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Abstract. Constraint programming is an approach for solving (mostly 
combinatorial) problems by stating constraints over the problem variables. In 
some problems, there is no solution satisfying all the constraints or the problem 
formulation must deal with uncertainty, vagueness, or imprecision. In such a 
case the standard constraint satisfaction techniques dealing with hard 
constraints cannot be used directly and some form of soft constraints is 
required. In the paper we survey four generic models for soft constraints, 
namely hierarchical, partial, valued, and semiring-based constraint satisfaction. 

1 Introduction 

Many problems can be expressed in the form of variables with domains - sets of 
possible values for the variables - and constraints restricting the feasible combinations 
of variables' values. To solve the problem one needs to find a value for each variable 
in such a way that all the constraints are satisfied. This is a view of world using the 
glasses of constraint programming (CP) - a modern technology for solving 
combinatorial (optimisation) problems. In most current applications of CP, the 
variables' domains are finite, we are speaking about constraint satisfaction [7,8], but 
the CP framework is applicable to infinite domains as well (even if completely 
different technology is used for constraint solving over infinite domains). 

Usually, the constraints are assumed to be hard, i.e., a tuple of values is either 
allowed or not. If there are many constraints imposed on the problem variables then it 
can happen that it is impossible to satisfy them all. Such problems are called over-
constrained. In many other situations, we need to model fuzziness, possibilities, 
preferences, probabilities, costs, etc. so the crisp constraints are not enough to model 
and to solve such problems. Therefore, soft constraints have been proposed to model 
originally the over-constrained problems and later the problems with fuzziness, 
uncertainty etc. Soft constraint can be seen as a preferential constraint whose 
satisfaction is not required but preferred. There exist several models allowing users to 
describe how neatly the constraint is satisfied. In the paper we survey four generic 
models of soft constraints: constraint hierarchies, and partial, valued, and semiring-
based constraint satisfaction. 
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The models of soft constraints can be applied in several areas. Originally, soft 
constraints have been proposed to solve over-constrained problems, i.e., the problems 
where there is no solution satisfying all the constraints. In Section 2 we give a small 
example of the over-constrained problem. By weakening some constraints into 
preferential/soft constraints, the system may find a solution satisfying all the hard 
constraints and as many as possible preferential constraints. To distinguish between 
various levels of soft constraints, a hierarchy of levels can be used. We describe a soft 
constraints framework based on constraint hierarchies in Section 3. Instead of 
labelling constraints with preferences, it is possible to weaken the original problem in 
such a way that there exists a solution of the weakened problem. In Section 4 we 
describe several ways of problem weakening and the general concept based on this 
idea - partial constraint satisfaction. When the idea of soft constraints appeared, the 
researchers have found it useful not only for modelling the over-constrained problems 
but also for modelling the problems where the user states some preferences, 
uncertainty, fuzziness etc. We call these problems simply soft problems. In Section 5, 
we describe a concept of valued constraint satisfaction based on idea of adding 
valuations to constraints. A similar concept is used in semiring-based constraint 
satisfaction (Section 6) but the valuations are added to particular tuples rather than to 
constraints. Thanks to defining a partial order of valuations, the semiring-based 
constraint satisfaction can be naturally applied to solve multi-criteria optimisation 
problems. 

2 A motivation example 

For purposes of this paper we will use a simple, toy problem from [11] describing a 
robot seeking to choose matching clothes. Even if this is a small problem for 
pedagogical purposes, it could be regarded more seriously as a simple version of a 
configuration problem. The problem is to dress a robot using a minimal wardrobe: 
sneakers and Cordovans for footwear, a red and a white shirt, and three pairs of 
trousers: blue, denim, and grey. The fashion consultant told the robot that: 

• the sneakers only go with the denim trousers, 
• the Cordovans only go with the grey trousers and the white shirt, 
• the white shirt goes with either denim or blue trousers, and 
• the red shirt only goes with the grey trousers. 

The fashion rules naturally form the constraints under which we operate. The 
variables correspond to parts of clothes: footwear, trousers, and shirt, while available 
wardrobe makes domains of the variables. Figure 1 shows the problem as a constraint 
graph. Visibly, there is no solution satisfying all the constraints, i.e., it is not possible 
to dress the robot in such a way that all the fashion rules are satisfied. Thus, it is an 
over-constrained problem. Still, we need to dress the robot somehow. In the next two 
sections we show some ways how to solve the robot clothing problem either by 
adding preferences to fashion rules (constraint hierarchies) or by weakening the 
original problem (partial constraint satisfaction). 

 



 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. A robot clothing problem. The ovals/nodes describe the variables with possible values 
inside them (domains). The edges connect fashion-feasible combinations of wardrobe. 

3 Constraint hierarchies 

As we mentioned at the end of the previous section, one of the ways how to solve the 
robot clothing problem is to ask the fashion consultant to put some preferences to 
individual constraints. Assume that the result of this consultation is that: 

• the shirt must match trousers; it is a required constraint, 
• it is strongly preferred if footwear matches trousers but it is not required; it is a 

strong constraint, 
• it would be perfect if the shirt matches footwear but it is not a big faux pas if it 

does not match; it is a weak constraint. 

Having the above preferences about the constraints we can reformulate the original 
problem. Now, the task is to find a solution satisfying all the required constraints and 
satisfying the preferential constraints as much as possible. Naturally, we prefer 
satisfaction of a stronger constraint to satisfaction of a weaker constraint. 

Assuming the above modification of the robot clothing problem, we can find two 
solutions to it now: 

• the white shirt with the denim trousers and the sneakers, or 
• the red shirt with the grey trousers and Cordovans. 

Both above solutions satisfy the required and the strong constraint, the weak 
constraint is violated. This is all right because we do not require satisfaction of all the 
constraints now and the weak constraint is the weakest constraint in the problem. 
Note also that if we change the preferences of the constraints, e.g. if we swap the 
strong and the weak constraints, we may get a completely different solution (white-
denim-cordovans, white-blue-cordovans). 

The idea of putting preferences to individual constraints is formalised in constraint 
hierarchies that have been proposed first in [4] and further developed in [5]. In 
constraint hierarchies, each constraint is labelled by a preference expressing the 
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strength of the constraint - we are speaking about the labelled constraint. Usually 
names like required, strong, medium, weak, and weakest are used to denote the 
preferences. The preferences are totally ordered so we can map them to natural 
numbers. Required constraints are mapped to level 0 and they must hold. The other 
constraints are merely preferential/soft so their satisfaction is not required. The soft 
preferential levels are mapped to positive natural numbers; the higher level number 
indicates the weaker level. 

A constraint hierarchy is a finite set of labelled constraints defined over some set 
of values D called domain, e.g. real numbers. Given a constraint hierarchy H, H0 is a 
vector of required constraints in H in some arbitrary order with their labels removed. 
Similarly, H1 is a vector of the strongest non-required constraints in H etc. up to the 
weakest level Hn, where n is the number of non-required levels in the hierarchy H. We 
put Hk  = ∅ for k>n. Recall, that if i<j then the constraints in Hi are stronger (more 
preferred) than the constraints in Hj. We call the sets Hj hierarchy levels. 

A valuation for the set of constraints is a function that maps variables in the 
constraints to elements in the domain D over which the constraints are defined. A 
solution to the constraint hierarchy is a set of valuations for the variables in the 
hierarchy such that any valuation in the solution set satisfies at least the required 
constraints, i.e., the constraints in H0, and, in addition, it satisfies the non-required 
constraints, i.e., the constraints in Hi for i>0, at least as well as any other valuation 
that also satisfies the required constraints. In other words, there is no valuation 
satisfying the required constraints that is better than any valuation in the solution set. 
Formally: 

S0 = { θ | ∀c∈H0  cθ holds } 
S = { θ | θ∈S0 & ∀σ∈S0 ¬ better(σ,θ,H) }, 

where S0 is the set of valuations satisfying all the required constraints, S is the 
solution set, and “better” is a predicate to be explained below.  

There is a number of reasonable candidates for the predicate better, which are 
called comparators. The comparator formally describes the idea that satisfaction of a 
stronger constraint is strictly preferred to satisfaction of an arbitrary number of 
weaker constraints. For example the locally-better comparator considers each 
constraint individually and it can be defined by the following way: 

locally-better(σ,θ,H) ≡def 

 ∃k>0 ∀i∈{1,…,k-1} ∀c∈ Hi e(c,σ)=e(c, θ) &  
  ∃c'∈Hk e(c',σ)<e(c',θ) & ∀c∈ Hk e(c,σ)=e(c,θ), 

where e(c,θ) is an error function indicating how nearly a constraint c is satisfied for a 
valuation θ (a lower number means better satisfaction of the constraint). There exist 
other comparators like globally-better comparator that combines the errors of 
individual constraint at each hierarchy level using weighted-sum, least-squares and 
similar methods and then it compares the combined errors for two valuations. 

Constraint hierarchies belong to the first and the most popular approaches handling 
preferences in constraint systems. A survey of constraint hierarchy framework and 
solving algorithms can be found in [1]. 



4 Partial Constraint Satisfaction 

Let us go back to the robot clothing problem from Section 2. If a woman solves a 
similar problem and she finds that there is no matching wardrobe (which is usually 
very surprising assuming that wardrobe of women is much larger than our robot's 
wardrobe)1 then she immediately has a solution: “I need to buy a new shirt, shoes 
etc.” In constraint terminology, it corresponds to enlarging the domain of some 
variable so we can add new connections between new and old wardrobe and thus 
make the problem solvable. Or we can use a “men's approach” that is based on 
combining less elegant but existing wardrobe, e.g., we can decide that a white shirt 
goes with the sneakers after all (Figure 2). In constraint terminology, this corresponds 
to enlarging the domain of the constraint2 by adding more compatible tuples to the 
constraint domain. Again, we made the problem weaker and hopefully solvable. 

In addition to above light problem weakening, there exist two strong weakenings: 
we can decide to remove a constraint completely (e.g. do not care at all about 
matching of the shirt and footwear) or we can remove a variable (e.g., do not wear 
shoes). 

 
 
 
 
 
 
 
 
 
 

Fig. 2. By weakening the problem via extending the constraint domain (the dashed line), we 
make the robot clothing problem solvable (the bold lines indicate the solution). 

In the above paragraph, we proposed four ways to weaken the constraint problem: 

• enlarge the domain of a variable (i.e., add more values), 
• enlarge the domain of a constraint (i.e., add more compatible tuples), 
• remove the constraint from the problem, 
• remove the variable from the problem. 

Assume that the variable domain is defined as a unary constraint over the variable. 
Then, enlarging the domain of the variable is equivalent to enlarging the domain of 
the unary constraint over the variable. Moreover, if we enlarge the domain of the 
constraint to full extend, i.e., all the tuples are feasible according to the constraint, 
then the constraint does not restrict the solution - this is equivalent to removing the 
constraint. Finally, removing all the constraints binding a given variable is equivalent 
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to removing the variable. Thus, we showed that the above ways of problem 
weakening collapse to enlarging the domain of a constraint. 

By weakening the constraints we get alternative versions of the original problem. 
Now instead of solving the original problem we can look for a solution of some 
alternative problem. Naturally, we prefer this alternative problem to be close to the 
original problem so we can declare the crisp solution of the alternative problem to be 
the solution of the original problem. This idea has been formalised by Freuder and 
Wallace in the concept of partial constraint satisfaction [11]. 

Let PS be a set of constraint satisfaction problems with a partial order, ≤, on PS 
defined as follows: P1≤P2 iff the set of solutions to P2 is a subset of the set of solution 
to P1. If P1≤P2 but the two sets of solutions are not equal, we will write P1<P2 and say 
that P1 is weaker than P2. We call the pair (PS, ≤) a problem space. The problem 
space can be obtained by considering all the ways of weakening the constraints in the 
original problem by allowing additional consistent combinations of values - as we 
described at the beginning of this chapter. 

A partial constraint satisfaction problem (PCSP) can now be described more 
formally by supplying the original constraint satisfaction problem P, a problem space 
PS containing P, a metric on that space, and necessary and sufficient solution 
distances, N and S. A solution to a partial constraint satisfaction problem is defined as 
a problem P' from the problem space along with a solution to that problem where the 
metric distance of P' from P is less than or equal to N. A solution is sufficient if the 
metric distance is less than or equal to S; a solution is optimal if the metric distance of 
P' from P is minimal over the problem space. 

The metric compares the problems from PS. Ideally, we might like to define it in 
terms of the partial order, i.e., the distance between P and P' equals to the number of 
solutions not shared by P and P'. Of course, computing such heuristic is not likely to 
be easy so we may consider other heuristics as well. Another natural heuristic is a 
count of the number of permitted value combinations not shared by the constraints of 
P and P'. 

Partial constraint satisfaction is a generic framework for solving over-constrained 
problems but it can be also applied to solving hard problems where it is easier to find 
a solution of some relaxed alternative problem. Alternatively, PCSP can be seen as a 
generalisation of constraint satisfaction optimisation problem where the quality of the 
solution is measured by some objective function. In facts, the techniques used for 
solving PCSP, like branch and bound and local consistency count [11] are derived 
from the techniques applied to solving optimisation problems. 

5 Valued Constraint Satisfaction 

While partial constraint satisfaction defines the solution of the problem via weakening 
the problem, various other extensions of the original constraint satisfaction framework 
associates some valuation (usually a number) to each constraint. These extensions use 
a specific mathematical operator (+, max, etc.) to aggregate constraint violations. In 
[14] Schiex, Fargier, and Verfaillie proposed a generic framework that, rather than 
choosing a specific set for expressing valuations and a specific operator, uses an 



ordered commutative monoid. The valuations are taken from the set of the monoid, 
combined using its operator and compared using the order. The other frameworks can 
then be specified by choosing a particular monoid as we show later in this chapter 
(Table 1). 

To express the fact that the constraint may eventually be violated, the valued CSP 
annotates each constraint with a valuation taken from a set of valuations E equipped 
with the valuation structure (E,⊗,>,⊥,T) where E is set of valuations totally ordered 
by >, with a minimum element ⊥ and a maximum element T. ⊗ is a commutative, 
associative binary operation on E with the unit element ⊥ (⊥⊗a=a), the absorbing 
element T (T⊗a=T) and preserving monotonicity (a≥b ⇒ a⊗c ≥ b⊗c). The ordered 
set E allows different levels of constraint violations to be expressed. The element T 
corresponds to unacceptable violation, i.e., to express hard constraints. The element ⊥ 
corresponds to complete satisfaction. 

Let C be a set of constraints in the problem and ϕ be a mapping of the constraints 
to E, i.e. ϕ: C→E. ϕ(c) is called a valuation of the constraint c. The valuation of a 
particular assignment A of values to variables can be acquired by aggregating the 
valuations of violated constraints in C via ⊗: 

)()(

c  A violates

cAv
Cc

ϕ⊗=
∈

 

Note that commutativity and associativity guarantee that the valuation of an 
assignment depends only on the set of the valuations of the violated constraints, and 
not on the way they are aggregated. 

The valued constraint satisfaction problem is defined formally by a classical 
constraint satisfaction problem with the set of variables X, their domains D, and the 
set of constraints C, a valuation structure (E,⊗,>,⊥,T), and a mapping ϕ from C to E. 
The task is to find an assignment A with a minimal valuation v(A). 

Valued CSP has been defined as an abstract framework to provide general solving 
algorithms and properties [14]. Some other extensions of CSP can be described as an 
instance of Valued CSP by choosing an appropriate algebraic structure (Table 1), 
details of conversion can be found in [12,14]. 

 
Framework E ⊗ > ⊥ T 
Classical CSP [7,8] {true,false} ∧ > true false 
Weighted CSP [15] Ν ∪ {+∞} + > 0 +∞ 
Probabilistic CSP [9] 〈0,1〉 × < 1 0 
Possibilistic CSP [13] 〈0,1〉 max > 0 1 
Lexicographic CSP [10] Ν〈0,1) ∪ {T} ∪ >lex ∅ T 

Table 1. Various (soft) constraint satisfaction frameworks can be expressed by using a 
particular valuation structure in Valued CSP. 

 



6 Semiring-based Constraint Satisfaction 

Semiring-based constraint satisfaction proposed by Bistarelli, Montanary, and Rossi 
[2] is another meta-approach for modelling problems with preferences. Instead of 
using the monoid, this framework uses a semiring structure, where the set of semiring 
specifies the preference associated to each tuple of values. The two semiring 
operations (+ and ×) then model constraint projection and combination respectively 
(to be defined below). 

In semiring-based constraint satisfaction, each tuple in the constraint is marked by 
a preference level expressing how good the tuple satisfies the constraint. The 
preference level is taken from a set A equipped with the c-semiring structure 
(A,+,×,0,1). A is a set of preferences, + is a commutative, associative, idempotent 
(a+a=a) binary operation on A with the unit element 0 (0+a=a) and the absorbing 
element 1 (1+a=1), × is a commutative, associative binary operation on A with the 
unit element 1 (1×a=a) and the absorbing element 0 (0×a=0) and × distributes over +. 

The multiplication operation × is used to combine constraints.  Let vars(c) be a set 
of variables over which the constraint c is defined, δc be a mapping of all tuples over 
vars(c) to A, i.e., δc(V) is a preference of the tuple V in the constraint c, and let U↓Y 
be a projection of some tuple U to variables Y. Then we can describe a preference of 
some tuple V by combining preferences of this tuple (its projection) in all the 
constraints C: 

( ))()( cvarsVVp c
Cc

↓δ×=
∈

 

To compare the preferences of tuples we need some ordering on A. This ordering can 
be defined using the additive operation + in the following way: a≤b ⇔ a+b=b. If a≤b  
then we say that b is better than a. Note that the relation ≤ defines a partial ordering 
on A opposite to the total ordering used in the valued constraint satisfaction. 

The semiring-based constraint satisfaction problem is defined formally by the c-
semiring structure (A,+,×,0,1), the set of variables X, their domains D, and the set of 
constraints C described via δc. The task is to find an assignment V with the best 
preference p(V). 

Similarly to the valued CSP, it is possible to see many existing extensions of CSP 
as instances of the semiring-based CSP over a certain semiring (Table 2); for details 
look at [2,12]. 

 
Framework A + × 1 0 
Classical CSP [7,8] {false,true} ∧ ∨ true false 
Weighted CSP [15] Ν ∪ {+∞} min + 0 +∞ 
Probabilistic CSP [9] 〈0,1〉 max × 1 0 
Possibilistic CSP [13] 〈0,1〉 min max 0 1 
Fuzzy CSP [6] 〈0,1〉 max min 1 0 
Lexicographic CSP [10] Ν〈0,1) ∪ {T} maxlex ∪ ∅ T 

Table 2. Various (soft) constraint satisfaction frameworks can be expressed as an instance of 
the semiring-based CSP. 



Both semiring-based constraint satisfaction (SCSP) and valued constraint satisfaction 
(VCSP) are meta-frameworks based on some generic algebraic structure to describe 
preferences, costs, etc. There are two main differences between them: 

• VCSP annotates constraints while SCSP puts preferences to individual tuples, 
• VCSP works with a total order of preferences while SCSP uses a partial order. 

If a total order of preferences is assumed then the frameworks can be converted each 
to another. A deep comparison of Semiring-based CSP and Valued CSP can be found 
in [3]. 

7 Are we ready for soft constraints? 

In the paper we survey four generic models dealing with soft constraints, namely 
hierarchical, partial, valued, and semiring-based constraint satisfaction. Valued and 
semiring-based constraint satisfaction frameworks have been proposed for discrete 
(finite) domains only and so the partial constraint satisfaction. The idea of problem 
weakening in partial constraint satisfaction can be extended to infinite domains as 
well but we are not aware about any work on such extension. The constraint 
hierarchies are independent on domains and they are mostly applied to domains of 
real numbers. 

There exist many other models that can be seen as instances of the above generic 
frameworks, like fuzzy [6], lexicographic [10], weighted [15], probabilistic [9], or 
possibilistic [13] constraint satisfaction (for a survey see [12]). Thus, the users have a 
broad range of models of soft constraints to choose from. The question is: “Do the 
users really use the soft constraints?” If we look at the main stream of today constraint 
satisfaction, the answer is probably no. The focus of constraint community is in 
solving large-scale combinatorial (optimisation) problems and in integration with 
other techniques like the methods of operations research. In fact the only alive, i.e., 
still being developed frameworks of soft constraints are constraint hierarchies and 
semiring-based constraint satisfaction. 

In our opinion, the main reason for lukewarm acceptance of models for soft 
constraints is poor efficiency of the solving algorithms. The constraint hierarchy 
solvers are not incremental (after adding a new constraint, the solution must be in 
general recomputed from scratch) and the efficient algorithms for finite domain 
constraint hierarchies are still under development. The semiring-based solvers are 
close to optimisation algorithms and modelling using semiring-based constraints is 
not very practical due to necessity of adding preference to each tuple. Finally, the soft 
constraints are not included in any leading constraint packages like ILOG Solver, 
SICStus Prolog, or ECLiPSe. 

Currently, it seems that the users solving problems with preference constraints turn 
attention to modelling such problems as optimisation problems with penalties etc. 
This is a pragmatic approach based on strong results of optimisation community so 
we believe that a closer integration of optimisation technology and soft constraints 
may be a good way of future development. Using optimisation techniques together 
with soft constraint propagation may improve efficiency both of optimisation and soft 



constraint solvers. Moreover, in addition to optimisation problems the soft constraints 
frameworks deal with uncertainty, vagueness, or imprecision so the same solving 
algorithms for soft constraints can be applied to these problems as well. 
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