Multi-Agent Pathfinding

Roman Barták, Roni Stern

What is multi-agent path finding (MAPF)?

MAPF problem:
Find a collision-free plan (path) for each agent Alternative names:
cooperative path finding (CPF), multi-robot path planning, pebble motion

Part I: Introduction to MAPF

- Problem formulation, variants and objectives
- Applications

Part II. Search-based solvers

- Incomplete solvers
- Complete suboptimal solvers
- Optimal solvers

Part III. Reduction-based solvers

- SAT encodings
- CP encodings

Part IV. From planning to execution

- Execution policies for MAPF
- Execution-aware offline planning

Part V. Challenges and conclusions

Part I:

INTRODUCTION TO MAPF

- a graph (directed or undirected)
- a set of agents, each agent is assigned to two locations (nodes) in the graph (start, destination)

Each agent can perform either move (to a neighboring node) or wait (in the same node) actions.

Typical assumption:
all move and wait actions have identical durations (plans for agents are synchronized)
Plan is a sequence of actions for the agent leading from its start location to its destination.

The length of a plan (for an agent) is defined by the time when the agent reaches its destination and does not leave it anymore.

Find plans for all agents such that the plans do not collide in time and space (no two agents are at the same location at the same time).

time	agent 1	agent 2
0	$\mathbf{v}_{\mathbf{1}}$	$\mathbf{v}_{\mathbf{2}}$
$\mathbf{1}$	wait $\mathbf{v}_{\mathbf{1}}$	move $\mathbf{v}_{\mathbf{3}}$
$\mathbf{2}$	move $\mathbf{v}_{\mathbf{3}}$	move $\mathbf{v}_{\mathbf{4}}$
$\mathbf{3}$	move $\mathbf{v}_{\mathbf{4}}$	move $\mathbf{v}_{\mathbf{6}}$
$\mathbf{4}$	move $\mathbf{v}_{\mathbf{5}}$	wait $\mathbf{v}_{\mathbf{6}}$

Plan existence

Some trivial conditions for plan existence:

- no two agents are at the same start node
- no two agents share the same destination node (unless an agent disappears when reaching its destination)
- the number of agents is strictly smaller than the number of nodes

Agents may swap position

time	agent 1	agent 2
0	$\mathbf{v}_{\mathbf{1}}$	$\mathbf{v}_{\mathbf{2}}$
1	move $\mathbf{v}_{\mathbf{2}}$	move $\mathbf{v}_{\mathbf{1}}$

Agents use the same edge at the same time!

Agent at $\mathbf{v}_{\mathbf{i}}$ cannot perform move $\mathbf{v}_{\mathbf{j}}$ at the same time when agent at $\mathbf{v}_{\mathbf{j}}$ performs move $\mathbf{v}_{\mathbf{i}}$

Swap is not allowed.

time	agent 1	agent 2
0	$\mathbf{v}_{\mathbf{1}}$	$\mathbf{v}_{\mathbf{2}}$
$\mathbf{1}$	move $\mathbf{v}_{\mathbf{2}}$	move $\mathbf{v}_{\mathbf{3}}$
$\mathbf{2}$	move $\mathbf{v}_{\mathbf{4}}$	move $\mathbf{v}_{\mathbf{2}}$
$\mathbf{3}$	move $\mathbf{v}_{\mathbf{2}}$	move $\mathbf{v}_{\mathbf{1}}$

Agent can approach a node that is currently occupied but will be free before arrival.

time	agent 1	agent 2
0	$\mathbf{v}_{\mathbf{1}}$	$\mathbf{v}_{\mathbf{2}}$
1	move $\mathbf{v}_{\mathbf{2}}$	move $\mathbf{v}_{\mathbf{3}}$
2	move $\mathbf{v}_{\mathbf{4}}$	move $\mathbf{v}_{\mathbf{2}}$
3	move $\mathbf{v}_{\mathbf{2}}$	move $\mathbf{v}_{\mathbf{1}}$

Agents form a train.

Agent at $\mathbf{v}_{\mathbf{i}}$ cannot perform move $\mathbf{v}_{\mathbf{j}}$ if there is another agent at $\mathbf{v}_{\mathbf{j}}$

Trains may be forbidden.

time	agent $\mathbf{1}$	agent $\mathbf{2}$
0	$\mathbf{v}_{\mathbf{1}}$	$\mathbf{v}_{\mathbf{2}}$
$\mathbf{1}$	wait $\mathbf{v}_{\mathbf{1}}$	move $\mathbf{v}_{\mathbf{3}}$
2	move $\mathbf{v}_{\mathbf{2}}$	wait $\mathbf{v}_{\mathbf{3}}$
$\mathbf{3}$	move $\mathbf{v}_{\mathbf{4}}$	wait $\mathbf{v}_{\mathbf{3}}$
$\mathbf{4}$	wait \mathbf{v}_{4}	move $\mathbf{v}_{\mathbf{2}}$
$\mathbf{5}$	wait \mathbf{v}_{4}	move $\mathbf{v}_{\mathbf{1}}$
$\mathbf{6}$	move $\mathbf{v}_{\mathbf{2}}$	wait $\mathbf{v}_{\mathbf{1}}$

If any agent is delayed then trains may cause collisions during execution.

To prevent such collisions we may introduce more space between agents.

k-robustness

An agent can visit a node, if that node has not been occupied in recent k steps.

1-robustness covers both no-swap and no-train constraints

- No plan (path) has a cycle.
- No two plans (paths) visit the same same location.
- Waiting is not allowed.
- Some specific locations must be visited.
- ...

Objectives

How to measure quality of plans?
Two typical criteria (to minimize):

- Makespan
- distance between the start time of the first agent and the completion time of the last agent
- maximum of lengths of plans (end times)
- Sum of costs (SOC)
- sum of lengths of plans (end times)

| Makespan=4
 SOC=7 |
| :---: | :---: | :---: | :---: | | 2 | move $\mathbf{v}_{\mathbf{3}}$ | move \mathbf{v}_{4} |
| :---: | :---: | :---: |
| $\mathbf{3}$ | move \mathbf{v}_{4} | move \mathbf{v}_{6} |
| $\mathbf{4}$ | move \mathbf{v}_{5} | wait \mathbf{v}_{6} |

Optimal single agent path finding is tractable.

- e.g. Dijkstra's algorithm

Sub-optimal multi-agent path finding (with two free unoccupied nodes) is tractable.

- e.g. algorithm Push and Rotate

MAPF, where agents have joint goal nodes (it does not matter which agent reaches which goal) is tractable.

- reduction to min-cost flow problem

Optimal (makespan, SOC) multi-agent path finding is NP-hard.

Search-based techniques

state-space search (A^{*})
state = location of agents at nodes
transition = performing one action for each agent conflict-based search

Reduction-based techniques

translate the problem to another formalism (SAT/CSP/ASP ...)

Part II:

SEARCH-BASED SOLVERS

Why Search-Based MAPF Solvers?

$\mathrm{K}=1$ (Navigation in explicit graphs)
Explicit graph
$\mathrm{K}=\mathrm{N}-1$ (Tile puzzle)
(Huge) Implicit graph

1	2	3	4	5
6		8	9	10
11	12	13	14	15
ㄴ	17	18	19	20

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
-	17	18	19	20

Goal state

Goal

Classical Search Setting
b: branching factor = \# of operators
d: depth of best goal node

1	2	3	4	5
6	-	8	9	10
11	12	13	14	15
	17	18	19	20

Nodes expanded

$$
\approx 1+b+b^{2}+\ldots+b^{d}=O\left(b^{d}\right)
$$

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
-	17	18	19	20

$g(e)=m i n$. cost from start

Suboptimal Optimal

Decoupled Search-based Solvers

First Attempt: Cooperative \mathbf{A}^{*} (Silver ‘05)

- Plan for each agent separately
- Avoid collisions with previously planned agents
- Step 1: Plan blue

Cooperative A* - Example

- Step 1: Plan blue

- Step 1: Plan blue

Cooperative A^{*} - Example

- Step 1: Plan blue

- Step 1: Plan blue
- Done!
- Step 2: Plan red

∞	2	
	0	2

- Step 1: Plan blue
- Done!
- Step 2: Plan red avoid blue's plan

		\square

- Step 1: Plan blue
- Done!
- Step 2: Plan red

0	2	

- Step 1: Plan blue
- Done!
- Step 2: Plan red

		\square

- Step 1: Plan blue
- Done!
- Step 2: Plan red

	~	

- Step 1: Plan blue
- Done!
- Step 2: Plan red
- Done!
- ...
- Step N: Plan $\mathbf{N}^{\text {th }}$ agent
(20)

4 possible moves 1 2 3 4 5 6 8 9 10 11 12 13 14 15 17 18 19 20				

Cooperative A*: Analysis - First Agent

Singe-agent pathfinding

- A state is the agent's location
- Number of states $=4 \times 5$
- Branching factor $=4$

Classical search problem!

- A state is a (location,time) pair
- Number of states $=4 \times 5 \times$ maxTime
- Branching factor $=4+1$

Cooperative A*: Analysis - Second Agent

- A state is a (location,time) pair

- Number of states $=4 \times 5 \times$ maxTime
- Branching factor $=4+1$

1. Initialize the reservation table T
2. For each agent do
2.1. Find a path (do not conflict with T)
2.2. Reserve the path in T

- Complexity?
- Polynomial in the grid size and max time
- Soundness?
- Yes!
- Complete? Optimal?
- No ${ }^{(2}$

Not complete (=may not find a solution) Not optimal (=may find an inefficient solution)

- A goal location that blocks another agent
- All-or-nothing (can't move until planning is done)
- Some relief to this with WHCA* (Silver '05)
- Ordering the agents is key (how to do that?)
- Conflict oriented ordering (Byana \& Felner '14)

Incomplete	• Cooperative A*	?
Complete	$?$	$?$

Can a MAPF algorithm be complete and efficient?

- MAPF is highly related to pebble motion problems
- Each agent is a pebble
- Need to move each pebble to its goal
- Cannot put two pebbles in one hole
- Pebble motion can be solved polynomially!
- But far from optimally [Kornhauser et al., FOCS 1984]
- Complex formulation

Similar approaches:

- Slidable Multi-Agent Path Planning ${ }_{\text {wang }}$ \& Botea, IUCA, 2009]
- Push and Swap [Luna \& Bekris, IUCAl, 2011]
- Parallel push and swap [Sajid, Luna, and Bekris, Socs 2012]
- Push and Rotate [de Wide et al. AAmAS 2013]
- Tree-based agent swapping strategy [khorshid atel. socs, 2011]

Procedure-based Solvers

YOUDID IT!!!

Push and Swap (Luna and Bekris '13)

Bibox (Surynek '09)

a

FAR (Wang and Botea '08)

Suboptimal

Optimal

Incomplete

- Cooperative A*
- WHCA*
Complete
- Kornhauser et al. '84
?
- Push \& Swap (Luna \& Bekris)
- Bibox (Surynek)

A Two-Agent Search Problem

- A state is a (location,time) pair

- Number of states $=4 \times 5 \times$ maxTime
- Branching factor $=4+1$

- A state is a pair (location1, location2)
- Number of states = ?
- Branching factor $=$?

Optimal Pathfinding for Two Agent
25 Possible moves! = 5×5

2-agent pathfinding search problem

- Number of states $=(4 \times 5)^{2}$
- Branching factor $=5^{2}$

ACleasidadistaeahqprpbdeliefm

Can a MAPF algorithm be complete and efficient and optimal?

Search problem properties

- Number of states $=(4 \times 5)^{\mathrm{k}}$
- Branching factor $=5^{\mathrm{k}}$
$\mathrm{K}=1$ (Navigation in explicit graphs)
Explicit graph
$\mathrm{K}=\mathrm{N}-1$ (Tile puzzle)
(Huge) Implicit graph

Can we adapt techniques from these extreme cases?

Yes!
(and invent some new techniques also)

Search-based Approaches to Optimal MAPF

Searching the k-agent search space

- A*+OD+ID [Standley ' ${ }^{10]}$
- EPEA* [Felner ' X, Goldenberg ${ }^{\mathrm{Y}}$]
- M* [Wagner \& Choset ' 7]

Other search-based approaches

- ICTS [Sharon et al '13]
- CBS [Sharon et al '15]

- A* expands nodes
- A* gain efficiency by choosing which node to expand

What is the complexity of expanding a single node in MAPF with 20 agents?

$$
5^{20}=95,367,431,640,625
$$

a	b	c
d	e	f
©	h	\dot{e}

a	b	c
d	e	f
a	h	\dot{e}

(Standley ${ }^{\text {10 }} \mathbf{~}$

- Pros
- Branching factor is reduced to 5 (= single agent)
- With a perfect heuristic can solve the problem
- Cons
- Solution is deeper by a factor of k
- More nodes may be expanded, due to intermediates

66

Independence Detection (Standley '10)

Theoretically, a 3 agents problem, but ...

(Standley '10)

Simple Independence Detection

1. Solve optimally each agent separately
2. While some agents conflict
3. Merge conflicting agents to one group
4. Solve optimally new group

Theoretically, a 2 agents problem, but ...

(Standley '10)

Simple Independence Detection

1. Solve optimally each agent separately
2. While some agents conflict
3. Merge conflicting agents to one group
4. Solve optimally new group

Independence Detection (Standley '10)

Theoretically, a 2 agents problem, but ...

(Standley '10)

Independence Detection

1. Solve optimally each agent separately
2. While some agents conflict
3. Try to avoid conflict, with the same cost
4. Merge conflicting agents to one group
5. Solve optimally new group

Really a 2 agent problem
Independence Detection
But.

1. Solve optimally each agent separately
2. While some agents conflict
3. Try to avoid conflict, with the same cost
4. Merge conflicting agents to one group
5. Solve optimally new group

M^{*}

1. Find optimal path for each agent individually
2. Start the search. Generate only nodes on optimal paths
3. If conflict occurs - backtrack and consider all ignored actions

M

1. Find optimal path for each agent individually
2. Start the search. Generate only nodes on optimal paths
3. If conflict occurs - backtrack and consider all ignored actions

M*

1. Find optimal path for each agent individually
2. Start the search. Generate only nodes on optimal paths
3. If conflict occurs - backtrack and consider all ignored actions

M*

1. Find optimal path for each agent individually
2. Start the search. Generate only nodes on optimal paths
3. If conflict occurs - backtrack and consider all ignored actions

Recursive \mathbf{M}^{*}

1. Find optimal path for each agent individually
2. Start the search. Generate only nodes on optimal paths
3. If conflict occurs - backtrack and consider all ignored actions

- Apply M* recursively after backtracking

Recursive M* (Wagner \& Choset '11,'14)

Joint path up to bottleneck can be long...

Search-based Approaches to Optimal MAPF

Searching the k-agent search space
 - A*+OD+ID [Standley ' ${ }^{10]}$
 - EPEA* [Felner ' X, Goldenberg ' Y]
 - M ${ }^{*}$ [Wagner \& Choset ' 7]

Other search-based approaches

- ICTS [Sharon et al '13]
- CBS [Sharon et al '15]

Increasing Cost Tree Search (Sharon et al. '12)

High-level

Does it work? - YES!

- $\Delta *$. convad in 51 mc

.ICTS Complexity depends on Δ

- Sum of single agent costs $=2$ BUT optimal solution $=74$

Solving Optimally Problems with more than 75 agents!

Motivation: cases with bottlenecks:

CBS - Underlying Idea

A* and ICTS work in a K-agent search space

CBS plans for single agents but under constraints

- Conflict: [agent A , agent B , location X , time T]
- Constraint: [agent A , location X , time T]

Resolve conflict by imposing [S1,C,2] or [S2,C,2]

- Conflict: [agent A , agent B , location X , time T]
- Constraint: [agent A, location X, time T]

Resolve conflict by adding $[\mathbf{A}, \mathbf{X}, \mathbf{T}]$ or $[\mathbf{B}, \mathbf{X}, \mathbf{T}]$

CBS: general idea

1. Plan for each agent individually
2. Validate plans
3. If the plans of agents A and B conflict Constrain A to avoid the conflict or
Constrain B to avoid the conflict

Nodes:

- A set of individual constraints for each agent
- A set of paths consistent with the constraints

Goal test:

- Are the paths conflict free

ERpaidd

Analysis: Example 1

- How many states \mathbf{A}^{*} will expand?
- How many states CBS will?

- $A^{*}: m^{2}+3=O\left(m^{2}\right)$ states
- CBS: $2 m+14=0(m)$ states

When m > 4 CBS will examine fewer states than A^{*}

- States expanded by CBS?
- States expanded by A*?

- 4 optimal solutions for each agent
- Each pair of solutions has a conflict

- Rough analysis:
- CBS: exponential in \#conflicts = 54 states
- \mathbf{A}^{*} : exponential in \#agents $=8$ states

Trends observed

- In open spaces: use A^{*}
- In bottlenecks: use CBS

What if I have both?

Meta-Agent CBS (MA-CBS)

1. Plan for each agent individually
2. Validate plans
3. If the plans of agents A and B conflict

4 If (should merge(A,B)) merge A and B into a meta-agent and solve with A^{*}
Else

5 Constrain A to avoid the conflicts or

Constrain B to avoid the conflict

Should merge(A,B) (simple rule):

Merge when observed more than T conflicts between A, B

T=0 (always merge) Standley's ID

MA-CBS
(never merge) $\mathrm{T}=\infty$ basic CBS

Many bottlenecks

brc202d

den520d

	brc202d with EPEA* as a low-level solver						
k	EPEA*	$\mathrm{B}(1)$	$\mathrm{B}(5)$	$\mathrm{B}(10)$	$\mathrm{B}(100)$	$\mathrm{B}(500)$	CBS
5	1,834	2,351	1,286	1,276	1,268	$\mathbf{1 , 2 6 7}$	1,664
10	6,034	8,059	4,580	4,530	$\mathbf{4 , 4 9 8}$	4,508	5,495
15	12,354	15,389	6,903	6,871	$\mathbf{6 , 8 2 0}$	$\mathbf{6 , 7 9 3}$	8,685
20	$>70,003$	$>73,511$	35,095	21,729	$\mathbf{1 9 , 8 4 6}$	31,229	$>43,625$

Few bottlenecks

	den520d with A* as a low-level solver						
k	A^{*}	$\mathrm{~B}(1)$	$\mathrm{B}(5)$	$\mathrm{B}(10)$	$\mathrm{B}(100)$	$\mathrm{B}(500)$	CBS
5	0.223	273	218	220	$\mathbf{2 1 9}$	222	$\mathbf{2 1 9}$
10	1,099	1,458	553	552	549	552	$\mathbf{5 4 6}$
15	1,182	1,620	1,838	1,810	1,829	1,703	$\mathbf{1 , 6 7 2}$
20	4,792	4,375	1,996	2,011	2,020	1,857	$\mathbf{1 , 7 0 8}$
25	7,633	14,749	$\mathbf{2 , 1 9 3}$	2,255	2,320	2,888	3,046
30	$>62,717$	$>60,214$	8,082	8,055	8,107	8,013	$\mathbf{7 , 7 4 5}$
35	$>65,947$	$>51,815$	13,670	$\mathbf{1 3 , 5 8 7}$	15,981	28,274	$>45,954$
40	$>81,487$	$>82,860$	18,473	$\mathbf{1 8 , 3 9 9}$	20,391	31,189	$>45,857$

Many bottlenecks $\quad \rightarrow \quad$ High T (closer to CBS)

More agents $\quad \rightarrow$ Low T (closer to A*)
Faster single-agent search \rightarrow lower T (close to A*)

Design Choices in CBS

- When to merge agents?
- What to do after merging? [Boyarski et al. '16]
- Which conflict to resolve? [Boyarski et al. '16]
- How to resolve it?
- Which low-level solver to use?
- Heuristics for the constraint tree search [Ma et al. '18]
- $A^{*}\left(M^{*}, E P E A^{*}, A^{*}+O D+I D\right)$
- Main factors: \#agents, graph size, heuristic accuracy
- ICTS
- Main factors: \#agents, Δ, graph size
- CBS and its variants
- Main factors: \#conflicts

Where to use what?

Results...

Suboptimal

Optimal

Incomplete

- Cooperative A*
- WHCA*

Complete

- Kornhauser et al. '84
- Push \& Swap (Luna \& Bekris)
- Bibox (Surynek)
- $A^{*}+O D+I D$ (Standley)
- ICTS
(Sharon et al.)
- M^{*}
(Wagner \& Choset)
- CBS
(Sharon et al.)

Solving MAPF

An algorithm is bounded suboptimal iff

- It accepts a parameter ϵ
- It outputs a solution whose cost is at most $(1+\epsilon) \cdot$ Optimal

How to create a bounded suboptimal algorithm?

- Different search algorithms
- Inadmissible heuristics

Open Question!

Suboptimal rM*

Observation:

Suboptimality can be introduced in both levels

- ECBS (Barer et al. '14)
- ECBS+Highways (Cohen et al. '15, '16)

- When to use which algorithm? Ensembles?
- Using knowledge about past plans [Cohen et al.]
- Stronger heuristics for all algorithms
- Deeper analysis of algorithms' complexity
- Beyond grid worlds
- Kinematic constraints (Ma et al. '16)
- Any angle planning (Yakovlev et al. '17)
- Hierarchical environments (Walker et al. '17)
- Planning \& execution (see later today ©)

Part III:

REDUCTION-BASED SOLVERS

How to exploit knowledge of others for solving own problems?

- by translating the problem P to another problem Q

Why is it useful?

- If anybody improves the solver for Q then we get an improved solver for P for free.
- Staying on the shoulders of giants.

Reduction, compilation, re-formulation techniques

Boolean satisfiability

- fast SAT solvers

Constraint programming

- global constraints for pruning search space

Answer set programming

- declarative framework

Combinatorial auctions

Express (model) the problem as a SAT formula in a conjunctive normal form (CNF)

Boolean variables (true/false values)
clause $=$ a disjunction of literals (variables and negated variables)
formula $=$ a conjunction of clauses
solution $=$ an instantiation of variables such that the formula is satisfied

Example:
(X or Y) and (not X or not Y)
[exactly one of X and Y is true]

SAT abstract expressions

SAT model is expressed as a CNF formula
We can go beyond CNF and use abstract expressions that are translated to CNF.

A => B	B or not A
sum(Bs) >= 1 (at-least-one(Bs))	disj(Bs)
$\operatorname{sum}(B s)=1$	at-most-one(B) and at-least-one(B)

We can even use numerical variables (and constraints).

In MAPF, we do not know the lengths of plans
(due to possible re-visits of nodes)!
We can encode plans of a known length using a layered graph (temporally extended graph).

Each layer corresponds to one time slice and indicates positions of agents at that time.

Uses multi-valued state variables (logarithmic encoding) encoding position of agents in layers.

- Agent waits or moves to a neighbor

$$
\mathcal{L}_{i}^{a}=l \Rightarrow \mathcal{L}_{i+1}^{a}=l \vee \bigvee_{\ell \in\{1, \ldots, n\}\left\{\left\{v_{l}, v_{\ell}\right\} \in E\right.} \mathcal{L}_{i+1}^{a}=\ell
$$

- No-train constraint

$$
\bigwedge_{b \in A \mid b \neq a} \mathcal{L}_{i+1}^{a} \neq \mathcal{L}_{i}^{b}
$$

- Agents are not at the same nodes

$$
\text { AllDifferent }\left(\mathcal{L}_{i}^{a_{1}}, \mathcal{L}_{i}^{a_{2}}, \ldots, \mathcal{L}_{i}^{a_{\mu}}\right)
$$

Directly encodes positions of agents in layers

Agent k is at node jat layer i

- Agent is placed at exactly one node in each layer

$$
\bigwedge_{j, l=1, j<l}^{n} \neg X_{j, k}^{i} \vee \neg X_{l, k}^{i} \quad \bigvee_{j=1}^{n} X_{j, k}^{i}
$$

- No two agents are placed at the same node in each layer

$$
\Lambda_{k, h=1, k<h}^{\mu} \neg X_{j, k}^{i} \vee \neg X_{j, h}^{i}
$$

- Agent waits or moves to a neighbor

$$
x_{j, k}^{i} \Rightarrow X_{j, k}^{i+1} \vee \vee_{l:\left\{v_{j}, v_{l}\right\} \in E} X_{l, k}^{i+1} \quad x_{j, k}^{i+1} \Rightarrow X_{j, k}^{i} \vee \vee_{l:\left\{v_{j}, v_{l}\right\} E E} x_{l, k}^{i}
$$

- No-swap and no-train (nodes before and after move are empty)

$$
X_{j, k}^{i} \wedge X_{l, k}^{i+1} \Rightarrow \bigwedge_{h=1}^{\mu} \neg X_{l, h}^{i} \wedge \bigwedge_{h=1}^{\mu} \neg X_{j, h}^{i+1}
$$

Finding makespan optimal solutions

Using layered graph describing agent positions at each time step $\mathrm{B}_{\mathrm{tav}}$: agent a occupies vertex v at time t

Constraints:

- each agent occupies exactly one vertex at each time.

$$
\Sigma_{v=1}^{n} B_{t a v}=1 \text { for } t=0, \ldots, m, \text { and } a=1, \ldots, k
$$

- no two agents occupy the same vertex at any time.

$$
\Sigma_{a=1}^{k} B_{t a v} \leq 1 \text { for } t=0, \ldots, m, \text { and } v=1, \ldots, n .
$$

- if agent a occupies vertex v at time t, then a occupies a neighboring vertex or stay at v at time $t+1$.

$$
B_{t a v}=1 \Rightarrow \Sigma_{u \in \operatorname{neibs}(v)}\left(B_{(t+1) a u}\right) \geq 1
$$

Preprocessing:

$\mathrm{B}_{\mathrm{tav}}=0$ if agent a cannot reach vertex v at time t or a cannot reach the destination being at v at time t

	Instance			Makespan		
	Picat	MDD	ASP	Picat	MDD	ICBS
g16_p10_a05	0.27	$\mathbf{0 . 0 2}$	10.86	5.68	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 1}$
g16_p10_a10	1.37	$\mathbf{0 . 1 4}$	9.58	35.82	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 1}$
g16_p10_a20	2.76	$\mathbf{0 . 7 6}$	26.06	143.35	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 1}$
g16_p10_a30	3.11	$\mathbf{0 . 7 9}$	>600	495.04	0.52	$\mathbf{0 . 0 2}$
g16_p10_a40	8.25	$\mathbf{4 . 7 1}$	>600	>600	$\mathbf{1 0 7 . 9 5}$	>600
g16_p20_a05	1.01	$\mathbf{0 . 1 6}$	5.96	16.2	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 1}$
g16_p20_a10	1.5	$\mathbf{0 . 3 1}$	18.59	92.16	1.58	$\mathbf{0 . 1 6}$
g16_p20_a20	2.12	$\mathbf{0 . 4 6}$	20.71	209.74	0.6	$\mathbf{0 . 0 5}$
g16_p20_a30	4.37	$\mathbf{1 . 4 5}$	>600	>600	>600	>600
g16_p20_a40	3.48	$\mathbf{1 . 1 5}$	>600	>600	>600	>600
g32_p10_a05	1.98	$\mathbf{0 . 5 3}$	12.93	29.91	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 1}$
g32_p10_a10	3.08	$\mathbf{1 . 2 1}$	31.34	84.92	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 1}$
g32_p10_a20	8.71	$\mathbf{6 . 8}$	105.47	586.71	0.03	$\mathbf{0 . 0 1}$
g32_p10_a30	$\mathbf{3 4 . 4 8}$	40.13	274.11	>600	0.22	$\mathbf{0 . 0 2}$
g32_p10_a40	34.95	$\mathbf{2 4 . 8 7}$	>600	>600	1.81	$\mathbf{0 . 3 4}$
g32_p20_a05	5.75	$\mathbf{2 . 7 7}$	11.99	58.27	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 1}$
g32_p20_a10	2.97	$\mathbf{1 . 1 1}$	33.22	112.2	0.09	$\mathbf{0 . 0 1}$
g32_p20_a20	16.93	$\mathbf{1 3 . 7 3}$	101.84	>600	2.5	$\mathbf{0 . 2 2}$
g32_p20_a30	12.98	$\mathbf{4 . 5 4}$	199.69	>600	1.78	$\mathbf{0 . 0 5}$
g32_p20_a40	16.51	$\mathbf{8 . 1 7}$	418.56	>600	3.24	$\mathbf{0 . 1 3}$
Total solved	20	20	15	12	18	17

Makespan (minimize the maximum end time)

 incrementally add layers until a solution found
Sum of cost (minimize the sum of end times)

 incrementally add layers and look for the SOC optimal solution in each iteration (makespan+SOC optimal)generate more layers (upper bound) and then optimize SOC (naïve)
incrementally add layers and increase the cost limit until a solution is found [Surynek et al, ECAI 2016]

Express the problem as a constraint satisfaction problem:

- finite domain variables
- constraints = relations between the variables
- solution = instantiation of variables satisfying all the constraints
Modeling (choice of constraints) is important.
Example:
$\mathrm{E}, \mathrm{N}, \mathrm{D}, \mathrm{O}, \mathrm{R}, \mathrm{Y}$ in 0..9, S, M in 1..9,
P1,P2,P3 in 0..1
$D+E=10 * P 1+Y$
$\mathrm{P} 1+\mathrm{N}+\mathrm{R}=10 * \mathrm{P} 2+\mathrm{E}$
$\mathrm{P} 2+\mathrm{E}+\mathrm{O}=10 * \mathrm{P} 3+\mathrm{N}$
$\mathrm{P} 3+\mathrm{S}+\mathrm{M}=10 * \mathrm{M}+\mathrm{O}$
all_different(S,E,N,D,M,O,R,Y)

CP vs. SAT
Every SAT model is also a CP model.
CP models support numerical variables and constraints directly.
CP solvers are based on interleaving local consistency and search
Consistency techniques remove inconsistent values

$$
\begin{aligned}
& \text { all-different(}\{1,2\},\{1,2\},\{1,2,3\}) \\
& ->\text { all-different(}\{1,2\},\{1,2\},\{3\})
\end{aligned}
$$

Global constraints introduce "specialized" solvers into general CP framework
e.g. all-different is based on pairing in bipartite graphs

Separate path planning (which nodes are visited) and time scheduling (when the nodes are visited):

- find a path for each agent (planning) each agent needs to get from its origin to destination
- ensure that paths are collision free (scheduling) no two agents meet at the same time at the same node

It is natural to include:

- different durations of actions (e.g. different distances between the nodes)
- capacities of edges and nodes

CP models for MAPF

Two versions of the MAPF:

- no re-visits allowed (restricted MAPF)
- flow, path, and scheduling models

Can be modeled directly as a single CSP (we know the maximum length of plans)

- re-visits allowed (classical MAPF)
- scheduling model with optional activities

Layered model based on the number of re-visits.

Based on network flows

Path planning

if agent enters the node, it must also leave it (flow preservation constraint) $\forall x \in V \backslash\{$ orig $(p)\}: \sum_{a \in \ln \text { nrose }(x)} U$ sed $[a, p]=F l o w[x, p]$

$$
\forall x \in V \backslash\{\operatorname{dest}(p)\}:{ }_{a \in \text { outhascs(} x} U_{\text {sed }}[a, p]=F l o w[x, p]
$$

Scheduling

time intervals spent in a node do not overlap
$\left.\left.\left(F l o w\left[x, p_{1}\right] \wedge F l o w\left[x, p_{2}\right]\right) \Rightarrow\left(\operatorname{Out} T\left[x, p_{1}\right]<\operatorname{InT} T x, p_{2}\right] \vee \operatorname{Out} T\left[x, p_{2}\right]<\operatorname{InT} T x, p_{1}\right]\right)$

Temporal constraints

$$
\begin{aligned}
U \operatorname{sed}[a, p] & \Rightarrow \text { Out } T[x, p]+w(a)=\operatorname{InT}[y, p] . \\
\operatorname{InT} T x, p] & \leq \text { OutT }[x, p] .
\end{aligned}
$$

Based on covering by cycles

Path planning

each node has predecessor and successor

$$
\operatorname{Prev}[x, p]=y \Leftrightarrow \operatorname{Next}[y, p]=x
$$

Scheduling

time spent in a node modeled as activity N

$$
\text { NoOverlap }(\bigcup N[x, p])
$$

$$
p \in P
$$

Temporal constraints

$$
\operatorname{EndOf}(N[x, p])+w(x, \operatorname{Next}[x, p])=\operatorname{StartOf}(N[\operatorname{Next}[x, p], p]),
$$

Based on optional activities

Path planning

Activities for traversing arcs and visiting nodes

Scheduling \quad NoOverlap $\left(\bigcup_{a \in A} N[x, a]\right)$
Temporal constraints

$$
\begin{gathered}
\operatorname{StartOf}(N[x, a])=\operatorname{EndOf}\left(N^{\text {in }}[x, a]\right) \\
\operatorname{EndOf}(N[x, a])=\operatorname{StartOf}\left(N^{\text {out }}[x, a]\right)
\end{gathered}
$$

Comparison of CP models (map size)

Comparison of CP models (\#agents)

SAT uses layers to encode time slices (number of layers = makespan)
CP uses layers to encode re-visits of nodes (number of layers = number of re-visits)

using activities for nodes and arcs

$$
\begin{aligned}
& \mathrm{N}(x, a) \\
& \mathrm{A}(\mathrm{y}, \mathrm{x}, \mathrm{a})
\end{aligned} \quad \begin{aligned}
& \mathrm{N}(x, a, k) \\
& A(y, x, a, k)
\end{aligned}
$$

transitions to next layers via $A(x, x, a, k)$

Upper bound for the number of layers:

Could be a huge number (leading to a big model).
Layers can be incrementally added until a solution is found.

Makespan of the solution can used to estimate the number of layers (if we optimize makespan).

Model comparison (length of arcs)

Part IV:
FROM PLANNING TO EXECUTION

Man (or AI) Make Plans and God Laughs

(Stone et al., UT Austin)

Automatic Intersection Manager

Who is to blame?
[Elimelech et al. '17]

Planning and Execution in MAPF

- How to react when an unplanned event occur?
- How to plan a-priori if we know such events may occur?

Planning and Execution in MAPF

- How to react when an unplanned event occur?
- How to plan a-priori if we know such events may occur?

Running Example - the Plan

Plan \begin{tabular}{|l|c|c|c|c|c|}

\hline | Red |
| :--- |
| Agent | \& S1 \& A \& A \& C \& G1

Blue
Agent

\hline
\end{tabular}

Plan \begin{tabular}{|c|c|c|c|c|c|}

\hline | Red |
| :--- |
| Agent | \& S1 \& A \& A \& C \& G1

Alue
Blue
Agent

\hline
\end{tabular}

Running Example - the Plan

Plan \begin{tabular}{|l|c|c|c|c|c|}

\hline | Red |
| :--- |
| Agent | \& S1 \& A \& A \& C \& G1

Blue
Agent

\hline
\end{tabular}

Plan \begin{tabular}{|l|c|c|c|c|c|}

\hline | Red |
| :--- |
| Agent | \& S1 \& A \& A \& C \& G1

Blue
Agent

\hline
\end{tabular}

Running Example - Execution

Repair or Replan?

Repair the existing plan

+ Fast to compute ($\mathrm{O}(1)$)
+ Fewer messages
- Solution quality may vary
- Hard to compute
- Need full sync.
+ High solution quality

When collision is about to occur

When collision will occur

When an agent is delayed

	Lazy	Reasonable	Eager
Repair	N/A		
Replan			

When agents need to communicate?

Minimal Communication Protocol (MCP) [Ma et al. '16]

Red Agent	S_{1}	$\mathrm{~S}_{2}$	G_{2}	B	G_{1}
Blue Agent	S_{2}	A	$\mathrm{~S}_{2}$	G_{2}	G_{2}

Minimal Communication Protocol (MCP)

MCP

- Preserve ordering of visits to locations
- Repair only to avoid breaking this order
- Send a message only when agents exit a shared location

Red Agent	S_{1}	$\mathrm{~S}_{2}$	G_{2}	B	G_{1}
Blue Agent	S_{2}	A	$\mathrm{~S}_{2}$	G_{2}	G_{2}

MCP

- Preserve ordering of visits to locations
- Repair only to avoid breaking this order
- Ser a message only when agents exit a shared location

Can also move faster than planned

Red Agent	S_{1}	$\mathrm{~S}_{2}$	G_{2}	B	G_{1}
Blue Agent	S_{2}	A	$\mathrm{~S}_{2}$	G_{2}	G_{2}

Plan Repair via Adjusting Agent Velocity

MCP

- Preserve ordering of visits to locations
- Repair only to avoid breaking this order
- Serd a message only when agents exit a shared location

Can also move faster than planned

Red Agent	S_{1}	$\mathrm{~S}_{2}$	G_{2}	B	G_{1}
Blue Agent	S_{2}	A	$\mathrm{~S}_{2}$	G_{2}	G_{2}

MCP

- Preserve ordering of visits to locations
- Repair only to avoid breaking this order
- Ser a message only when agents exit a shared location Can also move faster than planned

Plan Repair via Adjusting Agent Velocity

MCP

Ma et al. '16, '18

- Preserve ordering of visits to locations
- Repair only to avoid breaking this order
- Serd a message only when agents exit a shared location

Can also move faster than planned

Label each edge with the robot's velocity constraints
\rightarrow A Simple Temporal Network \rightarrow Solvable in poly-time

- How to react when an unplanned event occur?
- How to plan a-priori if we know such events may occur?

A Priori Planning For Change

How to consider unpredictable changes a-prior?

- Find a plan whose expected $\left({ }^{*}\right)$ cost is minimal
- AME (Ma et al. '17)
- Find a plan that is executable with high probability
- UM* (Wagner \& Choset ${ }^{\text {' }} 17$)
- Find a plan that is robust to a fixed number of changes
- K-robust MAPF solvers (Atzmon et al., see SoCS and AAMAS '18)

Execution Policies - Summary

Planning and execution in MAPF

- Under-studies aspect of MAPF
- Dilemma \#1: replan vs. repair

- Dilemma \#2: when to repair/replan?
- Eager, reasonable, lazy, or MCP

- Dilemma \#3: a-prior planning: robust or expectation

Many open challenges

- How to consider solution quality?
- Relation to conformant and contingent planning
- Life-long MAPF planning

CHALLENGES AND CONCLUSIONS

Why I like to work on Multi-Agent Pathfinding

- A real-world multi-agent application
- A very challenging multi-agent planning problem
- No clear dominant approach (yet)
- Search-based vs. constraints programming vs. SAT vs. ...
- Execution is bound to differ from the plan (integration...)
- So much left to do...

Challenge: MAPF with Self-Interested Agents

Challenge: MAPF with Self-Interested Agents

Incentives and mechanism designs [Bnaya et al. ' 13 , Amir' '15]

What if the other agent is adversarial? or even worse, a human?

Preliminary Results: MAPF with a Taxation Scheme

(a) 50×50 grid with 20% for 20 agents

(b) Dragon age's den520 for 10 agents

- Robotics
- Kinematic constraints (Ma et al. '16)
- Uncertainty is a first-class citizen
- Continuous configuration space
- Any-angle motion [Yakovlav et al. '17]
- Traffic management
- Flow-based approaches

- No collisions, only traffic jams
- Scale

- Task allocation
- See Ma et al. '16 for combining, flow-based and CBS
- Pick up and delivery tasks
- See Ma et al. '16, '17 and others
- Online settings

Challenge: Relation to General Multi-Agent Planning

Cross fertilization seems natural

MAPF is a special case of MAP

- MAP
- Many models, rich literature
- Much work on uncertainty
- Poor scaling
- MAPF
- Fewer models, growing literature
- Not much work on uncertainty
- Scales well

Thanks!

Roman Barták, Roni Stern

