
Constraint Programming – What is behind?

Roman Barták

Charles University, Department of Theoretical Computer Science
Malostranské námestí 2/25, 118 00 Praha 1, Czech Republic
e-mail: bartak@kti.mff.cuni.cz

Abstract: Constraint programming is an emergent software technology for declarative description and effective
solving of large, particularly combinatorial, problems especially in areas of planning and scheduling. Not only it
is based on a strong theoretical foundation but it is attracting widespread commercial interest as well, in
particular, in areas of modelling heterogeneous optimisation and satisfaction problems.

In the paper we give a survey of technology behind constraint programming (CP) with particular emphasis on
constraint satisfaction problems. We place the constraint programming in history context and highlight the inter-
disciplinary character of CP. In the main part of the paper, we give an overview of basic constraint satisfaction
and optimization algorithms and methods of solving over-constrained problems. We also list some main
application areas of constraint programming.

Keywords: constraint satisfaction, search, consistency techniques, constraint propagation, optimization

1 Introduction
In last few years, Constraint Programming (CP) has
attracted high attention among experts from many
areas because of its potential for solving hard real-
life problems. Not surprisingly, it has recently been
identified by the ACM (Association for Computing
Machinery) as one of the strategic directions in
computer research. However, at the same time, CP
is still one of the least known and understood
technologies.

Constraints arise in most areas of human
endeavour. They formalise the dependencies in
physical worlds and their mathematical abstractions
naturally and transparently. We all use constraints
to guide reasoning as a key part of everyday
common sense.

A constraint is simply a logical relation among
several unknowns (or variables), each taking a
value in a given domain. The constraint thus
restricts the possible values that variables can take,
it represents partial information about the variables
of interest.

Constraints naturally enjoy several interesting
properties:

• constraints may specify partial information, i.e.,
the constraint need not uniquely specify the
values of its variables, (constraint X>2 does not
specify the exact value of variable X, so X can
be equal to 3, 4, 5 etc.),

• constraints are heterogeneous, i.e., they can
specify the relation between variables with
different domains (for example N = length(S)),

• constraints are non-directional, typically a
constraint on (say) two variables X, Y can be
used to infer a constraint on X given a
constraint on Y and vice versa, (X=Y+2 can be
used to compute the variable X using X←Y+2
as well as the variable Y using Y←X-2),

• constraints are declarative, i.e., they specify
what relationship must hold without specifying
a computational procedure to enforce that
relationship,

• constraints are additive, i.e., the order of
imposition of constraints does not matter, all
that matters at the end is that the conjunction of
constraints is in effect,

• constraints are rarely independent, typically
constraints in the constraint store share
variables.

Constraint programming is the study of
computational systems based on constraints. The
idea of constraint programming is to solve
problems by stating constraints (conditions,
properties or requirements) about the problem area
and, consequently, finding solution satisfying all
the constraints. Naturally, we do not satisfy one
constraint only but a collection of constraints that
are rarely independent. This complicates the
problem a bit, so, usually, we have to give and take.

2 The interdisciplinary origins
The earliest ideas leading to CP may be found in
the Artificial Intelligence (AI) dating back to
sixties and seventies.

In J. Figwer (editor) Proceedings of the Workshop on Constraint Programming in Decision and Control, June 1999, Poland.

The scene labelling problem [26] is probably the
first constraint satisfaction problem that was
formalised. The goal is to recognise the objects in a
3D scene by interpreting lines in the 2D drawings.
First, the lines or edges are labelled, i.e., they are
categorised into few types, namely convex (+),
concave (-) and occluding edges (<). In more
advanced systems, the shadow border is recognised
as well.

Figure 1
Scene labelling

There are a lot of ways how to label the scene
(exactly 3n, where n is a number of edges) but only
few of them has any 3D meaning. The idea how to
solve this combinatorial problem is to find legal
labels for junctions satisfying the constraint that the
edge has the same label at both ends. This reduces
the problem a lot because there is only a limited
number of legal labels for junctions.

Figure 2
Available labellings for junction

The main algorithms developed in those years
(Waltz labelling algorithm) were related to
achieving some form of consistency.

Another application for constraints is interactive
graphics where Ivan Sutherland’s Sketchpad [23],
developed in early 1960s, was the pioneering
system. Sketchpad and its follower, ThingLab [3]
by Alan Borning, were interactive graphics
applications that allowed the user to draw and
manipulate constrained geometric figures on the
computer’s display. These systems contribute to
developing local propagation methods and
constraint compiling.

The main step towards CP was achieved when
Gallaire [8], Jaffar & Lassez [11] noted that logic
programming was just a particular kind of
constraint programming. The basic idea behind
Logic Programming (LP), and declarative
programming in general, is that the user states what
has to be solved instead of how to solve it, which is
very close to the idea of constraints. Therefore the
combination of constraints and logic programming
is very natural and Constraint Logic Programming
(CLP) makes a nice declarative environment for
solving problems by means of constraints.
However, it does not mean that constraint

programming is restricted to CLP. Constraints were
integrated to typical imperative languages like C++
and Java as well.

The nowadays real-life applications of CP in the
area of planning, scheduling and optimisation rise
the question if the traditional field of Operations
Research (OR) is a competitor or an associate of
CP. There is a significant overlap of CP and OR in
the field of NP-Hard combinatorial problems.
While the OR has a long research tradition and
(very successful) method of solving problems using
linear programming, the CP emphasis is on higher
level modelling and solutions methods that are
easier to understand by the final customer. The
recent advance promises that both methodologies
can exploit each other, in particular, the CP can
serve as a roof platform for integrating various
constraint solving algorithms including those
developed and checked to be successful in OR.

As the above paragraphs show, the CP has an inner
interdisciplinary nature. It combines and exploits
ideas from a number of fields including Artificial
Intelligence, Combinatorial Algorithms,
Computational Logic, Discrete Mathematics,
Neural Networks, Operations Research,
Programming Languages and Symbolic
Computation.

3 Solving Technology
Currently, we see two branches of constraint
programming, namely constraint satisfaction and
constraint solving. Both share the same terminology
but the origins and solving technologies are
different.

Constraint satisfaction deals with problems defined
over finite domains and, currently, most of
industrial applications using constraints are based
on this branch of CP. Therefore, we deal with
constraint satisfaction problems mostly in the
paper.

Constraint solving shares the basis of CP, i.e.,
describing the problem as a set of constraints and
solving these constraints. But now, the constraints
are defined (mostly) over infinite domains and they
are more complicated1. Instead of combinatorial
methods for constraint satisfaction, the constraint
solving algorithms are based on mathematical
techniques such as automatic differentiation, Taylor
series or Newton method. From this point of view,
we can say that many famous mathematicians deal
with whether certain constraints are satisfiable (e.g.
recently proved Fermat’s Last Theorem).

1
 We include solving symbolic constraints to the constraint

solving branch too.

+

<<

+

--

+

+
+

+
--

++

3.1 Constraint Satisfaction
Constraint Satisfaction Problems [24] have been a
subject of research in Artificial Intelligence for
many years. A Constraint Satisfaction Problem
(CSP) is defined as:

• a set of variables X={x1,...,xn},

• for each variable xi, a finite set Di of possible
values (its domain), and

• a set of constraints restricting the values that the
variables can simultaneously take.

Note that values need not be a set of consecutive
integers (although often they are), they need not
even be numeric.

A solution to a CSP is an assignment of a value
from its domain to every variable, in such a way
that all constraints are satisfied at once. We may
want to find:

• just one solution, with no preference as to which
one,

• all solutions,

• an optimal, or at least a good solution, given
some objective function defined in terms of
some or all of the variables; in this case we
speak about Constraint Satisfaction
Optimisation Problem (CSOP).

Solutions to a CSP can be found by searching
(systematically) through the possible assignments
of values to variable. Search methods divide into
two broad classes, those that traverse the space of
partial solutions (or partial value assignments), and
those that explore the space of complete value
assignments (to all variables) stochastically.

3.1.1 Systematic Search

From the theoretical point of view, solving CSP is
trivial using systematic exploration of the solution
space. Not from the practical point of view where
the efficiency takes place. Even if systematic search
methods (without additional improvements) look
very simple and non-efficient they are important
because they make the foundation of more
advanced and efficient algorithms.

The basic constraint satisfaction algorithm, that
searches the space of complete labellings, is called
generate-and-test (GT). The idea of GT is simple:
first, a complete labelling of variables is generated
(randomly) and, consequently, if this labelling
satisfies all the constraints then the solution is
found, otherwise, another labelling is generated.

The GT algorithm is a weak generic algorithm that
is used if everything else failed. Its efficiency is
poor because of non-informed generator and late

discovery of inconsistencies. Consequently, there
are two ways how to improve efficiency of GT:

• The generator of valuations is smart (informed),
i.e., it generates the complete valuation in such
a way that the conflict found by the test phase is
minimised. This is a basic idea of stochastic
algorithms based on local search that are
discussed later.

• Generator is merged with the tester, i.e., the
validity of the constraint is tested as soon as its
respective variables are instantiated. This
method is used by the backtracking approach.

Backtracking (BT) [20] is a method of solving CSP
by incrementally extending a partial solution that
specifies consistent values for some of the
variables, towards a complete solution, by
repeatedly choosing a value for another variable
consistent with the values in the current partial
solution

As mentioned above, we can see BT as a merge of
the generating and testing phases of GT algorithm.
The variables are labelled sequentially and as soon
as all the variables relevant to a constraint are
instantiated, the validity of the constraint is
checked. If a partial solution violates any of the
constraints, backtracking is performed to the most
recently instantiated variable that still has
alternatives available. Clearly, whenever a partial
instantiation violates a constraint, backtracking is
able to eliminate a subspace from the Cartesian
product of all variable domains. Consequently,
backtracking is strictly better than generate-and-
test, however, its running complexity for most
nontrivial problems is still exponential.

There are three major drawbacks of the standard
(chronological) backtracking:

• thrashing, i.e., repeated failure due to the same
reason,

• redundant work, i.e., conflicting values of
variables are not remembered, and

• late detection of the conflict, i.e., conflict is not
detected before it really occurs.

3.1.2 Consistency Techniques

Another approach to solving CSP is based on
removing inconsistent values from variables’
domains till the solution is got. These methods are
called consistency techniques and they were
introduced first in the scene labelling problem [26].
Notice that consistency techniques are
deterministic, as opposed to the non-deterministic
search.

There exist several consistency techniques [13,15]
but most of them are not complete. Therefore, the

consistency techniques are rarely used alone to
solve CSP completely.

The names of basic consistency techniques are
derived from the graph notions. The CSP is usually
represented as a constraint graph (network) where
nodes correspond to variables and edges are
labelled by constraints [18]. This requires the CSP
to be in a special form that is usually referred as a
binary CSP (contains unary and binary constraints
only). It is easy to show that arbitrary CSP can be
transformed to equivalent binary CSP [1], however,
in practice the binarization is not likely to be worth
doing and the algorithms can be extended to tackle
non binary CSP as well.

The simplest consistency technique is referred to as
a node consistency (NC). It removes values from
variables’ domains that are inconsistent with unary
constraints on respective variable.

The most widely used consistency technique is
called arc consistency (AC). This technique
removes values from variables’ domains that are
inconsistent with binary constraints. In particular,
the arc (Vi,Vj) is arc consistent if and only for every
value x in the current domain of Vi which satisfies
the constraints on Vi there is some value y in the
domain of Vj such that Vi=x and Vj=y is permitted
by the binary constraint between Vi and Vj.

Figure 3
Arc-consistency removes local inconsistencies

There exist several arc consistency algorithms
starting from AC-1 and finishing somewhere at
AC-7. These algorithms are based on repeated
revisions of arcs till a consistent state is reached or
some domain becomes empty. The most popular
generic AC algorithms are AC-3 and AC-4. The
AC-3 algorithm performs re-revisions only for
those arcs that are possibly affected by a previous
revision. It does not require any special data
structures. AC-4 works with individual pairs of
values to remove potential inefficiency of checking
pairs of values again and again. It needs a special
data structure to remember pairs of (in)consistent
values of incidental variables and, therefore, it is
less memory efficient than AC-3.

Even more inconsistent values can be removed by
path consistency (PC) techniques. Path consistency
requires for every pair of values of two variables X,
Y satisfying the respective binary constraint that
there exists a value for each variable along some
path between X and Y such that all binary
constraints in the path are satisfied. It was shown
by Montanary [18] that CSP is path consistent if

and only if all paths of length 2 are path consistent.
Therefore path consistency algorithms can work
with triples of values (paths of length 2). There
exist several path consistency algorithms like PC-1
and PC-2 but they need an extensive representation
({0,1}-matrix) of constraints that is memory
consuming. Less interesting ratio between
complexity and simplification factor and the
modifications to the connectivity of the constraint
graph by adding some edges to the graph are other
disadvantages of PC.

Figure 4
Path-consistency checks constraints along the path only.

All above mentioned consistency techniques are
covered by a general notion of K-consistency [5]
and strong K-consistency. A constraint graph is K-
consistent if for every system of values for K-1
variables satisfying all the constraints among these
variables, there exits a value for arbitrary K-th
variable such that the constraints among all K
variables are satisfied. A constraint graph is
strongly K-consistent if it is J-consistent for all
J≤K. Visibly:

• NC is equivalent to strong 1-consistency,

• AC is equivalent to strong 2-consistency,

• PC is equivalent to strong 3-consistency.

Algorithms exist for making a constraint graph
strongly K-consistent for K>2 but in practice they
are rarely used because of efficiency issues.
Although these algorithms remove more
inconsistent values than any arc-consistency
algorithm they do not eliminate the need for search
in general.

Clearly, if a constraint graph containing N nodes is
strongly N-consistent, then a solution to the CSP
can be found without any search. But the worst-
case complexity of the algorithm for obtaining N-
consistency in an N-node constraint graph is
exponential. Unfortunately, if a graph is (strongly)
K-consistent for K<N, then, in general,
backtracking (search) cannot be avoided, i.e., there
still exist inconsistent values.

Figure 5
Strongly (N-1)-consistent graph still has no complete labelling.

a
b
c

a
b
c

Vi Vj

VN

{1,...,N-1} Vi

V2V1
{1,...,N-1} {1,...,N-1}

{1,...,N-1}
......

.....

≠≠

≠≠
≠≠

≠≠

V1

V2

V3

V4 V5

???V0

values

consistent pairs
of values

removed by
AC

Because most consistency techniques (NC, AC,
PC) are not complete, i.e., there still remain some
inconsistent values, the restricted forms of these
algorithms takes attention as they remove similar
amount of inconsistencies but they are more
efficient. For example directional arc consistency
(DAC) revises each arc only once (it works under
given ordering of variables) and, thus, it requires
less computation than AC-3 and less space than
AC-4. Nevertheless, DAC is still able to achieve
full arc consistency in some problems (e.g., tree
constraint graphs).

It is also possible to weaken the path-consistency in
a similar way. The resulting consistency technique
is called directional path consistency (DPC) which
is again computationally less expensive than
achieving full path consistency.

Half way between AC and PC is Pierre Berlandier’s
restricted path consistency (RPC) [2] that extends
AC-4 algorithm to some form of path consistency.
In particular, the algorithms checks path-
consistency along path X, Y, Z if and only if some
value of the variable X has only one supporting
value from the domain of incidental variable Y.
Consequently, the RPC removes at least the same
amount of inconsistent pairs of values as AC and
also some pairs beyond.

Figure 6
RPC removes more inconsistencies than AC

3.1.3 Constraint Propagation

Both systematic search and (some) consistency
techniques can be used alone to solve the CSP
completely but this is rarely done. A combination
of both approaches is a more common way of
solving CSP.

The Look Back schema uses consistency checks
among already instantiated variables. BT is a
simple example of this schema. To avoid some
problems of BT, like thrashing and redundant work,
other look back schemas were proposed.

Backjumping (BJ) [7] is a method to avoid
thrashing in BT. The control of backjumping is
exactly the same as backtracking, except when
backtracking takes place. Both algorithms pick one
variable at a time and look for a value for this
variable making sure that the new assignment is
compatible with values committed to so far.
However, if BJ finds an inconsistency, it analyses
the situation in order to identify the source of
inconsistency. It uses the violated constraints as a

guidance to find out the conflicting variable. If all
the values in the domain are explored then the BJ
algorithm backtracks to the most recent conflicting
variable. This is a main difference from the BT
algorithm that backtracks to the immediate past
variable.

Another look back schemas, called backchecking
(BC) and backmarking (BM) [10], avoid redundant
work of BT. Both backchecking and its descendent
backmarking are useful algorithms for reducing the
number of compatibility checks. If the
backchecking finds that some label Y/b is
incompatible with any recent label X/a then it
remembers this incompatibility. As long as X/a is
still committed to, the Y/b will not be considered
again.

Backmarking is an improvement over backchecking
that avoids some redundant constraint checking as
well as some redundant discoveries of
inconsistencies. It reduces the number of
compatibility checks by remembering for every
label the incompatible recent labels. Furthermore, it
avoids repeating compatibility checks which have
already been performed and which have succeeded.

All look back schemas share the disadvantage of
late detection of the conflict. In fact, they solve the
inconsistency when it occurs but do not prevent the
inconsistency to occur. Therefore Look Ahead
schemas were proposed to prevent future conflicts
[19].

Forward checking (FC) is the easiest example of
look ahead strategy. It performs arc-consistency
between pairs of not yet instantiated variable and
instantiated variable, i.e., when a value is assigned
to the current variable, any value in the domain of a
“future” variable which conflicts with this
assignment is (temporarily) removed from the
domain. Therefore, FC maintains the invariance
that for every unlabelled variable there exists at
least one value in its domain which is compatible
with the values of instantiated/labelled variables.
FC does more work than BT when each assignment
is added to the current partial solution, nevertheless,
it is almost always a better choice than
chronological backtracking.

Even more future inconsistencies are removed by
the Partial Look Ahead (PLA) method. While FC
performs only the checks of constraints between the
current variable and the future variables, the partial
look ahead extends this consistency checking even
to variables that have not direct connection with
labelled variables, using directional arc-
consistency.

The approach that uses full arc-consistency after
each labelling step is called (Full) Look Ahead
(LA) or Maintaining Arc Consistency (MAC). It
can use arbitrary AC algorithm to achieve arc-

V2

a

V1

b c
d

e f

V3

removed by RPC

consistency, however, it should be noted that LA
does even more work than FC and partial LA when
each assignment is added to the current partial
solution. Actually, in some cases LA may be more
expensive than BT and, therefore FC and BT are
still used in applications.

Figure 7
Comparison of propagation techniques

3.1.4 Stochastic and Heuristic Algorithms

Till now, we have presented the constraint
satisfaction algorithms that extend a partial
consistent labelling to a full labelling satisfying all
the constraints. In the last few years, greedy local
search strategies have become popular, again.
These algorithms alter incrementally inconsistent
value assignments to all the variables. They use a
“repair” or “hill climbing” metaphor to move
towards more and more complete solutions. To
avoid getting stuck at “local minimum” they are
equipped with various heuristics for randomising
the search. Their stochastic nature generally voids
the guarantee of “completeness” provided by the
systematic search methods.

Hill-climbing is probably the most famous
algorithm of local search [20]. It starts from a
randomly generated labelling of variables and, at
each step, it changes a value of some variable in
such a way that the resulting labelling satisfies
more constraints. If a strict local minimum is
reached then the algorithm restarts at other
randomly generated state. The algorithm stops as
soon as a global minimum is found, i.e., all
constraints are satisfied, or some resource is
exhausted. Notice, that the hill-climbing algorithm
has to explore a lot of neighbours of the current
state before choosing the move.

To avoid exploring the whole state’s
neighbourhood the min-conflicts (MC) heuristic
was proposed [17]. This heuristic chooses randomly
any conflicting variable, i.e., the variable that is
involved in any unsatisfied constraint, and then
picks a value which minimises the number of
violated constraints (break ties randomly). If no
such value exists, it picks randomly one value that
does not increase the number of violated constraints
(the current value of the variable is picked only if

all the other values increase the number of violated
constraints).

Because the pure min-conflicts algorithm cannot go
beyond a local-minimum, some noise strategies
were introduced in MC. Among them, the random-
walk (RW) strategy becomes one of the most
popular [21]. For a given conflicting variable, the
random-walk strategy picks randomly a value with
probability p, and apply the MC heuristic with
probability 1-p. The random-walk heuristic can be
applied to hill-climbing algorithm as well and we
get the Steepest-Descent-Random-Walk (SDRW)
algorithm.

Tabu search (TS) is another method to avoid
cycling and getting trapped in local minimum [9]. It
is based on the notion of tabu list, that is a special
short term memory that maintains a selective
history, composed of previously encountered
configurations or more generally pertinent
attributes of such configurations. A simple TS
strategy consists in preventing configurations of
tabu list from being recognised for the next k
iterations (k, called tabu tenure, is the size of tabu
list). Such a strategy prevents Tabu from being
trapped in short term cycling and allows the search
process to go beyond local optima.

Tabu restrictions may be overridden under certain
conditions, called aspiration criteria. Aspiration
criteria define rules that govern whether next
configuration is considered as a possible move even
it is tabu. One widely used aspiration criterion
consists of removing a tabu classification from a
move when the move leads to a solution better than
that obtained so far.

Another method that searches the space of complete
labellings till the solution is found is based on
connectionist approach represented by GENET
algorithm [27]. The CSP problem is represented
here as a network where the nodes correspond to
values of all variables. The nodes representing
values for one variable are grouped into a cluster
and it is assumed that exactly one node in the
cluster is switched on that means that respective
value is chosen for the variable. There is an
inhibitory link (arc) between each two nodes from
different clusters that represent incompatible pair of
values according to the constraint between the
respective variables.

Figure 8
Connectionist representation of CSP

A B C D E (variables)

1

2

3
(values)

-1

0

-1

0

-2

0

-2

0

-2

-1

0

-1

-2

0

-2

already instantiated variables not yet instantiated (future) variables

checked by
backtracking

forward checking

partial look ahead
full look ahead

cluster

The algorithm starts with random configuration of
the network and re-computes the state of nodes in
cluster repeatedly taking into account only the state
of neighbouring nodes and the weights of
connections to these nodes. When the algorithm
reaches a stable configuration of the network that is
not a solution of the problem, it is able to recover
from this state by using simple learning rule that
strengthens the weights of connections representing
the violated constraints. As all above mentioned
stochastic algorithms, the GENET is incomplete,
for example it can oscillate.

3.2 Constraint Optimization
In many real-life applications, we do not want to
find any solution but a good solution. The quality
of solution is usually measured by an application
dependent function called objective function. The
goal is to find such solution that satisfies all the
constraints and minimise or maximise the objective
function respectively. Such problems are referred to
as Constraint Satisfaction Optimisation Problems
(CSOP).

A Constraint Satisfaction Optimisation Problem
(CSOP) consist of a standard CSP and an
optimisation function which maps every solution
(complete labelling of variables) to a numerical
value [24].

The most widely used algorithm for finding optimal
solutions is called Branch and Bound (B&B) [14]
and it can be applied to CSOP as well. The B&B
needs a heuristic function that maps the partial
labelling to a numerical value. It represents an
under estimate (in case of minimisation) of the
objective function for the best complete labelling
obtained from the partial labelling. The algorithm
searches for solutions in a depth first manner and
behaves like chronological BT except that as soon
as a value is assigned to the variable, the value of
heuristic function for the labelling is computed. If
this value exceeds the bound, then the subtree under
the current partial labelling is pruned immediately.
Initially, the bound is set to (plus) infinity and
during the computation it records the value of best
solution found so far.

The efficiency of B&B is determined by two
factors: the quality of the heuristic function and
whether a good bound is found early. Observations
of real-life problems show also that the “last step”
to optimum, i.e., improving a good solution even
more, is usually the most computationally
expensive part of the solving process. Fortunately,
in many applications, users are satisfied with a
solution that is close to optimum if this solution is
found early. Branch and bound algorithm can be
used to find sub-optimal solutions as well by using
the second “acceptability” bound. If the algorithm
finds a solution that is better than the acceptability

bound then this solution can be returned to the user
even if it is not proved to be optimal.

3.3 Over-Constrained Problems
When a large set of constraints is solved, it appears
typically that it is not possible to satisfy all the
constraints because of inconsistency. Such systems,
where it is not possible to find valuation satisfying
all the constraints, are called over-constrained.

Several approaches were proposed to handle over-
constrained systems and among them the Partial
Constraint Satisfaction and Constraint Hierarchies
are the most popular.

Partial Constraint Satisfaction (PCSP) by Freuder
& Wallace [6] involves finding values for a subset
of the variables that satisfy a subset of the
constraints. Viewed another way, some constraints
are “weaken” to permit additional acceptable value
combinations. By weakening a constraint we mean
enlarging its domain. It is easy to show that
enlarging constraint’s domain covers also other
ways of weakening a CSP like enlarging a domain
of variable, removing a variable or removing a
constraint.

Formally, PCSP is defined as a standard CSP with
some evaluation function that maps every labelling
of variables to a numerical value. The goal is to
find labelling with the best value of the evaluation
function.

The above definition looks similar to CSOP but,
note, that now we do not require all the constraints
to be satisfied. In fact, the global satisfaction of
constraints is described by the evaluation function
and, thus, the constraints are used as a guide to find
an optimal value of the evaluation function.
Consequently, in addition to handle over-
constrained problems, PCSP can be seen as a
generalisation of CSOP. Many standard algorithms
like backjumping, backmarking, arc-consistency,
forward checking and branch and bound were
customised to work with PCSP.

Constraint hierarchies by Alan Borning et all [4] is
another approach of handling over-constrained
problems. The constraint is weakened explicitly
here by specifying its strength or preference. It
allows one to specify not only the constraints that
are required to hold, but also weaker, so called soft
constraints. Intuitively, the hierarchy does not
permit to the weakest constraints to influence the
result at the expense of dissatisfaction of a stronger
constraint. Moreover, constraint hierarchies allow
“relaxing” of constraints with the same strength by
applying, e.g., weighted-sum, least-squares or
similar methods.

Currently two groups of constraint hierarchy
solvers can be identified, namely refining method

and local propagation. While the refining methods
solve the constraints starting from the strongest
level and continuing to weaker levels, the local
propagation algorithms gradually solve constraint
hierarchies by repeatedly selecting uniquely
satisfiable constraints. In this technique, a single
constraint is used to determine the value for a
variable. Once this variable’s value is known, the
system may be able to use another constraint to find
a value for another variable, and so forth. This
straightforward execution phase is paid off by a
foregoing planning phase that chooses the order of
constraints to satisfy.

Note finally, that PCSP is more relevant to
satisfaction of constraints over finite domains,
whereas constraint hierarchy is a general approach
that is suitable for all types of constraints.

4 Applications
Constraint programming has been successfully
applied in numerous domains. Recent applications
include computer graphics (expressing geometric
coherence in the case of scene analysis, drawing
programs), natural language processing
(construction of efficient parsers), database systems
(to ensure and/or restore consistency of the data),
operations research problems (time-tabling,
planning and scheduling, resource allocation),
molecular biology (DNA sequencing, chemical
hypothesis reasoning), business applications (option
trading), electrical engineering (to locate faults),
circuit design (to compute layouts), etc.

5 Summary
In the paper we give a survey of basic solving
techniques behind constraint programming. In
particular we concentrate on constraint satisfaction
algorithms that solve constraints over finite domain.
We also overview the main techniques of solving
constraint optimisation problems and over-
constrained problems. Finally, we list key
application areas of constraint programming

6 References
[1] Bartak, R.: On-line Guide to Constraint Programming,

Prague, 1998, http://kti.mff.cuni.cz/~bartak/constraints/

[2] Berlandier, P.: Deux variations sur le theme de la
consistance d’arc: maintien et renforcement, RR-2426,
INRIA, 1994

[3] Borning, A.: The Programming Language Aspects of
ThingLab, A Constraint-Oriented Simulation Laboratory,
in: ACM Transactions on Programming Languages and
Systems 3(4): 252-387, 1981

[4] Borning, A., Duisberg, R., Freeman-Benson, B., Kramer,
K., Wolf, M.: Constraint Hierarchies, in. Proc. ACM
Conference on Object Oriented Programming Systems,
Languages, and Applications, ACM, 1987

[5] Freuder, E.C.: Synthesizing Constraint Expressions, in:
Communications ACM 21(11): 958-966, ACM, 1978

[6] Freuder, E.C., Wallace, R.J.: Partial Constraint
Satisfaction, in: Artificial Intelligence, 1-3(58): 21-70,
1992

[7] Gaschnig, J.: Performance Measurement and Analysis of
Certain Search Algorithms, CMU-CS-79-124, Carnegie-
Mellon University, 1979

[8] Gallaire, H., Logic Programming: Further Developments,
in: IEEE Symposium on Logic Programming, Boston,
IEEE, 1985

[9] Glover, F., Laguna, M.: Tabu Search, in: Modern
Heuristics for Combinatorial Problems, Blackwell
Scientific Publishing, Oxford, 1993

[10] Haralick, R.M., Elliot, G.L.: Increasing tree search
efficiency for constraint satisfaction problems, in:
Artificial Intelligence 14:263-314, 1980

[11] Jaffer, J. & Lassez J.L.: Constraint Logic Programming,
in Proc. The ACM Symposium on Principles of
Programming Languages, ACM, 1987

[12] Jaffar, J. & Maher, M.J.: Constraint Logic Programming –
A Survey, J. Logic Programming, 19/20:503-581, 1996

[13] Kumar, V.: Algorithms for Constraint Satisfaction
Problems: A Survey, AI Magazine 13(1): 32-44,1992

[14] Lawler, E.W., Wood, D.E.: Branch-and-bound methods: a
survey, in: Operations Research 14:699-719, 1966

[15] Mackworth, A.K.: Consistency in Networks of Relations,
in: Artificial Intelligence 8(1): 99-118, 1977

[16] Marriot, K. & Stuckey. P.: Programming with
Constraints: An Introduction, The MIT Press, Cambridge,
Mass., 1998

[17] Minton, S., Johnston, M.D., Laird, P.: Minimising
conflicts: a heuristic repair method for constraint
satisfaction and scheduling problems, in: Artificial
Intelligence 58(1-3):161-206, 1992

[18] Montanary, U.: Networks of constraints fundamental
properties and applications to picture processing, in:
Information Sciences 7: 95-132, 1974

[19] Nadel, B.: Tree Search and Arc Consistency in Constraint
Satisfaction Algorithms, in: Search in Artificial
Intelligence, Springer-Verlag, New York, 1988

[20] Nilsson, N.J.: Principles of Artificial Intelligence, Tioga,
Palo Alto, 1980

[21] Selman, B., Kautz, H.: Domain-independent extensions to
GSAT: Solving Large Structured Satisfiability Problems,
in: Proc. IJCAI-93, 1993

[22] Smith, B.M.: A Tutorial on Constraint Programming, TR
95.14, University of Leeds,1995

[23] Sutherland I., Sketchpad: a man-machine graphical
communication system, in: Proc. IFIP Spring Joint
Computer Conference, 1963

[24] Tsang, E.: Foundations of Constraint Satisfaction,
Academic Press, London, 1995

[25] van Hentenryck, P.: Constraint Satisfaction in Logic
Programming, The MIT Press, Cambridge, Mass., 1989

[26] Waltz, D.L.: Understanding line drawings of scenes with
shadows, in: Psychology of Computer Vision, McGraw-
Hill, New York, 1975

[27] Wang, C,J., Tsang, E.P.K.: Solving constraint satisfaction
problems using neural-networks, in: Proc. Second
International Conference on Artificial Neural Networks,
1991

