

Multi-Agent Pathfinding

Roman Barták, Roni Stern

Introduction

What is multi-agent path finding (MAPF)?

MAPF problem:

Find a collision-free plan (path) for each agent

Alternative names:

cooperative path finding (CPF), multi-robot path planning, pebble motion

Part I: Introduction to MAPF

- Problem formulation, variants and objectives
- Applications

Part II. Search-based solvers

- Incomplete solvers
- Complete suboptimal solvers
- Optimal solvers

Part III. Reduction-based solvers

- SAT encodings
- CP encodings

Part IV. From planning to execution

- Execution policies for MAPF
- Execution-aware offline planning

Part V. Challenges and conclusions

Part I:

INTRODUCTION TO MAPF

- a graph (directed or undirected)
- a set of agents, each agent is assigned to two locations (nodes) in the graph (start, destination)

Plans

Each agent can perform either **move** (to a neighboring node) or **wait** (in the same node) actions.

Typical assumption:

all move and wait actions have identical durations (plans for agents are synchronized)

Plan is a sequence of actions for the agent leading from its start location to its destination.

The **length of a plan** (for an agent) is defined by the time when the agent reaches its destination and does not leave it anymore.

Find **plans** for all agents such that the plans **do not collide in time and space** (no two agents are at the same location at the same time).

	time	agent 1	agent 2
	0	V 1	V 2
	1	wait v 1	move v ₃
	2	move v ₃	move v 4
	3	move v 4	move v 6
(29)	4	move v 5	wait v 6

Plan existence

Some trivial conditions for plan existence:

- no two agents are at the same start node
- no two agents share the same destination node (unless an agent disappears when reaching its destination)
- the number of agents is strictly smaller than the number of nodes

Agent at **v**_i cannot perform **move v**_j at the same time when agent at **v**_j performs **move v**_i

Agents may swap position

time	agent 1	agent 2
0	V 1	V 2
1	move v2	move v 1

Agents use the same edge at the same time!

Swap is not allowed.

time	agent 1	agent 2
0	V 1	V 2
1	move v 2	move v ₃
2	move v 4	move v 2
3	move v 2	move v 1

No-train constraint

Agent can approach a node that is currently occupied but will be free before arrival.

time	agent 1	agent 2
0	V 1	V 2
1	move v 2	move v ₃
2	move v 4	move v 2
3	move v 2	move v 1

Agents form a train.

Agent at **v**_i cannot perform **move v**_j if there is another agent at **v**_j

Trains may be forbidden.

time	agent 1	agent 2
0	V 1	V 2
1	wait v 1	move v ₃
2	move v 2	wait v з
3	move v 4	wait v з
4	wait v 4	move v 2
5	wait v 4	move v 1
6	move v 2	wait v 1

If any agent is delayed then trains may cause collisions during execution.

To prevent such collisions we may introduce more space between agents.

[Atzmon et al., SoCS 2017]

Robustness

k-robustness

An agent can visit a node, if that node has not been occupied in recent *k* steps.

1-robustness covers both no-swap and no-train constraints

- No plan (path) has a cycle.
- No two plans (paths) visit the same same location.
- Waiting is not allowed.
- Some specific locations must be visited.

How to measure quality of plans?

Two typical criteria (to minimize):

Objectives

- Makespan
 - distance between the start time of the first agent and the completion time of the last agent

Makespan = 4

SOC = 7

- maximum of lengths of plans (end times)
- Sum of costs (SOC)
 - sum of lengths of plans (end times)

Optimal single agent path finding is tractable. – e.g. Dijkstra's algorithm

Sub-optimal multi-agent path finding (with two free unoccupied nodes) is tractable.

– e.g. algorithm Push and Rotate

MAPF, where agents have joint goal nodes (it does not matter which agent reaches which goal) is tractable.

reduction to min-cost flow problem
 Optimal (makespan, SOC) multi-agent path
 finding is **NP-hard**.

Solving approaches

Search-based techniques

state-space search (A*)
state = location of agents at nodes
transition = performing one action for each agent
conflict-based search

Reduction-based techniques

translate the problem to another formalism (SAT/CSP/ASP ...)

Part II:

SEARCH-BASED SOLVERS

Some slides and animations taken from Guni Sharon, Dor Atzmon, and Ariel Felner

Why Search-Based MAPF Solvers?

Classical Search Setting

	Suboptimal	Optimal
Incomplete	?	?
Complete	?	?

Decoupled Search-based Solvers

First Attempt: Cooperative A* (Silver '05)

- Plan for each agent **separately**
- Avoid collisions with previously planned agents

• Step 1: Plan blue

Cooperative A* - Example

Step 1: Plan blue
 Image: Step 1: Plan blue</

• Step 1: Plan blue

Cooperative A* - Example

Step 1: Plan blue

 ・ Step 1: Plan blu

- Step 1: Plan blue
 Done!
- Step 2: Plan red

Cooperative A - Example*

- Step 1: Plan blue
 Done!
- Step 2: Plan red

	$\mathbf{\mathbf{x}}$	
Wait		

Cooperative A - Example*

- Step 1: Plan blue
 Done!
- Step 2: Plan red

- Step 1: Plan blue
 Done!
- Step 2: Plan red

	\mathbf{X}	
× ×	* *	•••

Cooperative A* - Example

- Step 1: Plan blue
 Done!
- Step 2: Plan red – Done!
- ...
- Step N: Plan Nth agent

Cooperative A*: Analysis - First Agent

(4 possi move	ble es		
1	2	3	4	5
6		8	9	10
11	12	13	14	15
	17	18	19	20

Cooperative A: Analysis - First Agent*

4 possible

moves

Singe-agent pathfinding

- A state is the agent's location
- Number of states = 4 x 5
- Branching factor = 4

Classical search problem!

Cooperative A*: Analysis - Second Agent

- A state is a (location,time) pair
- Number of states = 4 x 5 x maxTime
- Branching factor = 4+1

Cooperative A*: Analysis - Second Agent

- A state is a (location,time) pair
- Number of states = 4 x 5 x maxTime
- Branching factor = 4+1

Cooperative A (Silver 2005)*

- 1. Initialize the reservation table T
- 2. For each agent do
- 2.1. Find a path (do not conflict with T)
- 2.2. Reserve the path in T

WHCA* - Results

• Complexity?

- Polynomial in the grid size and max time

- Soundness?
 - Yes!
- Complete? Optimal?

– No 🛞

Cooperative A - Limitations*

Not complete (=may not find a solution) Not optimal (=may find an inefficient solution)

- A goal location that blocks another agent
- All-or-nothing (can't move until planning is done)
 Some relief to this with WHCA* (Silver '05)
- Ordering the agents is key (how to do that?)
 - Conflict oriented ordering (Byana & Felner '14)

Search-based Solvers - Overview

	Suboptimal	Optimal
Incomplete	Cooperative A*WHCA*	?
Complete	?	?

Can a MAPF algorithm be **complete** and **efficient**?

MAPF as a Puzzle

- MAPF is highly related to *pebble motion problems*
 - Each agent is a pebble
 - Need to move each pebble to its goal
 - Cannot put two pebbles in one hole
- Pebble motion can be solved polynomially!
 - But far from optimally
- [Kornhauser et al., FOCS 1984]
- Complex formulation

Similar approaches:

- Slidable Multi-Agent Path Planning [Wang & Botea, IJCAI, 2009]
- Push and Swap [Luna & Bekris, IJCAI, 2011]
 - Parallel push and swap [Sajid, Luna, and Bekris, SoCS 2012]
 - Push and Rotate [de Wilde et al. AAMAS 2013]
- Tree-based agent swapping strategy [Khorshid at el. SOCS, 2011]

Procedure-based Solvers

Examples

Push and Swap (Luna and Bekris '13)

	Suboptimal	Optimal
Incomplete	Cooperative A*WHCA*	?
Complete	 Kornhauser et al. '84 Push & Swap (Luna & Bekris) Bibox (Surynek) 	?

A Two-Agent Search Problem

10

15

20

- A state is a (location,time) pair •
- Number of states = $4 \times 5 \times maxTime$ •
- Branching factor = 4+1•

A Two-Agent Search Problem

- A state is a pair (location1, location2)
- Number of states = ?
- Branching factor = ?

Optimal Pathfinding for Two Agent

• Branching factor = 5^2

ACkersi deal ise seah qbr p boble m

Can a MAPF algorithm be complete and efficient and optimal?

Search problem properties

- Number of states = (4 x 5)^k
- Branching factor = 5^{k}

From Tiles to Agents

Can we adapt techniques from these extreme cases?

Yes!

(and invent some new techniques also)

Search-based Approaches to Optimal MAPF

Searching the k-agent search space

- A*+OD+ID [Standley '10]
- EPEA* [Felner 'X, Goldenberg 'Y]
- M* [Wagner & Choset 'Z]

Other search-based approaches

- ICTS [Sharon et al '13]
- CBS [Sharon et al '15]

- A* expands nodes
- A* gain efficiency by choosing which node to expand

What is the complexity of expanding *a single node* in MAPF with 20 agents?

5²⁰= 95,367,431,640,625

Search Tree Growth

Search Tree Growth with Operator Decomposition

Analysis of **OD**

- Pros
 - Branching factor is reduced to 5 (= single agent)
 - With a perfect heuristic can solve the problem
- Cons
 - Solution is deeper by a factor of k
 - More nodes may be expanded, due to intermediates

Enhanced Partial Expansion A* (Felner '12, Goldenberg '14)

Independence Detection (Standley '10)

- 1. Merge conflicting agents to one group
- 2. Solve optimally new group

Independence Detection (Standley '10)

Theoretically, a 2 agents problem, but ...

(Standley '10)

Simple Independence Detection

- 1. Solve optimally each agent separately
- 2. While some agents conflict
 - 1. Merge conflicting agents to one group
 - 2. Solve optimally new group

Independence Detection (Standley '10)

Theoretically, a 2 agents problem, but ...

(Standley '10)

Independence Detection

- 1. Solve optimally each agent separately
- 2. While some agents conflict
 - 1. Try to avoid conflict, with the same cost
 - 2. Merge conflicting agents to one group
 - 3. Solve optimally new group

Independence Detection (Standley '10)

Really a 2 agent problem Independence Detection But

- 1. Solve optimally each agent separately
- 2. While some agents conflict
 - 1. Try to avoid conflict, with the same cost
 - 2. Merge conflicting agents to one group
 - 3. Solve optimally new group

M* (Wagner & Choset '11,'14)

M*

- 1. Find optimal path for each agent individually
- 2. Start the search. Generate only nodes on optimal paths
- 3. If **conflict occurs backtrack** and consider all ignored actions

M*

- 1. Find optimal path for each agent individually
- 2. Start the search. Generate only nodes on optimal paths
- 3. If conflict occurs backtrack and consider all ignored actions

M* (Wagner & Choset '11,'14)

M*

- 1. Find optimal path for each agent individually
- 2. Start the search. Generate only nodes on optimal paths
- 3. If **conflict occurs backtrack** and consider all ignored actions

M* (Wagner & Choset '11,'14)

M*

- 1. Find optimal path for each agent individually
- 2. Start the search. Generate only nodes on optimal paths
- 3. If conflict occurs backtrack and consider all ignored actions

Recursive M* (Wagner & Choset '11,'14)

Recursive M*

- 1. Find optimal path for each agent individually
- 2. Start the search. Generate only nodes on optimal paths
- 3. If conflict occurs backtrack and consider all ignored actions
 - Apply M* recursively after backtracking
Recursive M* (Wagner & Choset '11,'14)

Joint path up to bottleneck can be long...

Search-based Approaches to Optimal MAPF

Searching the k-agent search space

- A*+OD+ID [Standley '10]
- EPEA* [Felner 'X, Goldenberg 'Y]
- M* [Wagner & Choset 'Z]

Other search-based approaches

- ICTS [Sharon et al '13]
- CBS [Sharon et al '15]

Increasing Cost Tree Search (Sharon et al. '12)

Does it work? – YES!

Does it work? – Not Always

Solving Optimally Problems with more than 75 agents!

Motivation: cases with bottlenecks:

CBS – Underlying Idea

A* and ICTS work in a K-agent search space

CBS plans for single agents but under constraints

- **Conflict:** [agent A, agent B, location X, time T]
- **<u>Constraint</u>**: [agent A, location X, time T]

Resolve conflict by imposing [S1,C,2] or [S2,C,2]

Conflict-Based Search (Sharon et al. '12,'15)

- <u>Conflict</u>: [agent A, agent B, location X, time T]
- <u>Constraint</u>: [agent A, location X, time T]

Resolve conflict by adding [A,X,T] or [B,X,T]

Nodes:

- A set of individual constraints for each agent
- A set of paths consistent with the constraints

Repland

Con: {(1,C,2)} Cost: 7

Sol

1- S1,A1,A1,C,G1

Goal

2- S2,B1,C,G2

ERcoantd

S1 A1 C, 61

<u>Cost</u>: 6

C,62

Conflict {1,2,C,2}

Replan 2

Con: {(2,C,2)} Cost: 7

Sol

(**1**- S1,A1,C,G1 **2**- S2,B1, B1,C,G2

Con: {}

1 S1 A: 2 S2 B1

Goal test:

• Are the paths conflict free

Analysis: Example 1

- How many states **A*** will expand?
- How many states **CBS** will?

- A* : m²+3 = O(m²) states
- CBS: 2m+14 = O(m) states

When m > 4 CBS will examine fewer states than A*

94

Analysis: Example 2

- States expanded by CBS?
- States expanded by A*?

- 4 optimal solutions for each agent
- Each pair of solutions has a conflict
- Rough analysis:
 - CBS: exponential in #conflicts = 54 states
 - A*: exponential in #agents = 8 states

Trends observed
In open spaces: use A*
In bottlenecks: use CBS

What if I have both?

Meta-Agent CBS (MA-CBS)

- 1. Plan for each agent individually
- 2. Validate plans
- 3. If the plans of agents A and B conflict
- 4 If (should merge(A,B)) merge A and B into a meta-agent and solve with A*

Else

5 Constrain A to avoid the conflicts or Constrain B to avoid the conflict

Should merge(A,B) (simple rule):

Merge when observed more than T conflicts between A,B

Choosing the Right B

Many bottlenecks

Design Choices in CBS

- When to merge agents?
- What to do after merging? [Boyarski et al. '16]
- Which conflict to resolve? [Boyarski et al. '16]
- How to resolve it?
- Which low-level solver to use?
- Heuristics for the constraint tree search [Ma et al. '18]

• ...

- A* (M*, EPEA*, A*+OD+ID)
 - Main factors: #agents, graph size, heuristic accuracy
- ICTS
 - Main factors: #agents, Δ , graph size
- CBS and its variants
 - Main factors: #conflicts

Where to use what?

Results...

	Suboptimal	Optimal
Incomplete	Cooperative A*WHCA*	?
Complete	 Kornhauser et al. '84 Push & Swap (Luna & Bekris) Bibox (Surynek) 	 A*+OD+ID (Standley) ICTS (Sharon et al.) M* (Wagner & Choset) CBS (Sharon et al.)

An algorithm is bounded suboptimal iff

- It accepts a parameter $\boldsymbol{\epsilon}$
- It outputs a solution whose cost is at most $(1+\epsilon)$ ·Optimal

How to create a bounded suboptimal algorithm?

- Different search algorithms
- Inadmissible heuristics

Suboptimal ICTS

Suboptimal rM*

Observation:

Suboptimality can be introduced in both levels

- ECBS (Barer et al. '14)
- ECBS+Highways (Cohen et al. '15, '16)

Slightly Suboptimal Really Matters

- When to use which algorithm? Ensembles?
- Using knowledge about past plans [Cohen et al.]
- Stronger heuristics for all algorithms
- Deeper analysis of algorithms' complexity
- Beyond grid worlds
 - Kinematic constraints (Ma et al. '16)
 - Any angle planning (Yakovlev et al. '17)
 - Hierarchical environments (Walker et al. '17)
- Planning & execution (see later today ③)

Part III:

REDUCTION-BASED SOLVERS

How to **exploit knowledge of others** for solving own problems?

 by translating the problem P to another problem Q

Why is it useful?

- If anybody improves the solver for Q then we get an improved solver for P for free.
- Staying on the shoulders of giants.

Reduction, compilation, re-formulation techniques

Technologies

Boolean satisfiability

- fast SAT solvers

Constraint programming

- global constraints for pruning search space

Answer set programming

declarative framework

Combinatorial auctions

. . .

Express (model) the problem as a **SAT formula** in a conjunctive normal form (CNF)

Boolean variables (true/false values)

clause = a disjunction of literals (variables and negated variables)

formula = a conjunction of clauses

solution = an instantiation of variables such that the formula is satisfied

Example:

(X or Y) and (not X or not Y)

[exactly one of X and Y is true]

SAT abstract expressions

SAT model is expressed as a CNF formula

We can go beyond CNF and use **abstract expressions** that are translated to CNF.

A => B	B or not A
sum(Bs) >= 1 (at-least-one(Bs))	disj(Bs)
sum(Bs) = 1	at-most-one(B) and at-least-one(B)

We can even use **numerical variables** (and constraints).

In MAPF, we do not know the lengths of plans (due to possible re-visits of nodes)!

We can encode plans of a known length using a **layered graph** (temporally extended graph).

Each layer corresponds to one time slice and indicates positions of agents at that time.

[Surynek, ICTAI 2012]

SAT encoding with all-different

Uses multi-valued state variables (logarithmic encoding) encoding position of agents in layers.

Agent waits or moves to a neighbor

$$\mathcal{L}_{i}^{a} = l \Rightarrow \mathcal{L}_{i+1}^{a} = l \lor \bigvee_{\ell \in \{1, \dots, n\} \mid \{v_{l}, v_{\ell}\} \in E} \mathcal{L}_{i+1}^{a} = \ell$$

No-train constraint

$$\bigwedge_{b \in A \mid b \neq a} \mathcal{L}_{i+1}^a \neq \mathcal{L}_i^b$$

Agents are not at the same nodes

 $\text{AllDifferent}(\mathcal{L}_i^{a_1},\mathcal{L}_i^{a_2},\dots,\mathcal{L}_i^{a_\mu})$

Directly encodes positions of agents in layers

- Agent is placed at exactly one node in each layer $\Lambda^{n}_{j,l=1,j< l} \neg \mathcal{X}^{i}_{j,k} \lor \neg \mathcal{X}^{i}_{l,k} \qquad \forall^{n}_{j=1} \mathcal{X}^{i}_{j,k}$
- No two agents are placed at the same node in each layer

$${\textstyle\bigwedge}_{k,h=1,k< h}^{\mu}\neg\mathcal{X}_{j,k}^{i}\vee\neg\mathcal{X}_{j,h}^{i}$$

• Agent waits or moves to a neighbor

$$\mathcal{X}_{j,k}^{i} \Rightarrow \mathcal{X}_{j,k}^{i+1} \lor \bigvee_{l:\{v_{j},v_{l}\} \in E} \mathcal{X}_{l,k}^{i+1} \qquad \mathcal{X}_{j,k}^{i+1} \Rightarrow \mathcal{X}_{j,k}^{i} \lor \bigvee_{l:\{v_{j},v_{l}\} \in E} \mathcal{X}_{l,k}^{i}$$

• No-swap and no-train (nodes before and after move are empty)

$$\mathcal{X}^{i}_{j,k} \wedge \mathcal{X}^{i+1}_{l,k} \Rightarrow \bigwedge^{\mu}_{h=1} \neg \mathcal{X}^{i}_{l,h} \wedge \bigwedge^{\mu}_{h=1} \neg \mathcal{X}^{i+1}_{j,h}$$

[Surynek, PRICAI 2014]

Comparison of SAT encodings

Finding makespan optimal solutions

Picat code

Using **layered graph** describing agent positions at each time step B_{tav} : agent *a* occupies vertex *v* at time *t*

Constraints:

- each agent occupies exactly one vertex at each time. $\Sigma_{v=1}^{n} B_{tav} = 1$ for t = 0, ..., m, and a = 1, ..., k.
- no two agents occupy the same vertex at any time.

 $\sum_{a=1}^{k} B_{tav} \leq 1 \text{ for } t = 0, \dots, m, \text{ and } v = 1, \dots, n.$

 if agent a occupies vertex v at time t, then a occupies a neighboring vertex or stay at v at time t + 1.

 $B_{tav} = 1 \Rightarrow \Sigma_{u \in neibs(v)}(B_{(t+1)au}) \ge 1$

Preprocessing:

 $B_{tav} = 0$ if agent *a* cannot reach vertex *v* at time *t* or *a* cannot reach the destination being at *v* at time *t*

import sat. path(N,As) => Incremental generation of layers K = len(As), lower_upper_bounds (As, LB, UB), between(LB,UB,M), B = new_array(M+1,K,N), в :: 0..1, % Initialize the first and last states Setting the initial and destination locations foreach (A in 1...K) (V, FV) = As[A],B[1, A, V] = 1,B[M+1, A, FV] = 1end. Agent occupies one vertex at any time % Each agent occupies exactly one vertex foreach (T in 1..M+1, A in 1..K)
 sum([B[T,A,V] : V in 1..N]) #= 1 end. % No two agents occupy the same vertex foreach (I in 1..M+1, V in 1..N) No conflict between agents sum([B[T,A,V] : A in 1..K]) #=< 1</pre> end. % Every transition is valid foreach (I in 1...M, A in 1...K, V in 1...N) neibs(V, Neibs), Agent moves to a neighboring vertex B[T,A,V] #=> sum([B[T+1,A,U] : U in Neibs]) #>= 1 end. foreach(T in 1..M1, A in 1..K, V in 1..N) solve(B), B[T,A,V] #=> sum([B[Prev,A2,V] : output_plan(B). A2 in 1...K, A2!=A, Prev in max(1, T-L)..T]) #= 0 **K-robustness** end

Instance		Makespa	n	Sum of costs			
Instance	Picat	MDD	ASP	Picat MDD ICB]
g16_p10_a05	0.27	0.02	10.86	5.68	0.01	0.01	11
g16_p10_a10	1.37	0.14	9.58	35.82	0.01	0.01	11
g16_p10_a20	2.76	0.76	26.06	143.35	0.01	0.01	11
g16_p10_a30	3.11	0.79	>600	495.04	0.52	0.02	11
g16_p10_a40	8.25	4.71	>600	>600	107.95	>600	
g16_p20_a05	1.01	0.16	5.96	16.2	0.01	0.01	
g16_p20_a10	1.5	0.31	18.59	92.16	1.58	0.16	11
g16_p20_a20	2.12	0.46	20.71	209.74	0.6	0.05	
g16_p20_a30	4.37	1.45	>600	>600	>600	>600	
g16_p20_a40	3.48	1.15	>600	>600	>600	>600	11
g32_p10_a05	1.98	0.53	12.93	29.91	0.01	0.01	11
g32_p10_a10	3.08	1.21	31.34	84.92	0.01	0.01	11
g32_p10_a20	8.71	6.8	105.47	586.71	0.03	0.01]
g32_p10_a30	34.48	40.13	274.11	>600	0.22	0.02	11
g32_p10_a40	34.95	24.87	>600	>600	1.81	0.34	1
g32_p20_a05	5.75	2.77	11.99	58.27	0.01	0.01	11
g32_p20_a10	2.97	1.11	33.22	112.2	0.09	0.01	11
g32_p20_a20	16.93	13.73	101.84	>600	2.5	0.22	
g32_p20_a30	12.98	4.54	199.69	>600	1.78	0.05	
g32_p20_a40	16.51	8.17	418.56	>600	3.24	0.13]
Total solved	20	20	15	12	18	17	

Objectives in SAT

Makespan (minimize the maximum end time)

incrementally add layers until a solution found

Sum of cost (minimize the sum of end times)

incrementally add layers and look for the SOC optimal solution in each iteration (makespan+SOC optimal)

generate more layers (upper bound) and then optimize SOC (naïve)

incrementally add layers and increase the cost limit until a solution is found [Surynek et al, ECAI 2016]

Express the problem as a **constraint satisfaction problem:**

- finite domain variables
- constraints = relations between the variables
- solution = instantiation of variables satisfying all the constraints

Modeling (choice of constraints) is important.

Example:

E,N,D,O,R,Y in 09,	_		S	E	N	П			
S,M in 19,					N				
P1,P2,P3 in 01	+		M	U	R	Ľ	1		
D+E = 10*P1+Y	Ľ	M	<u> </u>	N	E	Y	_	_	
P1+N+R = 10*P2+E	_				9	5	6	7	1
P2+E+O = 10*P3+N			+		1	0	8	5	ļ
$P3+S+M = IU^{M}+O$	7 \	Ì	=	1	0	6	5	2	ļ
all_different(S,E,N,D,M,O,R,)	()		_	_	-	_	-	-	

CP vs. SAT

Every SAT model is also a CP model.

CP models support **numerical variables and constraints** directly.

CP solvers are based on interleaving local consistency and search

Consistency techniques remove inconsistent values

all-different({1,2}, {1,2}, {1,2,3})
-> all-different({1,2}, {1,2}, {3})

Global constraints introduce "specialized" solvers into general CP framework

e.g. all-different is based on pairing in bipartite graphs

Separate path planning (which nodes are visited) and time scheduling (when the nodes are visited):

- find a path for each agent (planning)
 each agent needs to get from its origin to destination
- ensure that paths are collision free (scheduling)
 no two agents meet at the same time at the same node

It is natural to include:

- different **durations** of actions (e.g. different distances between the nodes)
- capacities of edges and nodes

CP models for MAPF

Two versions of the MAPF:

- no re-visits allowed (restricted MAPF)
 - flow, path, and scheduling models

Can be modeled directly as a single CSP (we know the maximum length of plans)

- **re-visits** allowed (classical MAPF)
 - scheduling model with optional activities

Layered model based on the number of re-visits.

Restricted MAPF: scheduling (opt) model

Comparison of CP models

Comparison of CP models (map size)

Comparison of CP models (#agents)

SAT uses layers to encode time slices (number of layers = makespan)

CP uses **layers to encode re-visits** of nodes (number of layers = number of re-visits)

transitions to next layers via A(x,x,a,k)

[Barták et al, AAMAS 2018]

Number of layers

Upper bound for the number of layers:

Could be a huge number (leading to a big model).

Layers can be incrementally added until a solution is found.

Makespan of the solution can used to estimate the number of layers (if we optimize makespan).

Model comparison (length of arcs)

Man (or AI) Make Plans and God Laughs

FROM PLANNING TO EXECUTION

Part IV:

Automatic Intersection Manager

(Stone et al., UT Austin)

Automatic Intersection Manager

Who is to blame? [Elimelech et al. `17]

- How to **react** when an unplanned event occur?
- How to plan a-priori if we know such events may occur?

Planning and Execution in MAPF

- How to react when an unplanned event occur?
- How to plan a-priori if we know such events may occur?

Running Example – the Plan

Running Example – the Plan

Plan	Red Agent	S1	А	А	С	G1
	<mark>Blue</mark> Agent	S2	В	С	G2	G2

Running Example – the Plan

Running Example – the Plan

Plan	Red Agent	S1	А	А	С	G1
	<mark>Blue</mark> Agent	S2	В	С	G2	G2

Running Example – the Plan

Running Example - Execution

Running Example

Repair or Replan?

Repair or Replan?

- + Fast to compute (O(1))
- + Fewer messages
- Solution quality may vary

- Hard to compute
- Need full sync.
- + High solution quality

When to Repair/Replan?

When to Repair/Replan?

Execution Policy Configurations

	Lazy	Reasonable	Eager
Repair	N/A		
Replan			

When agents need to communicate?

Minimal Communication Protocol (MCP) [Ma et al. '16] Minimal Communication Protocol (MCP)

Minimal Communication Protocol (MCP)

MCP

- Preserve ordering of visits to locations
- Repair only to avoid breaking this order
- Send a message only when agents exit a shared location

MCP

- Preserve ordering of visits to locations
- Repair only to avoid breaking this order
- Ser a message only when agents exit a shared location

Plan Repair via Adjusting Agent Velocity

MCP

Can also move

faster than planned

- Preserve ordering of visits to locations
- **Repair** only to avoid breaking this order
- Ser a message only when agents exit a shared location

Red Agent	S ₁	S ₂	G ₂	В	G ₁
Blue Agent	S ₂	A	S ₂	G ₂	G ₂

MCP

- Preserve ordering of visits to locations
- Repair only to avoid breaking this order
- Ser a message only when agents exit a shared location

Plan Repair via Adjusting Agent Velocity

MCP

Ma et al. `16, `18

- Preserve ordering of visits to locations
- Repair only to avoid breaking this order
- Serd a message only when agents exit a shared location

- How to react when an unplanned event occur?
- How to plan a-priori if we know such events may occur?

A Priori Planning For Change

How to consider unpredictable changes a-prior?

- Find a plan whose expected (*) cost is minimal
 - AME (Ma et al. '17)
- Find a plan that is executable with high probability
 - UM* (Wagner & Choset '17)
- Find a plan that is robust to a fixed number of changes
 - K-robust MAPF solvers (Atzmon et al., see SoCS and AAMAS '18)

UM* (Wagner & Choset '17)

Execution Policies - Summary

Planning and execution in MAPF

- Under-studies aspect of MAPF
- Dilemma #1: replan vs. repair
- Dilemma #2: when to repair/replan?
 Eager, reasonable, lazy, or MCP
- Dilemma #3: a-prior planning: robust or expectation

Many open challenges

- How to consider solution quality?
- Relation to conformant and contingent planning
- Life-long MAPF planning

 $\begin{array}{c} \textbf{Red} \\ \textbf{Agent} \\ \textbf{Blue} \\ \textbf{Agent} \\ \textbf{S}_2 \\$

Part V:

CHALLENGES AND CONCLUSIONS

Conclusions

Why I like to work on Multi-Agent Pathfinding

- A real-world multi-agent application
- A very challenging multi-agent planning problem
- No clear dominant approach (yet)
 - Search-based vs. constraints programming vs. SAT vs. ...
- Execution is bound to differ from the plan (integration...)
- So much left to do...

Challenge: MAPF with Self-Interested Agents

Challenge: MAPF with Self-Interested Agents

Incentives and mechanism designs [Bnaya et al. `13, Amir `15]

What if the other agent is **adversarial**? or even worse, a **human**?

Preliminary Results: MAPF with a Taxation Scheme

Challenges: Applying MAPF for Real Problems

- Robotics
 - Kinematic constraints (Ma et al. '16)
 - Uncertainty is a first-class citizen
 - Continuous configuration space
 - Any-angle motion [Yakovlav et al. '17]
- Traffic management
 - Flow-based approaches
 - No collisions, only traffic jams
 - Scale

Challenge: MAPF as Part of a System

- Task allocation
 - See Ma et al. '16 for combining, flow-based and CBS
- Pick up and delivery tasks
 - See Ma et al. '16, '17 and others
- Online settings

Cross fertilization seems natural

MAPF is a special case of MAP

- MAP
 - Many models, rich literature
 - Much work on uncertainty
 - Poor scaling
- MAPF
 - Fewer models, growing literature
 - Not much work on uncertainty
 - Scales well

Agents can be Anything

Thanks!

Roman Barták, Roni Stern

