
1

Constraint ProgrammingConstraint Programming
In Pursuit of The Holly GrailIn Pursuit of The Holly Grail

Roman Barták
Charles University in Prague

bartak@ktiml.mff.cuni.cz
http://ktiml.mff.cuni.cz/~bartak

“Constraint programming represents“Constraint programming represents
one of the closest approachesone of the closest approaches
computer science has yet made to thecomputer science has yet made to the
Holy Grail of programming: the userHoly Grail of programming: the user
states the problem, the computerstates the problem, the computer
solves it.”solves it.”

Eugene C.Eugene C. Freuder Freuder, Constraints, April 1997, Constraints, April 1997

3

Talk outlineTalk outline

What is constraint programming?What is constraint programming?
a bit of history and application areas

How to solve constraints?How to solve constraints?
filtering algorithms

constraint propagation
labelling
over-constrained problems

ConclusionsConclusions
benefits
systems and resources

4

What is a constraint?What is a constraint?

Constraint is an arbitrary relation over the set of variables.
– every variable has a set of possible values - a domain

• this talk covers discrete finite domains only

– the constraint restricts the possible combinations of values

Some examples:
– the circle C is inside a square S

– the length of the word W is 10 characters
– X is less than Y

– a sum of angles in the triangle is 180°

– the temperature in the warehouse must be in the range 0-5°C
– John can attend the lecture on Wednesday after 14:00

Constraint can be described:
– intentionally (as a mathematical/logical formula)
– extensionally (as a table describing compatible tuples)

5

What is constraint programming?What is constraint programming?

A technology for solving (combinatorial) problems
described as:

– a set of variables
S,E,N,D,M,O,R,Y

– domains for variables (sets of allowed values)
E,N,D,O,R,Y::0..9, S,M::1..9

– constraints (relations restricting combinations of
values)

 1000*S + 100*E + 10*N + D
+ 1000*M + 100*O + 10*R + E
= 10000*M + 1000*O + 100*N + 10*E + Y
(SEND+MORE=MONEY)

The task is to find a value for each variable satisfying all
the constraints.

FF User states the problem, computer solves it! EE 6

CP and othersCP and others

Floating point
variables

Integer
variables

L
in

ea
r

co
n

st
ra

in
ts

L
o

g
ic

al
co

n
st

ra
in

ts

LinearLinear
ProgrammingProgramming

Mixed IntegerMixed Integer
ProgrammingProgramming

DiscreteDiscrete
MathematicsMathematics

ConstraintConstraint
ProgrammingProgramming

• various domains
• arbitrary constraints
• heterogeneous problems

• various domains
• arbitrary constraints
• heterogeneous problems

2

7

A bit of historyA bit of history
Scene labelling (Waltz 1975)

feasible interpretation of 3D lines in a 2D drawing

Interactive graphics (Sutherland 1963, Borning 1981)
geometrical objects described using constraints

Logic programming (Gallaire 1985, Jaffar, Lassez 1987)
from unification to constraint solving

+
+ +

+

+
+

+ +

+

+

- -

-

-

8

Application areasApplication areas

All types of hard combinatorial problems
Molecular biology

– DNA sequencing
– determining protein structures

Interactive graphic
– web layout

Network management and configuration
Assignment problems

– personal assignment
– stand allocation

Timetabling

Scheduling
Planning

InsideInsideConstraint ProgrammingConstraint Programming
A Technology OverviewA Technology Overview

10

Constraint programming at glanceConstraint programming at glance

Modelling (problem formulation)
N-queens problem
queen = column (looking for row) r(i):: 1..N

non-attack constraints ∀∀i≠≠j r(i)≠≠r(j) & |i-j| ≠≠ |r(i)-r(j)|

Labelling (search)
backtracking (return upon failure)

Propagation (domain filtering)
remove inconsistencies in advance

OK conflict conflict

OK no value no value
×× ×× ××
××

××
××

×× ×× ××
××

××
××

××

××
××

×× ×× ××
××

××
××××

××
×× ×× ××
××

××
××××

××
××

11

Solving constraints Solving constraints by by enumerationenumeration

Constraints are used only as a test
assign values to variables ...

… and see what happens

Example:
X in [4,5]

Y in [5,6]

Z in [1,2]
X<Y

Z<X-2

Z=2

ý

X=4

Y=5

Z=1

þ

Y=6

þ

Z=1

ý

Z=2

þ

Y=6

Z=1

þ

Z=2

X=5

Y=5

ý

Some improvements:
– backjumping (jump to a conflicting variable)
– backchecking, backmarking (remember the conflicts)

12

Arc consistencyArc consistency

Example:
A in [3,..,7], B in [1,..,5], A<B

Constraint can be used to prune the domains actively
using a dedicated filtering algorithm.

3..7 1..5
A<B

Not arc-consistent

A B 3..4 1..5
A<B

(A,B) is consistent

A B 3..4 4..5
A<B

(A,B) and (B,A) are consistent

A B

Definitions:

The constraint C is arc consistent iff for every variable
i constrained by C and for every value v∈∈Di there is an
assignment of the remaining variables in C such that
the constraint is satisfied.

The problem is arc consistent if every constraint is arc
consistent

3

13

Constraint propagationConstraint propagation

How to establish arc consistency among the constraints?
Example: X in [1,..,6], Y in [1,..,6], Z in [1,..,6], X<Y, Z<X-2

X in [1,..,6]
Y in [1,..,6]
Z in [1,..,6]

X in [1,..,6]
Y in [1,..,6]
Z in [1,..,6]

X in [1,..,5]
Y in [2,..,6]
Z in [1,..,6]

X in [1,..,5]
Y in [2,..,6]
Z in [1,..,6]

X<Y
X in [4,5]
Y in [2,..,6]
Z in [1,2]

X in [4,5]
Y in [2,..,6]
Z in [1,2]

Z<X-2
X in [4,5]
Y in [5,6]
Z in [1,2]

X in [4,5]
Y in [5,6]
Z in [1,2]

X<Y

Make all the constraints consistent until any domain is changed (AC-1)

Why we should revise the constraint X<Y if domain of Z is changed?

procedure AC-3(C)
Q ←← C % a list of constraints for revision
while Q non empty and no domain is empty do

select and delete c from Q
Q ←← Q ∪∪ REVISE(c,C)

end while
end AC-3

14

Is arc consistency enough?Is arc consistency enough?

By using AC we can remove many incompatible values
– Do we get a solution?
– Do we know that there exists a solution?

Unfortunately, the answer to both above questions is
NO!

Example:
CSP is arc consistent
but there is no solution

So what is the benefit of AC?
Sometimes we have a solution after AC

• any domain is empty →→ no solution exists
• all the domains are singleton →→ we have a solution

In general, AC prunes the search space.

a b

a b

a b

≠

≠

≠

X1

X2

X3

15

Global constraintsGlobal constraints

a set of binary inequality constraints among all variables
 X1 ≠≠ X2, X1 ≠≠ X3, …, Xk-1 ≠≠ Xk

weak pruning using local consistency algorithms (AC)

all_different(X1,…, Xk) = {(d1,…, dk) | ∀∀i di∈∈Di & ∀∀i≠≠j di ≠≠ dj}
better pruning based on matching theory over bipartite graphs

a b

a b

a b c

≠

≠

≠

X1

X2

X3

X1

X2

X3

a

b

c

16

Combining search and consistencyCombining search and consistency

Backtracking uses constraints passively only!
– wasting information (visibly wrong instantiations are explored)

Domain filtering is (usually) not complete!

We can combine backtracking search with domain filtering
– process constraints after variable instantiation

Look Back methods
– constraints among already instantiated variables are checked to

analyse the conflicts

– backjumping, backchecking, backmarking

Look Ahead methods
– domain filtering among not yet instantiated variables to prevent

future conflicts

– forward checking, partial look ahead, (full) look ahead

17

Look Ahead methodsLook Ahead methods

Domain filtering among not yet instantiated variables
– removes incompatible values from domains
– detects conflicts earlier (when any domain become empty)

How strong consistency should be achieved and what
variables should be involved?

Forward checking (FC)
AC between the current variable

and neighbouring variables

Partial look ahead (PLA)
AC between future variables

in one direction only (DAC)

(Full) look ahead (LA)
AC between all future variables

currently
instantiated
variable

In
stan

tiatio
n

 o
rd

er

18

Comparison of solving methods (4 queens)Comparison of solving methods (4 queens)

Backtracking is not very good
19 attempts

Forward checking is better
3 attempts

And the winner is Look Ahead
2 attempts

4

19

Search strategiesSearch strategies

Can we further influence efficiency of the solver?

Variable ordering
defines the structure of the search tree
FIRST FAIL principle

prefer variable whose instantiation will lead to failure with
the highest probability (solve the hardest case first)

• prefer the variables with the smallest domain
• prefer the most constrained variables

Value ordering

defines the search order (how the explore the search tree)

SUCCEED FIRST principle
• prefer the values with higher number of supporters
• usually problem dependent

20

Tree search and heuristicsTree search and heuristics

Observation 1:
The search space for real-life problems is so huge that it cannot be
fully explored.

Heuristics - a guide of search
– they recommend a value for assignment

– quite often leads to solution

What to do upon a failure of the heuristics?
BT cares about the end of search (a bottom part of the search tree)

– so it rather repairs later assignments than the earliest ones
– it assumes that the heuristic guides it well in the top part

Observation 2:
The heuristics are less reliable in the earlier parts of the search (as
search proceeds, more information for better decision is available).

Observation 3:
The number of heuristic violations is usually small.

21

Limited discrepancy searchLimited discrepancy search
Discrepancy = heuristic is not followed

(a value different from the heuristic is chosen)
Idea of Limited Discrepancy Search (LDS):

– first, follow the heuristic
– when a failure occurs then explore the paths when the heuristic

is not followed maximally once (start with earlier violations)
– after next failure occurs then explore the paths when the

heuristic is not followed maximally twice...

Example:
the heuristic proposes to use the left branches

22

A motivation - robot dressing problemA motivation - robot dressing problem
Dress a robot using minimal wardrobe and fashion rules.
Variables and domains:

shirt: {red, white}

footwear: {cordovans, sneakers}

trousers: {blue, denim, grey}

Constraints:

shirt x trousers: red-grey, white-blue, white-denim
footwear x trousers: sneakers-denim, cordovans-grey

shirt x footwear: white-cordovans

red white

blue denim grey

cordovans sneakers

shirt

trousers footwear

NO FEASIBLE SOLUTION
satisfying all the constraints

We call the problems where no feasible solution exists
over-constrained problems.

23

First solution to the robot dressing problemFirst solution to the robot dressing problem

There is no feasible valuation but we need to dress robot!
1) buy new wardrobe

enlarge the domain of some variable

2) less elegant wardrobe

enlarge the domain of some constraint

3) no matching of shoes and shirt

remove some constraint

4) do not wear shoes

remove some variable

Enlarged constraint
domain

enlarge the domain of some constraint

Domain is defined by a
unary constraint

All combinations are
assumed feasible

Delete the constraint
bounding the variable

red white

blue denim grey

cordovans sneakers

shirt

trousers footwear

24

Second solution of the robot dressing problemSecond solution of the robot dressing problem

It is possible to assign a preference to each constraint to
describe priorities of satisfaction of the constraints.

The preference describes a strict priority.
a stronger constraint is preferred to arbitrary number of weaker

constraints

shirt x trousers @ required

footwear x trousers @ strong

shirt x footwear @ weak
red white

blue denim grey

cordovans sneakers

shirt

trousers footwear

Constraints marked by a preference make a hierarchy, thus
we are speaking about constraint hierarchies.

5

ConclusionsConclusions

26

The benefits of constraint programmingThe benefits of constraint programming

Close to real-life (combinatorial) problems
– everyone uses constraints to specify problem properties
– real-life restriction can be naturally described using constraints

A declarative character
– concentrate on problem description rather than on solving

Co-operative problem solving
– unified framework for integration of various solving techniques

– simple (search) and sophisticated (propagation) techniques

Semantically pure
– clean and elegant programming languages
– roots in logic programming

Applications
– CP is not another academic framework, it is already used in many

applications

27

SystemsSystems

Prolog
CHIP, ECLiPSe, SICStus Prolog, Prolog IV,
GNU Prolog, IF/Prolog

C/C++

CHIP++, ILOG Solver
Java

JCK, JCL, Koalog
LISP

Screamer
others

Python Constraints, Mozart

More at
http://kti.mff.cuni.cz/~bartak/constraints/systems.html

28

ResourcesResources

Books
– P. Van Hentenryck: Constraint Satisfaction in Logic Programming,

MIT Press, 1989

– E. Tsang: Foundations of Constraint Satisfaction, Academic Press, 1993
– K. Marriott, P.J. Stuckey: Programming with Constraints: An

Introduction, MIT Press, 1998

Journal
– Constraints, An International Journal. Kluwer Academic Publishers

Conference
– Principles and Practice of Constraint Programming (CP)

On-line materials
– On-line Guide to Constraint Programming , 1998

http://kti.mff.cuni.cz/~bartak/constraints/

– Constraints Archive
http://www.cs.unh.edu/ccc/archive

“Were you to ask me which“Were you to ask me which
programming paradigm is likely toprogramming paradigm is likely to
gain most in commercial significancegain most in commercial significance
over the next 5 years I’d have to pickover the next 5 years I’d have to pick
Constraint Logic Programming, evenConstraint Logic Programming, even
though it’s perhaps currently one ofthough it’s perhaps currently one of
the least known and understood.”the least known and understood.”

DickDick Pountain Pountain, BYTE, February 1995, BYTE, February 1995

Constraint ProgrammingConstraint Programming
In Pursuit of The Holly GrailIn Pursuit of The Holly Grail

Roman Barták
Charles University in Prague

bartak@ktiml.mff.cuni.cz
http://ktiml.mff.cuni.cz/~bartak

THE END!

