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Abstract. The model of Dynamic Meta-Constraints has special activity constraints
which can activate other constraints. It also has meta-constraints which range over
other constraints. An algorithm is presented in which constraints can be assigned
one of five different satisfaction values, which leads to the assignment of domain
values to the variables in the CSP. An outline of the model and the algorithm is
presented, followed by some initial results for two problems: a simple classic CSP
and the Car Configuration Problem. The algorithm is shown to perform few
backtracks per solution, but to have overheads in the form of historical records
required for the implementation of state.

1. Introduction

The motivation for the research is the problem of students selecting modules for their
studies at a university, which has quite complicated rules as to which combinations are
allowed, and in which order modules are to be taken. In particular there are numerous
rules like ‘if you want to take this module, then this module should be taken first’, or ‘if
studying this field then at least 7 of the following modules should be taken, but not more
than 10’. A further characteristic is that only parts of the variables and constraints are
involved in any particular instance of the problem (i.e. if studying French, then the
constraints and variables related to Computing and Business Studies are not applicable).

The above characteristics lead to the area of research where configuration and constraint
satisfaction meet, in particular that of Dynamic CSP (DCSP) as defined by Mittal and
Falkenhainer[2], and recently re-defined as that of Conditional CSP (CCSP) by Sabin
and Freuder[3]. In DCSP or CCSP special constraints are introduced which can activate
variables to become part of the problem. However, in the current problem domain it is
more appropriate to have constraints that can be activated if they need to be part of the
problem. Secondly, in this problem domain it is important to be able to reason about the
numbers of constraints that are satisfied or not. This is much in line with recent additions
to Constraint Logic Programming, in particular that of the cardinality operator by van
Hentenryck[5],[6]. This operator works as a meta-structure, ranging over other
constraints. Finally, the user should be able to select a section of the problem, resolve
that section, and request for the rest of the problem to be solved in line with the section



resolved already. This requires that the problem solving process is modelled as an
interactive one, allowing a step-by-step approach. These three ingredients, the notion of
activating constraints, the meta-constraints ranging over other constraints and the step-
by-step approach to problem solving form the basis of the model of Dynamic Meta-
Constraints.

The paper is organised as follows. Firstly, the main features of the model of Dynamic
Meta-Constraints are presented. This is followed by a discussion of the algorithm, and
the strategy of additional satisfaction values to improve the algorithm’s efficiency. It is
pointed out that the algorithm may have space requirements problems. Some test results
are then presented for a number of problems. The last section concludes with a brief
summary and outlines some directions for future work.

2. Model of Dynamic Meta-Constraints: Network Representation

For the implementation of the algorithm presented here, the structure as shown in Fig. 1
is used.
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Fig. 1 Dynamic Meta-Constraints’ Network Representation

The variables are stored separate from the constraints and they form an unordered set
with no relationships directly between them. The constraints in the problem are linked to
each other as in a  tree structure, which expresses the fact that they are ordered, and
relate to each other as in a parent-child relationship. The constraints and the variables are
connected through the base-constraints, which are situated at the bottom of the tree, ’the
leaf-nodes’. Because the constraints in these leaf-nodes are connected to variables, the
problem as a whole stops being tree-structured, and turns into graph. Therefore,
unfortunately, the problem is in essence still like the classic CSP, and belongs to the
class of NP-complete problems.



The satisfaction of a base-constraint depends directly on the value assigned to the
variable it relates to. Furthermore, a base-constraint cannot itself be a parent to another
constraint, and each base-constraint points to one variable only. A meta-constraint has a
minimum and a maximum value, and a set of constraints that it ranges over. We say that
if at least min and at most max of the dependent constraints are satisfied, then the meta-
constraint is satisfied. The top-constraint represents the problem as a whole.

3. Constraints are Active or Inactive and Variables can Remain
Unassigned.

Constraints are either active or inactive and at any point during constraint processing,
only the currently active constraints participate. This supports the notion that sections of
the problem that are not required, are cut off from the problem space through inactivity.

Some variables remain unassigned at the end of constraint processing. The interpretation
given to this, is that such variables are not part of the problem currently being solved.
This interpretation is analogue to that of DCSP[2]. The two approaches are in fact
mirror-images. On the one side is Mittal, with an algorithm that keeps track specifically
of the set of active variables, in which constraints related to currently inactive variables
are simply not considered. While on the other side, we have a careful system of
monitoring which constraints are active, which forms the basis of a correct
implementation of which variables are part of the problem. In the current approach,
variables associated with active constraints are said to be active, while other variables
are considered inactive.
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Fig. 2 Example of a Problem with Active and Inactive Constraints. Activator constraints are
omitted from the figure



In Fig. 2 is an example of a constraint network with active and inactive constraints.
Inactive constraints are depicted with dotted lines. If the task to satisfy c3 is executed,
this will result in variable Z being assigned, since this is the only active variable
associated with constraint c3 through the constraints c7 and c8. There are two solutions
to this request, Z=’a’ and Z=’c’. On the other hand, when executing the task satisfy c1,
the variables {Y, Z} are both assigned values, while variable X remains unassigned.

4 Special Constraints : Activators and Receivers.

Special activator constraints are capable of activating one or several other constraints,
upon a condition becoming satisfied. In Fig. 3, at the far right is an example of an

Fig. 3 An Example of a Constraint Network with Activator Constraints and All-Receiver.

activator c31, which when the condition Y=a is true, will activate the constraint c21,
while constraint c32 is capable of activating several constraints: c22, and c23. Although
no examples are given in this figure, meta-constraints can also be activators.

A further type of constraint in this model are Receivers. A Receiver is a meta-constraint,
which ranges over other constraints which may or may not become active. In that sense,
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the meta-constraint is capable of ‘receiving’ other constraints. A Receiver constraint is
satisfied if at least min and at most max of its active dependent constraints are satisfied.
Fig. 3 shows c20 as an example of an AllReceiver. An AllReceiver is a subtype of the
Receiver class, and we say that it is satisfied if all its active children are satisfied.

Meta-constraints are modelled on the cardinality combinator by Van Hentenryck[5],[6],
and to an extent, one could represent problems as demonstrated in this paper using the
cardinality combinator, in the CLP scheme. However, the cardinality combinator has not
previously been demonstrated as a suitable tool for modelling design problems, such that
it models parts and sub parts of the problem, or even the problem as a whole.
Furthermore, the cardinality combinator has only been used in the context of regular
CSPs, where normal conditions of all variables having to be assigned values, and all
constraints having to be satisfied, apply. Regular CSPs do not have activation
mechanisms, and don’t have the problem that we have here, of not knowing which
constraints are the exact dependents of the meta-constraint, nor how many dependants
there will be in all. This is why our model has Receiver constraints, which are a more
flexible form than the meta-constraint directly modelled on the cardinality combinator.
A further difference lies in the implementation of the cardinality combinator compared
to the meta-constraints. Van Hentenryck checks whether the constraint store holds
information to see if  the combinator is satisfied, whereas the current algorithm has a
more active approach, and the meta-constraint is used to generate choices, and produce
sets of solutions.

5. The Algorithm: Propagation in Both Directions.

The algorithm presented here uses propagation through the network going in both
directions. The first propagation goes from the variables to the constraints, and is in
itself fairly straightforward. When a variable is assigned a value, it will propagate to its
associated base-constraints the fact that it has become assigned, resulting in those
constraints becoming satisfied or not. The base-constraints then communicate any
change in their satisfaction value to their parent meta-constraint, who in turn will notify
their parent, etc., until the effects have 'bubbled’ up as far as necessary.

The propagation going from the constraints to the variables, can require backtracking to
explore all possibilities. A user can request for a constraint to be made satisfied (or
unsatisfied). If the constraint is a base-constraint and its associated variable is still
unassigned, then the correct value will be assigned to the variable, making the base-
constraint satisfied. The task can also fail, in the case where the variable is already
instantiated, but with the wrong value.

If the task is to satisfy a meta-constraint then there may be a number of paths to be
generated for testing. How many paths depends on the values of min and max, and the
number of dependent constraints of this particular meta-constraint. For example, if the
task is to satisfy c1 in Fig. 2, then the following paths could be generated:



• satisfy c2 & satisfy c3
• satisfy c2 & unsatisfy c3
• unsatisfy c2 and satisfy c3

Each path may lead to numerous other paths. The backtrack algorithm sets out to find all
possible paths, or report failure if none exist.

6 Five Different Satisfaction Values.

Given that the generation of tasks can grow exponentially, it is important to bring paths
to a halt as soon as possible, and to avoid generating paths that are doomed to fail
altogether. With just two satisfaction values for constraints, i.e. satisfied and unsatisfied,
intelligence that could have guided the search process is lost. Therefore, three additional
values are introduced: Undetermined, Satisfied-Yet, and Unsatisfied-Yet, where the latter
two are strictly reserved for meta-constraints. A number of experiments showed that
with five satisfaction values, the algorithm’s performance improves dramatically [4].

Base-constraints are assigned the value ’Undetermined’ when initialised. Later on, they
can become Satisfied or Unsatisfied, depending on the values assigned to the variables
they are associated with. The meaning of Satisfied and Unsatisfied is that these are fixed
values. If a meta-constraint has such a fixed value, it means that in their tree of
dependants there are no Undetermined constraints. The fixed-ness also means that, if-
constraint c4 holds value Satisfied, and a request comes to satisfy c4, then this will
succeed without processing, because this value can be relied on.

The value Satisfied-Yet will be given under the following circumstances:

if        |SAT| + |SAT-YET| ≥ C.Min and
          |SAT| + |SAT-YET| + |UNDETER| ≤ C.Max
         then return Satisfied-Yet

where SAT, SAT-YET and UNDETER are sets of dependent constraints which
are Satisfied, Satisfied-Yet or Undetermined respectively; where C.Min and
C.Max are the constraint’s min and max values; and the condition holds that at
least one of the sets SAT-YET, UNSAT-YET or UNDETER is non-empty.

The meaning of Satisfied-Yet is subtle. It means that attempts to make this meta-
constraint unsatisfied will fail, but that it is not certain whether the constraint will end up
as satisfied. The uncertainty stems from the fact that somewhere in the tree of
dependants, there are constraints which are Undetermined. The value Satisfied-Yet
allows the insights derived from the min and max values, and the current state of the
dependent constraints, to be used to guide the search process. That is, if a meta-
constraint is Satisfied-Yet, it need not be given the task ‘Unsatisfy’, since this will fail



definitely. In a sense this is adding a ‘Node-Consistency’ flavour to the algorithm,
because tasks that are known to fail are as if ‘deleted from the constraint’s domain’.

The main point is, that as long as there are Undetermined active constraints in a problem,
we cannot say with certainty that a solution is found. It may be, that some constraints are
making contradictory demands on a variable. Or it may be that an activator constraint
jumps into action, adding an entirely new section to the problem to be solved.

7 Implementation of ’State’.

A backtrack algorithm needs to ensure it has a sound notion of ’state’ - i.e., that when it
returns to a previous point in the search tree that the problem behaves exactly the same
as it did when it was in that search point before. For this algorithm, the implementation
of state is dispersed throughout the problem. That is, the constraints and variables keep
historical records of their ’personal’ changes throughout the process of solving. This
approach requires the notion of a ’global clock’, which has a ’tick’ incrementation
whenever a significant change occurs. Any object that is affected by this event, makes a
record of the change. On backtracking, a sweep through the constraints and variables is
made, and each object sets itself back in time by looking at its own historical record.

Due to this implementation of state, the algorithm has overheads in the form of the space
requirements for the historical records. The space requirements could be exponential,
and may be influenced by the type of constraints used, the size of the domains of the
variables, the number of constraints and the min and max values of the meta-constraints.

8. Results: Mackworth’s classic CSP

The first problem to report results for, is as introduced by Mackworth[1], and shown in
Fig 4. It is an inconsistent CSP, and thus it is not possible to find a combination of
values to be assigned to the variables such that all constraints are satisfied.
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Fig. 4 Mackworth Classic CSP



The search trees in Table 1 reveal that ordinary backtracking requires 19 assignments,
and 12 backtracks to ascertain that no solution is possible for this problem. The
algorithm developed for the Dynamic Meta-Constraints performs significantly fewer
backtracks and variable assignments. It does perform more constraint checks. More
generally, the search trees illustrate the different approaches between the algorithms:
ordinary backtracking assigns values to variables and then checks whether the
constraints are satisfied, whereas in the new algorithm constraints are made satisfied by
assigning values to variables which are known to be successful. For example, v2 is never
assigned value ’a’, since no constraint indicates that this would be a good choice.

Table 1. Search Trees and Results for Classic CSP
Ordinary Backtrack: Dynamic Meta-Constraints:
v2 = a,  v3 = a,
             v3 = b,
v2 = b,  v3 = a,  v5 = a
                          v5 = b, v4 = a
                                      v4 = b
             v3 = b
v2 = c,  v3 = a,  v5 = a,
                          v5 = b, v4 = a
                                      v4 = b
             v3 = b,  v5 = a
                           v5 = b

v2=c, v3=b
v2=b, v3=a, v5=b
v2=c, v3=a, v5=b

19 assignments,
12 backtracks,
18 constraint checks

8 assignments
3 backtracks
22 constraint checks

Arc Consistency algorithms would not make any backtracks or variable assignments
when solving the current problem. The procedure REVISE would deplete the domains of
some variables of all their values, thus indicating that no solution is possible [1].

The results for this very small problem indicate that the efficiency of the Dynamic Meta
Constraints approach lies somewhere in between backtracking and Arc Consistency.
Obviously, the problem is too small to make any conclusive statements, nor would such
statements take into account the issue of the space requirements. Furthermore, the
problem is too small and too simple to give proper credit to the new algorithm since it
offers no opportunity to demonstrate its more advanced features.

9. Results: Mittal’s Car Configuration Problem

In the Car Configuration Problem described by Mittal et al[2], and again by Sabin and
Freuder[3] special constraints introduce variables which are made part of the problem to
be solved. It is therefore closer to the approach of Dynamic Meta-Constraints than the



previous problem. This particular problem consists of configuring cars with accessories
according to some level of luxury: ’standard, deluxe and luxury’. Depending on these the
car will or will not be fitted with air-conditioner, sun-roofs etc..

Variable Domain
package {luxury, deluxe, standard} initial var
frame {convertible, sedan, hatchback} initial var
engine {small, med, large} initial var
battery {small, med, large}
sunroof {sr1, sr2}
airconditioner {ac1, ac2}
glass {tinted, non-tinted}
opener {auto, manual}

Activity Constraints
1.  Package = luxury  RV⇒ Sunroof
2.  Package = luxury RV⇒ Airconditioner
3.  Package = deluxe RV⇒  Sunroof
4.  Sunroof = sr2 RV⇒ Opener
5.  Sunroof = sr1 RV⇒ Airconditioner
6.  Sunroof  ARV⇒  Glass
7.  Engine ARV⇒ Battery
8.  Opener ARV⇒ Sunroof
9.  Glass ARV⇒ Sunroof
10. Sunroof = sr1 RN⇒ Opener
11. Frame = convertible RN⇒ Sunroof
12. Battery = small & Engine = small RN⇒
        Airconditioner

Compatibility Constraints
13. Package = standard → AirConditioner ≠ ac2
14. Package = luxury  → AirConditioner ≠ ac1
15. Package = standard → Frame ≠ convertible
16. Opener = auto & AirConditioner = ac1 →
         Battery = med
17. Opener = auto & AirConditioner = ac2 →
         Battery = large
18. Sunroof = sr1 & AirConditioner = ac2 →
Glass ≠ tinted

Table 2. Results for Mittal’s Car Configuration problem, with 64 constraints and 8 variables.
Column 3 presents figures for requests to make top-constraint satisfied, finding all 288 solutions,
and column 4 for finding the first solution. Column 5 and 6 show figures after constraint stating
that P=deluxe is made satisfied followed by a request to make the top-constraint satisfied, with
now 153 possible solutions found in column 5, and the first solution in column 6

P=deluxe P=deluxe
AllSols FirstSol AllSols FirstSol

Backtracks 290 1 153 1
Assignments 660 4 291 6
constraint checks 3437 26 1281 37

constraint history min 1 1 2 1
max 576 6 308 6
average 138.76 2.92 61.35 2.75



Table 2 shows that just 290 backtracks need to be made to find all 288 solutions (column
3), or 153 backtracks to find all 153 solutions. This gives an average of 1.0 backtrack per
solution. It appears that the only reason the algorithm has to backtrack, is when it has
found a solution, and thus avoids going down any unnecessary paths.

Unfortunately there are no figures available from Mittal’s implementation, so a
comparison is not possible. Neither is it possible to compare the figures from Table 2
with an ordinary backtrack or Arc Consistency algorithm, since these would not be able
to solve a problem modelled in this fashion

A drawback of the algorithm is the average number of historical records accumulated
during constraint processing which, particularly given the size of this problem, is very
high. However, results reported in [4] suggest that compared to other problems, Mittal’s
Car Configuration Problem may be unusual in having such a high average. It would
appear that the ‘problem texture’ is of great importance and that Mittal’s problem is
unusually dense, with tight, close interaction between the variables and constraints.

8 Conclusion

By propagating values from the constraints to the variables, variables are being assigned
‘correct’ values, rather than values which then need to be tested. Even though the meta-
constraints can generate large numbers of paths, it was found that the algorithm had a
remarkable near one-to-one ratio for the number of backtracks required per solution. The
additional satisfaction values that were introduced, provide a form of consistency
checking, which reduces the search space considerably. Future work will aim to reduce
the accumulation of historical records, and focus on the development of heuristics to
guide the selection of constraints during the process of constraint solving.
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