L) ?=> L = [X|_].
member (X,L) => L = [_|L\overline{R}], member (X,LR).
membchk(X,[X|_] => true.
membchk(X,[_|L]) => membchk (X,L) .
```

- Pattern-matching rules
- No laziness or freeze

The call membchk (X, _) fails

- Facilitates indexing
- Explicit unification
- Explicit non-determinism

Facts must be ground!
A call with insufficiently instantiated arguments fails
Picat> edge (X,Y)
no

Functional Programming in Picat

Head $=$ Exp, Cond $=>$ Body.

```
fib(0) = 1.
fib(1) = 1.
fib(N) = fib(N-1) +fib(N-2).
power_set([]) = [[]].
power_set([H|T]) = P1++P2 =>
    P1 = power_set(T),
    P2 = [[H|S] : S in P1].
```

Dynamically typed
List and array comprehensions
Strict (not lazy)
Higher-order functions

```
qsort([]) = [].
qsort([H|T]) = qsort([E : E in T, E=<H])++
                                    [H] ++
    qsort([E : E in T, E>H]).
```

Function calls cannot occur in head patterns.
Index notations, ranges, dot notations, and comprehensions cannot occur in head patterns.

As-patterns:

```
merge([],Ys) = Ys.
merge(Xs,[]) = Xs.
merge([X|Xs],Ys@[Y|_]) = [X|Zs], X<Y =>
    Zs = merge(Xs,Ys).
merge(Xs,[Y|Ys]) = [Y|Zs] =>
        Zs=merge (Xs,Ys).
```

table
fib (0) $=0$.
fib(1) $=1$.
fib $(\mathrm{N})=\mathrm{fib}(\mathrm{N}-1)+\mathrm{fib}(\mathrm{N}-2)$.

- Linear tabling
- Mode-directed tabling
- Term sharing

$$
\begin{aligned}
& \binom{n}{0}=\binom{n}{n}=1 \quad \text { for all integers } n \geq 0 \\
& \binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k} \quad \text { for all integers } n, k: 1 \leq k \leq n-1,
\end{aligned}
$$

table

c (_'
$0)=1$.
$\mathrm{c}(\mathrm{N}, \mathrm{N})=1$.
$c(N, K)=c(N-1, K-1)+c(N-1, K)$.

Scripting in Picat

```
main =>
    print("enter an integer:"),
    N = read_int(),
    foreach(I in 0..N)
        Num := 1,
        printf("%*s", N-I, ""), % print N-I spaces
            foreach(K in O..I)
            printf("%d ", Num),
            Num := Num*(I-K) div (K+1)
            end,
            nl
    end.
    SSA (Static Single Assignment)
    Loops
                $ picat pascal
                                    enter an integer:5
                                    1
        1 1
        121
        1 3 3 1
        14641
                                1 5 10 10 5 1
```


Transformation of Functions


```
L = [Exp : E E in D D , Condn , . . ., E En in D D , Condn]
L = Tail,
foreach ( }\mp@subsup{\textrm{E}}{1}{}\mathrm{ in D D , Condn , . . ., E En in D D , Condn)
    Tail = [Exp|NewVar],
    Tail := NewVar,
end,
Tail = []
```


Deforestation

$\mathrm{X}=0, \mathrm{X}:=\mathrm{X}+1, \mathrm{X}:=\mathrm{X}+2$, write (X).
$\mathrm{x}=0, \mathrm{X} 1=\mathrm{x}+1, \mathrm{X} 2=\mathrm{x} 1+2$, write (X2).
Static Single Assignment form

```
go(Z) =>
    X = 1, Y = 2,
    if Z > O then
        X := X * Z
    else
        Y := Y + Z
    end,
    print([X,Y]).
```

go (Z) =>
$\mathrm{X}=1, \mathrm{Y}=2$,
p(X, Xout, Y, Yout, Z), println([Xout,Yout]).
p(Xin, Xout, Yin, Yout, Z), Z > 0 => Xout $=$ Xin * \mathbf{Z}, Yout $=$ Yin.
p(Xin, Xout, Yin, Yout, Z) => Xout = Xin, Yout = Yin + Z.

```
sum_list(L, Sum) =>
    S = 0,
    foreach (E in L)
        S :=S + E
    end,
    Sum = S.
```


Write a function that returns the number of zeros in a given simple list of numbers.

```
count_zeros(L) = sum([1 : 0 in L]).
```

```
count_zeros(L) = Count =>
    count_zeros(L, 0, Count).
count_zeros([], Count0, Count) => Count = Count0.
count_zeros([0|L], Count0, Count) =>
    count_zeros(L, Count0+1, Count).
count_zeros([_|L], Count0, Count) =>
    count_zeros(L, Count0, Count).
```


Programming Exercise: Replicate Elements

Replicate the elements of a list a given number of times.

Example:

$$
\text { repli([a,b], 3) returns }[a, a, a, b, b, b] .
$$

```
repli(L, N) = [X : X in L, _ in 1..N].
```

Given a list of space-separated words, reverse the order of the words [from GCJ].

Input

```
3
this is a test
foobar
all your base
```

Output
Case \#1: test a is this Case \#2: foobar Case \#3: base your all

Programming Exercise: Reverse Words

Given a list of space-separated words, reverse the order of the words [from GCJ].

```
3
this is a test
foobar
all your base
```

```
Case #1: test a is this
Case #2: foobar
Case #3: base your all
```

import util.

```
main =>
    T = read_line().to_int(),
    foreach (TC in 1..T)
        Words = read_line().split(),
        printf("Case #%w: %s\n", TC, Words.reverse().join())
    end.
```

Given an integer C , and a sequence of integers, find the indices of the two items that sum up to C (from GCJ).

Input

| 2 | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 100 | | | | | | | |
| 3 | | | | | | | |
| 5 | 75 | 25 | | | | | |
| 200 | | | | | | | |
| 7 | | | | | | | |
| 150 | 24 | 79 | 50 | 88 | 345 | 3 | |

Output

Case \#1: 23
Case \#2: 14

Programming Exercise: Store Credit, Brute-force, $O\left(n^{2}\right)$

main $=>$

```
\(T=r e a d \_i n t()\),
    foreach (TC in 1..T)
        \(\mathrm{C}=\) read_int(),
        \(\mathrm{N}=\) read_int(),
        Items \(=\) \{read_int() : _ in 1..N\},
        do_case (TC, C, Items)
    end.
```

do_case (TC, C, Items),
between (1 , len(Items)-1, 1),
between(It1, len(Items), J),
C == Items[I]+Items[J]
=>
printf("Case \#\%w: \%w \%w\n", TC, I, J).

```
main =>
    T = read int(),
    foreach (TC in 1..T)
        C = read_int(),
        N = read-int(),
            Items = {read_int() : _ in 1..N},
            Map = new_map(),
            foreach (\overline{I}}\mathrm{ in N..-1..1)
                Is = Map.get(Items[I], []),
                Map.put(Items[I],[I|Is])
            end,
            do_case(TC, C, Items, Map)
    end.
do_case(TC, C, Items, Map),
    between(1, len(Items)-1, I),
    Js = Map.get(C-Items[I], []),
    member(J, Js),
    I < J
=>
    printf("Case #%w: %w %w\n", TC, I, J).
```

Part II.

COMBINATORIAL (OPTIMIZATION) PROBLEMS IN PICAT

Combinatorial puzzle, whose goal is to enter digits 1-9 in cells of 9×9 table in such a way, that no digit appears twice or more in every row, column, and 3×3 sub-grid.

9	6	3	1	7	4	2	5	8
1	7	8	3	2	5	6	4	9
2	5	4	6	8	9	7	3	1
8	2	1	4	3	7	5	9	6
4	9	6	8	5	2	3	1	7
7	3	5	9	6	1	8	2	4
5	8	9	7	1	3	4	6	2
3	1	7	2	4	6	9	8	5
6	4	2	5	9	8	1	7	3

Solving Sudoku

x	x	6		(1)	3			
3	9	x					(1)	
2	1	8				4		

Use information that each digit appears exactly once in each row, column and sub-grid.

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

We can see every cell as a variable with possible values from domain $\{1, \ldots, 9\}$.

There is a binary inequality constraint between all pairs of variables in every row, column, and sub-grid.

Such formulation of the problem is called a constraint satisfaction problem.

Constraint satisfaction problem consists of:

- a finite set of variables
- describe some features of the world state that we are looking for, for example positions of queens at a chessboard
- domains - finite sets of values for each variable
- describe "options" that are available, for example the rows for queens
- sometimes, there is a single common "superdomain" and domains for particular variables are defined via unary constraints
- a finite set of constraints
- a constraint is a relation over a subset of variables for example row $A \neq$ row B
- a constraint can be defined in extension (a set of tuples satisfying the constraint) or using a formula (see above)

A solution to a CSP

A feasible solution of a constraint satisfaction problem is a complete consistent assignment of values to variables.

- complete $=$ each variable has assigned a value
- consistent = all constraints are satisfied

Sometimes we may look for all the feasible solutions or for the number of feasible solutions.

An optimal solution of a constraint satisfaction problem is a feasible solution that minimizes/maximizes a value of some objective function.

- objective function = a function mapping feasible solutions to integers
- For each variable we define its domain.
- we will be using discrete finite domains only
- such domains can be mapped to integers
- We define constraints/relations between the variables.
[X, Y] : : 0..100, 3\#=X+Y, $\mathrm{Y} \#>=2, \mathrm{X} \#>=1$.
- Recall a constraint satisfaction problem.
- We want the system to find the values for the variables in such a way that all the constraints are satisfied.
$\mathrm{X}=1, \mathrm{Y}=2$

How is constraint satisfaction realized?

- For each variable the system keeps its actual domain.
- When a constraint is added, the inconsistent values are removed from the domain.

Example:

[X,Y] :: 0.. 100

X	Y
inf..sup	inf..sup
0.100	$0 . .100$
0.3	0.3
0.1	$2 . .3$
1	2

Assign different digits to letters such that SEND+MORE=MONEY holds and $\mathrm{S} \neq 0$ and $\mathrm{M} \neq 0$.

Idea:
generate assignments with different digits and check the constraint

```
crypto_naive(Sol) =>
```

 Sol \(=[\mathrm{S}, \mathrm{E}, \mathrm{N}, \mathrm{D}, \mathrm{M}, \mathrm{O}, \mathrm{R}, \mathrm{Y}]\),
 Digits1 \(9=1 . .9\),
 Digits \(0^{-9}=0 . .9\),
 member (\(\bar{S}\), Digits1_9),
 member (E, Digits0-9), E!=S,
 member (N, Digits0-9), N!=S, N!=E,
 member (D, Digits0-9), D!=S' D!=E, D!=N,
 member (M, Digits1-9), M!=S, M!=E, M!=N, M!=D,
 member (O, Digits0-9), \(O!=S, O!=E, O!=N, O!=D, O!=M\),
 member (R, Digits0-9), R!=S, R!=E', R!=N, R!=D, R!=M, R!=O,
 member (\(\mathrm{Y}, \mathrm{Digits} 0^{-} 9\)), \(\mathrm{Y}!=\mathrm{S}, \mathrm{Y}!=\mathrm{E}, \mathrm{Y}!=\mathrm{N}, \mathrm{Y}!=\mathrm{D}, \mathrm{Y}!=\mathrm{M}, \mathrm{Y}!=\mathrm{O}, \mathrm{Y}!=\mathrm{R}\),
 1000*S \(\mp\) 100*E + 10*N + D +
 \(1000 * \mathrm{M}+100 * \mathrm{O}+10 * \mathrm{R}+\mathrm{E}=\)
 $1000 * \mathrm{O}+100 * \mathrm{~N}+10 * \mathrm{E}+\mathrm{Y}$.
10000*M + 1000*O + 100*N + 10*E + Y.

member (O, Digits 0^{-9}), $O!=S, O!=E, O!=N, O!=D, O!=M$,

SEND+MORE=MONEY (better)

```
```

crypto better(Sol) =>

```
```

crypto better(Sol) =>
Sol = [S,E,N,D,M,O,R,Y],
Sol = [S,E,N,D,M,O,R,Y],
Digits1 9 = 1..9,
Digits1 9 = 1..9,
Digits0-9 = 0..9,
Digits0-9 = 0..9,
% D+E = 10*P1+Y
% D+E = 10*P1+Y
member(D, Digits0_9),
member(D, Digits0_9),
member(E, Digits0-9), E!=D,
member(E, Digits0-9), E!=D,
Y is (D+E) mod 10-
Y is (D+E) mod 10-
P1 is (D+E) // 10, % carry bit

```
```

 P1 is (D+E) // 10, % carry bit
    ```
```

 \% N+R+P1 = 10*P2+E
 member (N, Digits0 9), N!=D, N!=E, N!=Y,
 \(R\) is \((10+E-N-P 1) \bmod 10, R!=D, R!=E, R!=Y, R!=N\),
 P2 is (N+R+P1) // 10,
 \% \(\mathrm{E}+\mathrm{O}+\mathrm{P} 2=10\) *P3+N
 O is (10+N-E-P2) mod \(10, O!=D, O!=E, O!=Y, O!=N, O!=R\),
 Some letters can be
Some letters can be
computed from other
computed from other
letters and invalidity
letters and invalidity
of the constraint can
of the constraint can
be checked before all
be checked before all
letters are know
letters are know
P3 is (E+O+P2) // 10,
\% S+M+P3 = 10*M+O
member (M, Digits1 9), M!=D, M!=E, M!=Y, M!=N, M!=R, M!=O,
S is 9*M+O-P3,
S>0,S<10, S!=D, S!=E, S!=Y, S!=N, S!=R, S!=O, S!=M.

Domain filtering can take care about computing values for letters that depend on other letters.

```
import cp.
crypto(Sol) =>
    Sol=[S,E,N,D,M,O,R,Y],
    Sol :: O..9,
    S #!= 0, M #!= 0,
    solve(Sol).
```

 1000*S + 100*E + 10*N + D +
 \(1000 * \mathrm{M}+100 * \mathrm{O}+10 * \mathrm{R}+\mathrm{E}\) \#=
 10000*M + 1000*O + 100*N + 10*E + Y,
 all_different (Sol), assign values (from domains) to
 variables - depth first search
 Note: It is also possible to use a model with carry bits.

A typical structure of CLP programs in Picat:

 import cp. problem(Variables) =>Definition of CLP operators, constraints and solvers

Control part

- exploration of space of assignments
- assigning values to variables
- looking for one, all, or optimal solution

Domain in Picat is a set of integers

- other values must be mapped to integers
- integers are naturally ordered

Frequently, domain is an interval

- ListOfVariables : : MinVal..MaxVal
- defines variables with the initial domain \{MinVal,...,MaxVal\}

For each variable we can define a separate domain (it is possible to use any expression providing a list of integers)

- X : : Expr
$-X:: \quad[1,2,3,8,9,15]++[27,28]$

Classical arithmetic constraints with operations $+,-, *, /$, abs, min, max,... operations are built-in

It is possible to use comparison to define a constraint \#=, \#<, \#>, \#=<, \#>=, \#!=

Picat> A+B \#=< C-2.
What if we define a constraint before defining the domains?

- For such variables, the system assumes initially the infinite domain -MinInt..+MaxInt

Arithmetic (reified) constraints can be connected using logical operations:

- \#~ : Q negation
- : P \#/\ :Q conjunction
- : P \# \/ :Q disjunction
- : P \#=> : Q implication
- : P \#<=> : Q equivalence

P and Q could be Boolean variables (constants) or arithmetic, domain or Boolean constraints

Constraints alone frequently do not set the values to variables. We need to instantiate the variables via search.

- indomain (X)
- assign a value to variable X (values are tried in the increasing order upon backtracking)
- solve (Vars)
- instantiate variables in the list Vars
- algorithm MAC - maintaining arc consistency during backtracking

solve(:Options, +Variables)

- variable ordering
-forward, backward, degree, constr, min, max, min, ff, ffc, ffd, ...
- value ordering
-split, reverse_split
- down, rand
- optimization
$-\boldsymbol{\$ m i n}(\mathrm{x}), \boldsymbol{\$ m a x}(\mathrm{x})$

Which decision variables are needed?

- variables denoting the problem solution
- they also define the search space Which values can be assigned to variables?
- the definition of domains influences the constraints used
How to formalise constraints?
- available constraints
- auxiliary variables may be necessary

Propose a constraint model for solving the N -queens problem (place four queens to a chessboard of size $N \times N$ such that there is no conflict).

```
import cp.
queens (N,Queens) =>
        QR = new_list(N), QR :: 1..N
    QC = new_list(N), QC :: 1..N,
    Queens = zip(QR,QC),
    foreach(I in 1..N, J in (I+1)..N)
        QR[I] #!= QR[J],
        QC[I] #!= QC[J],
        QC[I]-QR[I] #!= QC[J]-QR[J],
        QC[I]+QR[I] #!= QC[J]+QR[J]
    end,
    solve (QR++QC).
```



```
\% position in rows
```

\% position in rows
\% position in columns
\% position in columns
\% coordinates of queens
\% coordinates of queens
\% different rows
\% different rows
\% different columns
\% different columns
\% different diagonals

```
\% different diagonals
```

Picat> queens $(4, Q)$.
$\mathrm{Q}=[\{1,2\},\{2,4\},\{3,1\},\{4,3\}]$? ;
$Q=[\{1,3\},\{2,1\},\{3,4\},\{4,2\}]$? ;
$Q=[\{1,2\},\{2,4\},\{4,3\},\{3,1\}]$? ;
$Q=[\{1,3\},\{2,1\},\{4,2\},\{3,4\}]$? ;
$Q=[\{1,2\},\{3,1\},\{2,4\},\{4,3\}]$? ;
$Q=[\{1,3\},\{3,4\},\{2,1\},\{4,2\}]$? ;
$Q=[\{1,2\},\{3,1\},\{4,3\},\{2,4\}]$? ;
$Q=[\{1,3\},\{3,4\},\{4,2\},\{2,1\}]$? ;

Where is the problem?

- Different assignments describe the same solution!
- There are only two different solutions (very „similar" solutions).
- The search space is non-necessarily large.

Solution

- pre-assign queens to rows (or to columns)
import CP.
queens2 (N, Queens) $=>$
$\mathrm{QR}=1 . . \mathrm{N}$,
$Q C=$ new_list(N), QC : : 1..N,
Queens $=$ zip $(Q R, Q C)$,
all_different(QC),
all_different([\$QC[I]-I : I in 1..N]),
all_different([\$QC[I]+I : I in 1..N]),

solve (QC) .

Picat> queens2 $(4, Q)$.
$Q=[\{1,2\},\{2,4\},\{3,1\},\{4,3\}]$? ;
$Q=[\{1,3\},\{2,1\},\{3,4\},\{4,2\}]$? ;
no

Model properties:

- less variables (= smaller state space)
- less constraints (= faster propagation)

Homework:

- think about further improvements (symmetry breaking)

N-queens: a dual model

A dual model swaps the roles of values and variables.
Instead of looking for positions of queens we will be deciding whether or not a given cell contains a queen.

```
import
queens dual (N,Board) =>
    Board = new_array (N,N),
    Board :: 0..1,
    foreach(R in 1..N) % exactly one queen per row
        sum([Board[R,C] : C in 1..N]) #= 1
    end,
    foreach(C in 1..N) % exactly one queen per column
        sum([Board[R,C] : R in 1..N]) #= 1
    end,
    foreach(D in 0..(N-1)) % at most one queen per diagonal
        sum([Board[I,I+D] : I in 1..(N-D)]) #=< 1,
        sum([Board[I+D,I] : I in 1..(N-D)]) #=< 1,
        sum([Board[N-I+1,I+D] : I in 1..(N-D)]) #=< 1,
        sum([Board[N-I+1-D,I] : I in 1..(N-D)]) #=< 1'
    end,
    sum([Board[R,C] : R in 1..N, C in 1..N]) #= N,
    solve (Board).
```

Picat> queens2 (4,B).
$B=\{\{0,0,1,0\},\{1,0,0,0\},\{0,0,0,1\},\{0,1,0,0\}\} ? ;$
$B=\{\{0,1,0,0\},\{0,0,0,1\},\{1,0,0,0\},\{0,0,1,0\}\}$?;
no

Comment:

- The above model is much better suited for SAT.

| model | \#backtracks
 (8 queens) |
| :--- | :--- |
| naive | 24 |
| classical | 24 |
| dual | 21 |

The constraints need to be translated to CNF (conjunctive normal form) to be solved by SAT solvers.

The Picat does the translation automatically.

Example of encoding:

$$
\begin{aligned}
& \max \left(\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}=Y:\right. \\
& Y=1 \Rightarrow X_{1} \vee X_{2} \vee \cdots \vee X_{n} \\
& Y=0 \Rightarrow \neg X_{1} \wedge \neg X_{2} \wedge \cdots \wedge \neg X_{n} \\
& \text { sum }\left(\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}=Y:\right. \\
& Y=1 \Rightarrow \text { exactly_one }\left(\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}\right) \\
& Y=0 \Rightarrow \neg X_{1} \wedge \neg X_{2} \wedge \ldots \wedge \neg X_{n} \\
& \text { exactly_one }\left(\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}\right) \Leftrightarrow \\
& \text { at_most_one }\left(\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}\right) \wedge \\
& \text { at_least_one }\left(\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}\right)
\end{aligned}
$$

import cp.

```
sudoku (Board) =>
    N = Board.length,
    N1 = ceiling(sqrt(N)),
    Board :: 1..N,
    foreach(R in 1..N)
        all_different([Board[R,C] :
                        C in 1..N])
```

| 9 | 6 | 3 | 1 | 7 | 4 | 2 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 8 | | | | | | | |
| 1 | 7 | 8 | 3 | 2 | 5 | 6 | 4 |
| 9 | 9 | | | | | | |
| 2 | 5 | 4 | 6 | 8 | 9 | 7 | 3 |
| 8 | 1 | | | | | | |
| 8 | 2 | 1 | 4 | 3 | 7 | 5 | 9 |
| 4 | 9 | 6 | 8 | 5 | 2 | 3 | 1 |
| 7 | 3 | 5 | 9 | 6 | 1 | 8 | 2 |
| 5 | 8 | 9 | 7 | 1 | 3 | 4 | 6 |
| 3 | 1 | 7 | 2 | 4 | 6 | 2 | 2 |
| 6 | 4 | 2 | 5 | 9 | 8 | 1 | 8 |

end,
foreach(C in 1 all_differ
end,
foreach (R in 1
all_differ
end,
solve (Board).

$$
\begin{aligned}
& \text { board (Board) => }
\end{aligned}
$$

$$
\begin{aligned}
& \left\{2,-^{\prime}-^{\prime} \overline{-}^{\prime},-^{\prime} \overline{7}^{\prime},-^{\prime} \overline{-}^{\prime} \overline{1}\right\} \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& \left\{5, \text { _' }^{\prime} \text { - _' _' _' -' _' } 2\right\},
\end{aligned}
$$

import cp.

```
sudoku(Board) =>
    N = Board.length,
    N1 = ceiling(sqrt(N)),
    Board :: 1..N,
    foreach(R in 1..N)
        all_different([Board[R,C] :
        C in 1..N])
```

| 9 | 6 | 3 | 1 | 7 | 4 | 2 | 5 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 7 | 8 | 3 | 2 | 5 | 6 | 4 | 9 |
| 2 | 5 | 4 | 6 | 8 | 9 | 7 | 3 | 1 |
| 8 | 2 | 1 | 4 | 3 | 7 | 5 | 9 | 6 |
| 4 | 9 | 6 | 8 | 5 | 2 | 3 | 1 | 7 |
| 7 | 3 | 5 | 9 | 6 | 1 | 8 | 2 | 4 |
| 5 | 8 | 9 | 7 | 1 | 3 | 4 | 6 | 2 |
| 3 | 1 | 7 | 2 | 4 | 6 | 9 | 8 | 5 |
| 6 | 4 | 2 | 5 | 9 | 8 | 1 | 7 | 3 |

end,
foreach (C in 1..N)

```
    all_different([Board[R,C] : R in 1..N])
```

end,
foreach (R in 1..N1..N, C in 1..N1..N)
all_different([Board[R+I,C+J] :
I in 0..N1-1, J in 0..N1-1])
end, solve (Board) .

The problem:

Adam (36 kg), Boris (32 kg) and Cecil (16 kg) want to sit on a seesaw with the length 10 foots such that the minimal distances between them are more than 2 foots and the seesaw is balanced.

A CSP model:

- A, B, C in $-5 . .5$
- $36^{*} \mathrm{~A}+32^{*} \mathrm{~B}+16^{*} \mathrm{C}=0$
- $|A-B|>2,|A-C|>2,|B-C|>2$
position
equilibrium state
minimal distances

```
import cp.
seesaw(Sol) =>
    Sol = [A,B,C],
    Sol :: -5..5,
    36*A+32*B+16*C #= 0,
    abs (A-B) #>2, abs (A-C) #>2, abs (B-C) #>2,
    solve(Sol).
```


Symmetry breaking

```
Picat> seesaw(X).
x = [-4,2,5] ? ;
x = [-4,4,1] ? ;
x = [-4,5,-1] ? ;
x = [4,-5,1] ? ;
x = [4,-4,-1] ? ;
x = [4,-2,-5] ? ;
no
```

- important to reduce search space

```
import cp.
```

seesaw (Sol) =>
Sol = $[A, B, C]$,
Sol : : -5..5,
A \# $=<0$,
$36 * A+32 * B+16 * C$ \# $=0$,
abs (A-B) \#>2, abs (A-C) \#>2, abs (B-C) \#>2,
solve (Sol).

```
        Picat> seesaw(X).
X = [-4,2,5] ? ;
X = [-4,4,1] ? ;
X = [-4,5,-1] ? ;
no
```


Seesaw problem - a different perspective

```
[A,B,C] :: -5..5,
A #=< 0,
36*A+32*B+16*C #= 0,
abs (A-B) #>2,
abs (A-C) #>2,
abs (B-C) #>2
```

A in -5.0
B in $-2 . .5$
C in $-5 . .5$

A set of similar constraints typically indicates a structured sub-problem that can be represented using a global constraint.

We can use a global constraint describing allocation of activities to an exclusive resource.

```
[A,B,C] :: -5..5,
A #=< 0,
36*A+32*B+16*C #= 0,
cumulative([A, B,C],[3,3,3],[1,1,1],1)
```

A in $-5 \ldots 0$
B in $-2 . .5$
C in $-5 . .5$

A ruler with \mathbf{M} marks such that distances between any two marks are different.

The shortest ruler is the optimal ruler.

Hard for $\mathrm{M} \geq 16$, no exact algorithm for $M \geq 24$!

Applied in radioastronomy.

Solomon W. Golomb
 Professor
 University of Southern California
 http://csi.usc.edu/faculty/golomb.html

Golomb ruler - a model

A base model:
Variables $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{M}}$ with the domain $0 . . \mathrm{M}^{*} \mathrm{M}$

| $X_{1}=0$ | ruler start |
| :--- | ---: |
| $X_{1}<X_{2}<\ldots<X_{M}$ | no permutations of variables |
| $\forall i<j D_{i, j}=X_{j}-X_{i}$ | difference variables |
| all_different $\left(\left\{D_{1,2}, D_{1,3}, \ldots D_{1, M}, D_{2,3}, \ldots D_{M-1, M}\right\}\right)$ | |

Model extensions:

$\mathrm{D}_{1,2}<\mathrm{D}_{\mathrm{M}-1, \mathrm{M}} \quad$ symmetry breaking

better bounds (implied constraints) for $\mathrm{D}_{\mathrm{i}, \mathrm{j}}$

$$
\begin{aligned}
& D_{i, j}=D_{i, i+1}+D_{i+1, i+2}+\ldots+D_{j-1, j} \\
& \text { so } D_{i, j} \geq \Sigma_{j-i}=(j-i) *(j-i+1) / 2 \quad \text { lower bound } \\
& X_{M}=X_{M}-X_{1}=D_{1, M}=D_{1,2}+D_{2,3}+\ldots D_{i-1, i}+D_{i, j}+D_{j, j+1}+\ldots+D_{M-1, M} \\
& D_{i, j}=X_{M}-\left(D_{1,2}+\ldots D_{i-1, i}+D_{j, j+1}+\ldots+D_{M-1, M}\right) \\
& \text { so } D_{i, j} \leq X_{M}-(M-1-j+i)^{*} *(M-j+i) / 2 \quad \text { upper bound }
\end{aligned}
$$

```
import cp.
golomb (M,X) =>
    \(\mathrm{X}=\) new list(M),
    \(X:: 0 . .\left(M^{*} M\right)\), \(\quad\) o domains for marks
    \(\mathrm{X}[1]=0\),
    foreach(I in 1..(M-1))
        \(\mathrm{X}[\mathrm{I}]\) \#< X[I+1] \% no permutaions
    end,
    \(\mathrm{D}=\) new_array \((\mathrm{M}, \mathrm{M})\), \(\quad\) \% distances
    foreach(I in 1..(M-1), J in (I+1)..M)
        D[I,J] \#= X[J] - X[I],
        D[I,J] \#>= (J-I)*(J-I+1)/2, \% bounds
        \(D[I, J]\) \# \(=<\mathrm{X}[\mathrm{M}]\) - \((\mathrm{M}-1-\mathrm{J}+\mathrm{I}) *(\mathrm{M}-\mathrm{J}+\mathrm{I}) / 2\)
    end,
    D[1,2] \#< D[M-1,M], \% symmetry breaking
    all_different([\$D[I,J] : I in 1..(M-1),
                                \(J\) in (I+1)..M]),
    solve (\$[min(X[M])],X).
```


Golomb ruler - some results

What is the effect of different constraint models?

| size | base model | base model
 + symmetry | base model
 + symmetry
 + implied constraints |
| ---: | :--- | :--- | :--- |
| 7 | 12 | 7 | |
| 8 | 94 | 44 | 4 |
| 9 | 860 | 353 | 21 |
| 10 | 7494 | 3212 | 143 |
| 11 | 147748 | 57573 | 1091 |

time in milliseconds on $1,7 \mathrm{GHz}$ Intel Core i7, Picat 1.9\#6

What is the effect of different search strategies?

| size | fail first | | leftmost first | |
| ---: | ---: | :---: | ---: | ---: |
| | enum | split | enum | split |
| 7 | 9 | 9 | 5 | 4 |
| 8 | 67 | 68 | 23 | 21 |
| 9 | 537 | 537 | 170 | 143 |
| 10 | 4834 | 4721 | 1217 | 1091 |
| 11 | 134071 | 132046 | 26981 | 23851 |

import mip.
maxflow (CapM, Source,Sink) =>

$\mathrm{N}=$ CapM.length ,
$M=$ new_array (N, N),
foreach(I in 1..N, J in 1..N) \% capacity $\mathrm{M}[\mathrm{I}, \mathrm{J}]:$: 0..CapM[I, J]
end,
foreach(I in 1..N, I ! = Source, I ! = Sink) \% conservation $\operatorname{sum}([M[J, I]: J$ in 1..N]) \#= $\operatorname{sum}([M[I, J]: J$ in 1..N])
end,
Total \#= sum([M[Source,I]: I in 1..N]),
Total \#= sum([M[I,Sink] : I in 1..N]),
solve ([\$max (Total)],M),
writeln(M).

Part III.

CLASSICAL ACTION PLANNING IN PICAT

```
                Locations of
                Farmer, Wolf, Goat, and Cabbage
action([F,W,G,C],S1,Action,Cost), F=W ?=>
    Action=farmer wolf,
    opposite(F,F1),
    S1=[F1,F1,G,C], safe(S1), Cost=1.
action([F,W,G,C],S1,Action,Cost), F=G ?=>
    Action=farmer_goat,
    opposite(F,F1),
    S1=[F1,W,F1,C], safe(S1), Cost=1.
action([F,W,G,C],S1,Action,Cost), F=C ?=>
    Action=farmer_cabbage,
    opposite(F,F1),
    S1=[F1,W,G,F1], safe(S1) , Cost=1.
action([F,W,G,C],S1,Action,Cost) =>
    Action=farmer alone,
    opposite(F,F1),
    S1=[F1,W,G,C], safe(S1), Cost=1.
```


Representing world states as sets of atoms (factored representation).
 Representing actions as entities changing validity of certain atoms.

State-space planning

The search space corresponds to the state space of the planning problem.

- search nodes correspond to world states
- arcs correspond to state transitions by means of actions
- the task is to find a path from the initial state to some goal state

Basic approaches

- forward search (progression)
- start in the initial state and apply actions until reaching a goal state
- backward search (regression)
- start with the goal and apply actions in the reverse order until a subgoal satisfying the initial state is reached
- lifting (actions are only partially instantiated)

Heuristics guide the planner towards a goal state by ordering alternative plans. They do not solve the problem with the large number of alternatives.

Example (blockworld)

- If a block is placed correctly (consistent with the goal) then any action that moves that block just enlarges the plan.
- If a block is on a wrong place and there is an action that moves it to the correct place then any action that moves the block elsewhere just enlarges the plan.

It is possible to describe desirable/forbidden sequences of states using linear temporal logic.

- control rules

It is possible to describe expected plans via task decompositions.

- hierarchical task networks

Control rules in practice

Picat planning module

Forward planning in Picat language (using tabling):

```
table (+,-,min)
plan(S,Plan,Cost),final(S) =>
    Plan=[],Cost=0.
plan(S,Plan,Cost) =>
    action(S,S1,Action,ActionCost),
    plan(S1,Plan1,Cost1),
    Plan = [Action|Plan1],
    Cost = Cost1+ActionCost.
```

Cost optimization done via:

- iterative deepening (best_plan)
- branch-and-bound (best_plan_bb)

Goal condition

final(+State) => goal_condition.

Action description

```
action(+State,-NextState,-Action,-Cost),
```

 precondition,
 [control_knowledge]
 ?=>
description_of_next_state,
action_cost_calculation,
[heurī̄tic_and_deadend_verification].

| 4 | | 3 | 6 |
| :---: | :---: | :---: | :---: |
| 12 | 1 | 11 | 7 |
| 9 | 5 | 10 | 15 |
| 13 | 8 | 14 | 2 |

Initial state

| | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: |
| 4 | 5 | 6 | 7 |
| 8 | 9 | 10 | 11 |
| 12 | 13 | 14 | 15 |

Goal state

State representation


```
action([PO@(RO,CO)|Tiles],NextS,Action,Cost) =>
    Cost = 1,
        (R1 = R0-1, R1 >= 1, C1 = C0, Action = up;
        R1 = R0+1, R1 =< 4, C1 = C0, Action = down;
        R1 = R0, C1 = C0-1, C1 >= 1, Action = left;
        R1 = R0, C1 = C0+1, C1 =< 4, Action = right),
        P1 = (R1,C1),
    slide(PO,P1,Tiles,NTiles),
    NextS = [P1|NTiles].
```

\% slide the tile at P 1 to the empty square at PO
slide (PO,P1, [P1|Tiles],NTiles) =>
NTiles $=$ [PO|Tiles].
slide(PO,P1,[Tile|Tiles],NTiles) =>
NTiles=[Tile|NTilesR],
slide (PO, P1,Tiles,NTilesR).

Heuristic function

```
heuristic(Tiles) = Dist =>
    final([_|FTiles]),
    Dist = sum([abs(R-FR)+abs(C-FC) :
        {(R,C),(FR,FC)} in zip(Tiles,FTiles)]).
```


Performance

- Picat planner easily solves 15 -puzzle instances
- It can even solve some hard 24-puzzle instances if a better heuristic is used

A truck moves between locations to pickup and deliver packages while consuming fuel during moves.

- setting:
- initial locations of packages and truck
- goal locations of packages
- initial fuel level, fuel cost for moving between locations
- possible actions: load, unload, drive
- assumption: track can carry any number of packages

Nomystery: State representation

Factored representation

- state $=$ a set of atoms that hold in that state (a vector of values of state variables)

```
{at(p0,12),at(p1,12), at(p2,l1),at(t0,12),
    in(p3,t0),in(p4,t0),in(p5,t0),
    fuel(t0,level84)}
```


Structured representation

- state $=$ a term describing objects and their relations objects represented by properties rather than by names to break object symmetries

Factored representation

```
action(S,NextS,Act,Cost),
    truck(T), member(at(T,L),S),
    select(at(P,L),S,RestS), P != T
?=>
    Act = load(L,P,T), Cost = 1,
    NewS = insert_ordered(RestS,in(P,T)).
```


Structured representation

```
action(s(Loc,Fuel,LPs,WPs),NextS,Act,Cost),
    select([LOc|PkGoal] ,WPs,WPs1)
?=>
    Act = load(Loc,PkGoal), Cost = 1,
    LPs1 = insert_ordered(LPs,PkGoal),
    NextS = s(Loc,Fuel,LPs1,WPs1).
```

Nomystery: Heuristics

Estimate distance to goal
Precise heuristic for Nomystery domain:

- each package must be loaded and unloaded
- each place with packages to load or unload must be visited

```
action(S,NextS,Act,Cost),
    truck(T), member(at(T,L),S),
    select(at(P,L),S,RestS), P != T
?=>
    Act = load(L,P,T), Cost = 1,
    NewS = insert_ordered(RestS,in(P,T)),
    heuristics(NewS) < current_resource().
```


Tell the planner what to do at a given state based on the goal

- unload all packages destined for current location (and only those packages)

```
action(s(LOC,Fuel,LoadedPks,WaitPks), NextState, Action, Cost),
    select(Loc,LoadedPks,LoadedPks1)
=>
    Action = unload(LOc,LOC),
    NextState = s(Loc,Fuel,LoadedPks1, WaitPks),
    Cost = 1.
```

- load all undelivered packages at current location
- move somewhere
- move to a location with waiting package or to a destination of some loaded package

```
action(s(Loc,Fuel,LoadedCGs,Cargoes), NextState, Action, Cost),
    select(Loc, LoadedCGs,LoadedCGs1)
=>
    Action = unload(LOC,LOC),
    NextState = s(Loc,Fuel,LoadedCGs1,Cargoes), Cost = 1.
Action(s(Loc,Fuel,LoadedCGs,Cargoes), NextState, Action, Cost),
    select([Loc|CargoGoal],Cargoes,Cargoes1)
=>
    insert_ordered(CargoGoal,LoadedCGs,LoadedCGs1),
    Action = load(Loc,CargoGoal),
    NextState = s(Loc,Fuel,LoadedCGs1,Cargoes1) , Cost = 1.
Action(s(Loc,Fuel,LoadedCGs,Cargoes), NextState, Action, Cost)
?=>
    Action = drive(LOC,Loc1),
    NextState = s(Loc1,Fuel1,LoadedCGs,Cargoes),
    fuelcost(FuelCost,Loc,Loc1),
    Fuell is Fuel-FuelCost,
    Fuell >= 0, Cost = 1.
```


Four domains from International Planning Competitions:

| domain | \#instances | \#optimal |
| :--- | :---: | :---: |
| Depots | 20 | 13 |
| Nomystery | 30 | 30 |
| Visitall | 20 | 5 |
| Childsnack | 20 | 20 |

For each domain the following models (each for structured and factored representation of states):

- pure model ("physics only")
- model with heuristics
- model with control knowledge
- model with heuristics + control knowledge

Compare \#solved problems (30 minutes per problem)

Factored vs. structured representations

B-and- B behavior

Comparison to domain-dependent planners

| Domain | \# insts | Picat | TLPlan | TALPlanner | SHOP2 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Depots | 22 | $\mathbf{2 2}$ | $\mathbf{2 2}$ | $\mathbf{2 2}$ | $\mathbf{2 2}$ |
| Zenotravel | 20 | $\mathbf{2 0}$ | $\mathbf{2 0}$ | $\mathbf{2 0}$ | $\mathbf{2 0}$ |
| Driverlog | 20 | $\mathbf{2 0}$ | $\mathbf{2 0}$ | $\mathbf{2 0}$ | $\mathbf{2 0}$ |
| Satellite | 20 | $\mathbf{2 0}$ | $\mathbf{2 0}$ | $\mathbf{2 0}$ | $\mathbf{2 0}$ |
| Rovers | 20 | $\mathbf{2 0}$ | $\mathbf{2 0}$ | $\mathbf{2 0}$ | $\mathbf{2 0}$ |
| Total | 102 | $\mathbf{1 0 2}$ | $\mathbf{1 0 2}$ | $\mathbf{1 0 2}$ | $\mathbf{1 0 2}$ |

| Domain | \# insts | Picat | TLPlan | TALPlanner | SHOP2 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Depots | 22 | $\mathbf{2 1 . 9 4}$ | 19.93 | 20.52 | 18.63 |
| Zenotravel | 20 | $\mathbf{1 9 . 8 6}$ | 18.40 | 18.79 | 17.14 |
| Driverlog | 20 | 17.21 | 17.68 | $\mathbf{1 7 . 8 7}$ | 14.16 |
| Satellite | 20 | $\mathbf{2 0 . 0 0}$ | 18.33 | 16.58 | 17.16 |
| Rovers | 20 | $\mathbf{2 0 . 0 0}$ | 17.67 | 14.61 | 17.57 |
| Total | 102 | $\mathbf{9 9 . 0 1}$ | 92.00 | 88.37 | 84.65 |

quality score (after 5 mins)

Comparison to domain-dependent planners

| Domain | PDDL | Picat | TLPlan |
| :--- | ---: | ---: | ---: |
| Depots | 42 | 156 | 933 |
| Zenotravel | 61 | 109 | 308 |
| Driverlog | 79 | 190 | 1395 |
| Satellite | 75 | 132 | 186 |
| Rovers | 119 | 223 | 914 |
| Total | 376 | 810 | 3736 |

encoding size

WRAP UP

Summary

Picat is a logic-based multi-paradigm language that integrates logic programming, functional programming, constraint programming, and scripting.

- logic variables, unification, backtracking, patternmatching rules, functions, list/array comprehensions, loops, assignments
- tabling for dynamic programming and planning
- constraint solving with CP (constraint programming), SAT (satisfiability), and MIP (mixed integer programming).

Constraint

Solving and Planning with Picat

1. H. Kjellerstrand:

Picat: A Logic-based Multi-paradigm Language, ALP Newsletter, 2014.
2. R. Barták and N.-F. Zhou:

Using Tabled Logic Programming to Solve the Petrobras Planning Problem, TPLP 2014.
3. R. Barták, A. Dovier, and N.-F. Zhou:

On Modeling Planning Problems in Tabled Logic Programming, PPDP 2015.
4. S. Dymchenko and M. Mykhailova:

Declaratively Solving Google Code Jam Problems with Picat, PADL 2015.
5. S. Dymchenko:

An Introduction to Tabled Logic Programming with Picat, Linux Journal, August, 2015.
6. N.-F. Zhou:

Combinatorial Search With Picat, ICLP invited talk, 2014.
7. N.-F. Zhou, R. Barták, and A. Dovier:

Planning as Tabled Logic Programming, TPLP 2015.
8. N.-F. Zhou, H. Kjellerstrand, and J. Fruhman:

Constraint Solving and Planning with Picat, Springer, 2015.
9. N.-F. Zhou, H. Kjellerstrand:

The Picat-SAT Compiler, PADL 2016.

