

iii

‐

‐ ‐

iv

‐

‐ ‐

‐









 ‐

v

‐

‐

LOCM: A tool for acquiring planning domain models from action traces

Stephen Cresswell
School of Computing and Engineering

The University of Huddersfield, Huddersfield HD1 3DH, UK

Abstract

This paper describesLOCM, a system which carries out the
automated induction of action schema from an input language
describing sets of example action sequences. The novelty
of LOCM is that it can induce action schema without be-
ing provided with any information about predicates or initial,
goal or intermediate state descriptions for the example action
sequences. We envisageLOCM being applied in tasks for
which example sequences can easily be collected, e.g. by log-
ging workflows or moves in a computer game. In this paper
we describe the implementedLOCM algorithm, and analyse
its performance by its application to the induction of domain
models for several domains. To evaluate the algorithm, we
used random action sequences from existing models of do-
mains, as well as solutions to past IPC problems.

NB: this paper is an extended version of a short ICAPS
paper

Introduction
In this paper we describe a generic tool called (LOCM1)
which we believe can be used in a range of (rather than one
specific) application areas. For application areas in which
LOCM is effective, it inputs a sentence within an abstract
language of observed instances and outputs a solver-ready
PDDL domain model. The strength ofLOCM lies in the
simplicity of its input: its observed instances are descrip-
tions of plans or plan fragments within the application area.
LOCM relies on four assumptions:

• there are many observations for it to use;

• the observations are (sub)sequences of possible action ap-
plications within the domain;

• each action application is made up of an identifier, and
names of objects that it affects;

• objects in the application can be grouped into sorts, where
each object of each sort behaves in the same way as any
other.

Working under the assumptions of Simpson et al’s object-
centric view of domain models (Simpson, Kitchin, and Mc-
Cluskey 2007), we assume that a planning domain consists

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Learning Object-Centred Models

of sets (calledsorts) of object instances, where each object
behaves in the same way as any other object in its sort. In
particular, sorts have a defined set of states that their ob-
jects can occupy, and an object’s state may change (called
a state transition) as a result of action instance execution.
LOCM works by assembling the transition behaviour of in-
dividual sorts, the co-ordinations between transitions of dif-
ferent sorts, and the relationships between objects of dif-
ferent sorts. It does so by exploiting the idea that actions
change the state of objects, and that each time an action is
executed, the preconditions and effects on an object are the
same. Under these assumptions,LOCM can induce action
schema without the need for background information such
as specifications of initial/goal states, intermediate states,
fluents or other partial domain information. All other cur-
rent systems e.g.Opmaker(Richardson 2008), ARMS (Wu,
Yang, and Jiang 2005), and the system of (Shahaf and Amir
2006) require some of this background knowledge as essen-
tial to their operation.

This first version ofLOCM which we describe in this pa-
per is aimed at applications which have little structure. In
future work we aim to developLOCM to be effective in ap-
plications which have more complex static structures such as
maps, spatial rules or hierarchy. Currently, the kinds of ap-
plications domains we are experimenting with are in Games
and Workflow.

The LOCM System
LOCM Inputs and Outputs
The input toLOCM are a set of sound sequences of action
instances. An outline, abstract specification of the input lan-
guage toLOCM is as follows:
<SequenceList> ::=

{ "(" <SequenceId> "," <Sequence> ")" }

<SequenceId> ::= <Id>

<Sequence> ::= <ActionInstance>+

<ActionInstance> ::=

<ActionName> "(" <Obj> {"," <Obj>} ")" ";"

<ActionName> ::= <Id>

<Obj> ::= <Id>

Using the well knowntyre-worldas an example, the follow-
ing is a sequence containing four action instances, where an
action is a name followed by a sequence of affected objects:

open(c1); fetchjack(j,c1); fetchwrench(wr1,c1); close(c1);

1

These sequences, which are akin toworkflow event logs,
may be observed from an existing process or supplied by a
trainer. In the empirical evaluation below, we have tested
the approach using example sequences from existing solvers
and from a random walk generator. The output ofLOCM
(given sufficient examples) is a domain model consisting of
sorts, object behaviour defined by state machines, predicates
defining associations between sorts, and action schema in
solver-ready form.

The LOCMMethod
Phase 1: Extraction of state machines In our approach,
we assume that an object of any given sort occupies one
of a fixed set of states. Initially, we assume an object’s
state can be defined without reference to the associations it
has with any other specific objects.LOCM starts by first
collecting the set of all transitions occurring in the exam-
ple sequences. A transition is defined by a combination of
action name and action argument position. For example,
an actionfetchwrench(wr1,cntnr)gives rise to two transi-
tions: fetchwrench.1, and fetchwrench.2. Each transition
describes the state change of objects of a single sort in iso-
lation. For every transition occurring in the example data, a
separatestart andendstate are generated.

The trajectory of each object is then tracked through each
training sequence. For each pair of transitionsT1, T2, which
are consecutive for an objectOb, we assume thatT1.end =

T2.start.
Using a training set from the tyre world, suppose some

objectc1 goes through a sequence of transitions given in the
example used above:

open(c1); fetchjack(j,c1); fetchwrench(wr1,c1); close(c1);

Let us assign state names to the input and output states of
transitions affectingc1:

S1 =⇒ open.1 =⇒ S2

S3 =⇒ close.1 =⇒ S4

S5 =⇒ fetch jack.2 =⇒ S6

S7 =⇒ fetch wrench.2 =⇒ S8

Using the example action sequence, and the constraint on
consecutive pairs of transitions, we can then deduce that
S2 = S5, S6 = S7, S8 = S3.

Suppose our example set contains another action se-
quence:

open(c2); fetchwrench(wr1,c2); fetchjack(j,c2); close(c2);

We deduce thatS2 = S7, S8 = S5, S6 = S3, and hence
S2, S3, S5, S6, S7, S8 all refer to the same state. If addition-
ally we have the sequence:

close(c3); open(c3);

We deduce thatS4 = S1, hence we have tied together
individual states to partially construct a state machine for
containers (Fig. 1). A more formal description of the
algorithm follows2:

2Whereas our system is designed to use multiple training se-
quences, for simplicity the presentation here uses only a single se-
quence.

procedureLOCM I (Input action sequenceSeq)
For each combination of action nameA and

argument posP for actions occurring inSeq
Create transitionA.P , comprising

new state identifiersA.P.start andA.P.end
Add A.P to the transition setTS

Collect the set of objectsObs in Seq
For each objectOb occurring inObs

For each pair of transitionsT1, T2

consecutive forOb in Seq
Equate statesT1.end andT2.start

end
end
Return TS, transition set

OS, set of object states remaining distinct

At the end of phase 1,LOCM has derived a set of state ma-
chines, each of which can be identified with a sort.

Phase 2: Identification of state parameters Each state
machine describes the behaviour of a single object in isola-
tion, without consideration of its association with other ob-
jects, e.g. it can distinguish a state of a wrench correspond-
ing to beingin some container, but does not make provision
to describewhichcontainer it is in.

In the object-centred representation, the dynamic asso-
ciations between objects are recorded bystate parameters
embedded in each state. Phase 2 of the algorithm iden-
tifies parameters of each state by analysing patterns of
object references in the original action steps correspond-
ing to the transitions. For example, consider the state
wrenchstate0 for the wrench sort (Fig. 2). Consider-
ing the actions forputawaywrench(wrench,container), and
fetchwrench(wrench,container). For a given wrench, con-
secutive transitionsputawaywrench, fetchwrench, in any
example action sequence, always have the same value as
their containerparameter. From this observation, we can
induce that the statewrenchstate0has a state variable repre-
sentingcontainer. The same observation does not hold true
for wrenchstate1. We can observe instances in the training
data where the wrench is fetched from one container, and
put away in a different container.

This second phase of the algorithm performs inductive
learning such that the hypotheses can be refuted by the ex-
amples, but never definitely confirmed. This phase gener-
ally requires a larger amount of training data to converge
than Phase 1 above. Phase 2 is processed in three steps,
shown below in the algorithmic description. The first two
steps generate and test the hypothesised correlations in ac-

container_state0 container_state1
open.1
close.1

fetch_wrench.2
fetch_jack.2

Figure 1: An incomplete state machine for containers in
tyre-world

2

wrench_state0
[container]

wrench_state1
fetch_wrench.1

putaway_wrench.1

do_up.3
undo.3

tighten.3
loosen.3

Figure 2: Parameterised states of wrench.

tion arguments, which indicate the need for state parameters.
The third step generates the set of induced state parameters.

procedureLOCM II (Input action sequenceSeq,
Transition setTS, Object setObs)
Object state setOS)

Form hypotheses from state machine
For each pairA1.P1 andA2.P2 in TS

such thatA1.P1.end = S = A2.P2.start
For each pairA1.P

′

1 andA2.P
′

2 from TS andS in OS
with A1.P

′

1.sort = A2.P
′

2.sort
andP1 6= P ′

1, P2 6= P ′

2

(i.e. a pair of the other arguments
of actionsA1 andA2 sharing a common sort)
Store in hypothesis setHS the hypothesis

that when any objectob undergoes sequentially
the transitionsA1.P1 thenA2.P2,
there is a single objectob′,

which goes through both of the corresponding
transitionsA1.P

′

1 andA2.P
′

2

(This supports the proposition that stateS
has a state parameter which can record
the association ofob with ob′)

end
end
Test hypotheses against example sequence
For each objectOb occurring inObs

For each pair of transitionsA1.P1 andA2.P2

consecutive forOb in Seq
Remove from hypothesis setHS any hypothesis

which is inconsistent with example action pair
end

end
Generate and reduce set of state parameters
For every hypothesis remaining inHS

create the state parameter supported by the hypothesis
Merge state parameters on the basis that

a transition occurring in more than one transition pair
is associated with the same state parameter in each occurrence

end
return: state parameters and correlations with action arguments

Phase 3: Formation of action schema Extraction of an
action schema is performed by extracting the transitions cor-
responding to its parameters, similar to automated action
construction in the OLHE process in (Simpson, Kitchin, and
McCluskey 2007). One predicate is created to represent
each object state. The output of Phase 2 provides corre-
lations between the action parameters and state parameters

occurring in the start/end states of transitions. For example,
the generatedputawaywrenchaction schema in PDDL is:

(:action putaway_wrench

:parameters (?wrench1 - wrench ?container2 - container)

:precondition (and (wrench_state1 ?wrench1)

(container_state1 ?container2))

:effect (and (wrench_state0 ?wrench1 ?container2)

(not (wrench_state1 ?wrench1))))

The generated predicateswrenchstate0, wrenchstate1,
containerstate1 can be understood asin container,
havewrenchand openrespectively. The generated schema
can be used directly in a planner. It would also be simple
to extract initial and final states from example sequences,
but this is of limited utility given that solution plans already
exist for those tasks.

Evaluation of LOCM
LOCMhas been implemented in Prolog incorporating the al-
gorithm detailed above. In this paper we attempt to analyse
and evaluate it by its application to the acquisition of exist-
ing domain models. We have used example plans from two
sources:

• Existing domains built using GIPO III. In this case, we
have created sets of example action sequences by random
walk.

• Domains which were used in IPC planning competitions.
In this case, the example traces come from solution plans
in the publicly released competition solutions.

We have usedLOCM to create state machines, object as-
sociations and action schema for 4 domains. Evaluation of
these results is ongoing, but initial results show that state
machines can be deduced from a reasonably small number
of plan examples (30-200 steps), whereas inducing the state
parameters requires much larger training sets (typically>
1000 steps).

Tyre-world (GIPO version). A correct state machine is de-
rived, corresponding closely to the domain as constructed
in GIPO. The induced domain contains extra states for the
jacksort, but this model is valid. After training to conver-
gence there are 3 parameter flaws. See the end of this sec-
tion for a discussion of flaws and their automated repair,
and fig. 3 for a diagram of the repaired model, Appendix
A for action schema).

Blocks (GIPO version). A correct state machine is derived.
After training to convergence there are 3 parameter flaws.
The low number of steps needed to derive the state ma-
chine is due to there being only 2 sorts in the domain,
both of which are involved in every action.

Driverlog (IPC strips version). State machines and param-
eters are correct for all sorts except trucks. For trucks, the
distinction of states with/without driver is lost, and an ex-
tra state parameter (driver) is retained. The state machine
for driver is shown in fig. 4

Freecell (IPC strips version). This is a version of the well-
known patience card game used in the IPC3 competition.
There are three sorts discovered in the freecell domain -

3

hub1
[jack] hub0

[jack,wheel]

put_on_wheel.2
remove_wheel.2 hub2

[jack,nuts,wheel]

do_up.2

undo.2 hub3
[nuts,wheel]

jack_down.1

jack_up.1

tighten.2
loosen.2

jack1
[hub]

jack0
[hub]

put_on_wheel.3
remove_wheel.3

jack2
[hub]

do_up.4

undo.4

jack3
[]

jack_down.2

jack_up.2

jack4
[boot]

putaway_jack.1
fetch_jack.1

nuts0
[]

nuts1
[hub]

do_up.1

undo.1

nuts2
[hub]

tighten.1

loosen.1

wheel0
[hub]

wheel1
[]

remove_wheel.1

put_on_wheel.1

wheel2
[boot]

putaway_wheel.1

fetch_wheel.1

Figure 3: Other state machines induced from the tyre-world.

driver0
[place]

walk.1

driver1
[place,truck]

board_truck.1
disembark_truck.1

drive_truck.4

Figure 4: Induced state machine for driver in driverlog do-
main.

suits, cards and numbers. In the competition version of
the domain, number objects are used to represent denom-
inations of cards and to count free cells and free columns.
The state machine derived for the cards has 7 states. The
states (see fig. 5) can be understood as follows:

• card3 - in a column and covered by another card
• card4 - in a column and not covered
• card5 - in a free cell
• card0 - in a home cell
• card1, card2, card6 - in a home cell and covered

It is not helpful to distinguish the 3 final states, butLOCM
cannot determine that they are equivalent. Whilst the
LOCM results from Freecell are amongst the more in-
teresting we have found, there are a number of problems
which need to be overcome in future versions ofLOCM
to extract a usable domain model from freecell plans:

• The distinction is lost between cards which are the bot-
tom of a column and other cards which are in a column.
Solving this problem requires weakening of the strong
assumptions underpinning phase I.

• LOCM doesn’t detect background relationships be-
tween objects — the adjacency of pairs numbers, and
the alternation of black cards on red cards. This could
be achieved by inductive learning on the set of all ac-
tions which ever occur.

Randomly-generated example data can be different in
character from purposeful, goal-directed plans. In a sense,
random data is more informative, because the random plan is
likely to visit more permutations of action sequences which
a goal-directed sequence may not. However, if the useful,
goal-directed sequences lead to induction of a state machine
with more states, this could be seen as useful heuristic infor-
mation.

Where there is only one object of a particular sort (e.g.
gripper, wrench, container) all hypotheses about matching
that sort always hold, and the sort tends to become an in-
ternal state parameter of everything. For this reason, it is
important to use training data in which more than one object
of each sort is used.

The induced models may contain detectable flaws: the ex-
istence of a state parameter has been induced, but there are
one or more transitions into the state which do not set the
state parameter. The flaws usually arise because state pa-
rameters are induced only by considering pairs of consecu-
tive transitions, not longer paths.

The inconsistency may indicate that an object reference
is carried in from another state without being mentioned in
an action’s argument. In this case a repair to the model can
be proposed, which involves adding the “hidden” parameter
to some states, but a further cycle of testing against the ex-
ample data is required to check that the repair is consistent.
The parameters in the state machine shown in fig. 3 and
the example operators in Appendix A have been generated
from the algorithms described above, together with an initial
implementation of an algorithm for detecting, repairing and
testing parameter flaws. This was successful at completing a
correct and consistent model for the tyre domain. This will
be further developed in future work.

The most fundamental limitation is whether it is possible
to correctly represent the domain within the limitations of
the representation that we use for action schema.

• We assume that an action moves the objects in its argu-

4

card0

card1sendtohome.5

card2
sendtohome_b.4

card6

homefromfreecell.4

card3

card4

sendtonewcol.2

sendtofree.2

sendtohome.2

move.2

sendtohome.1

sendtohome_b.1

colfromfreecell.2

move_b.2

move.3

move.1
sendtonewcol.1

move_b.1

card5

sendtofree_b.1

sendtofree.1
homefromfreecell.1

colfromfreecell.1

newcolfromfreecell.1

Figure 5: Induced state machine for cards in Freecell domain.

ments between clearly-defined substates. Objects which
are passively involved in an action may make a transition
to the same state, but cannot be in adon’t carestate.

• Static background information, such as the specific fixed
relationships between objects (e.g. which places are con-
nected), is not analysed by the system. In general, this can
lead to missing preconditions. TheLOCM algorithm as-
sumes that all information about an object is represented
in its state and state parameters. In general, this form of
information may vary anyway between training examples.

Related Work
LOCM is distinct from other systems that learn action
schema from examples in that it requiresonly the action se-
quences as input; its success is based on the assumption that
the output domain model can be represented in an object-
centred representation. Other systems require richer input:
ARMS (Wu, Yang, and Jiang 2005) makes use of back-
ground knowledge as input, comprising types, relations and
initial and goal states, while the system of (Shahaf and Amir
2006) appears to efficiently build expressive actions schema,
but requires as input specifications of fluents, as well as par-
tial observations of intermediate states between action ex-
ecutions. TheOpmakeralgorithm detailed in (McCluskey
et al. 2009) relies on an object-centred approach similar to
LOCM but it too requires a partial domain model as input as
well as a training instance.

The TIM domain analysis tool (Fox and Long 1998) uses
a similar intermediate representation toLOCM (i.e. state
space for each sort), but in TIM, the object state machines
are extracted from a complete domain definition and prob-
lem definition, and then used to derive hierarchical sorts and
state invariants.

Learning expressive theories from examples is also a cen-
tral goal in the Inductive Logic Programming community.
We lack space to discuss this literature here, but work by for
example (Benson 1996) is very relevant to the induction of
planning domain models.

Conclusion
In this paper, we have described theLOCM system and
its use in learning domain models (comprising object sorts,
state descriptions, and action schema), from example action
sequences containing no state information.

Although it is unrealistic to expect example sets of plans
to be available for all new domains, we expect the technique
to be beneficial in domains where automatic logging of some
existing process yields plentiful training data, e.g. games,
workflow, online transactions.

The work is at an early stage, but we have already ob-
tained promising results on benchmark domains, and we
see many possibilities for further developing the technique.
In particular, we expect to be able demonstrateLOCM in
the competition acquiring usable domain models from ac-

5

tion traces of humans playing computer games such as card
games.

References
Benson, S. S. 1996.Learning Action Models for Reactive
Autonomous Agents. Ph.D. Dissertation, Dept of Computer
Science, Stanford University.
Fox, M., and Long, D. 1998. The automatic inference of
state invariants in TIM.J. Artif. Intell. Res. (JAIR)9:367–
421.
McCluskey, T.; Cresswell, S.; Richardson, N.; and West,
M. M. 2009. Automated acquisition of action knowledge.
In International Conference on Agents and Artificial Intel-
ligence (ICAART), 93–100.
Richardson, N. E. 2008.An Operator Induction Tool Sup-
porting Knowledge Engineering in Planning. Ph.D. Disser-
tation, School of Computing and Engineering, University
of Huddersfield, UK.
Shahaf, D., and Amir, E. 2006. Learning partially observ-
able action schemas. InAAAI. AAAI Press.
Simpson, R. M.; Kitchin, D. E.; and McCluskey, T. L.
2007. Planning Domain Definition Using GIPO.Journal
of Knowledge Engineering1.
Wu, K.; Yang, Q.; and Jiang, Y. 2005. ARMS: Action-
relation modelling system for learning acquisition models.
In Proceedings of the First International Competition on
Knowledge Engineering for AI Planning.

APPENDIX A
The operators induced for the tyre domain are shown below
in a simplified form of OCL syntax.

operator(close_container(Boot1),
[
tr(Boot1:boot,
boot_state0(Boot1) =>
boot_state1(Boot1)

]).

operator(do_up(Nuts1,Hub2,Wrench5,Jack3),
[
tr(Nuts1:nuts,
nuts_state0(Nuts1) =>
nuts_state1(Nuts1,Hub2))

tr(Hub2:hub,
hub_state0(Hub2,Jack3,Wheel4) =>
hub_state2(Hub2,Jack3,Nuts1,Wheel4))

tr(Wrench5:wrench,
wrench_state1(Wrench5) =>
wrench_state1(Wrench5))

tr(Jack3:jack,
jack_state0(Jack3,Hub2) =>
jack_state2(Jack3,Hub2)

]).

operator(fetch_jack(Jack1,Boot2),
[
tr(Jack1:jack,
jack_state4(Jack1,Boot2) =>
jack_state3(Jack1))

tr(Boot2:boot,
boot_state0(Boot2) =>
boot_state0(Boot2)

]).

operator(fetch_wheel(Wheel1,Boot2),
[
tr(Wheel1:wheel,
wheel_state2(Wheel1,Boot2) =>
wheel_state1(Wheel1))

tr(Boot2:boot,
boot_state0(Boot2) =>
boot_state0(Boot2)

]).

operator(fetch_wrench(Wrench1,Boot2),
[
tr(Wrench1:wrench,
wrench_state0(Wrench1,Boot2) =>
wrench_state1(Wrench1))

tr(Boot2:boot,
boot_state0(Boot2) =>
boot_state0(Boot2)

]).

operator(jack_down(Hub1,Jack2),
[
tr(Hub1:hub,
hub_state2(Hub1,Jack2,Nuts3,Wheel4) =>
hub_state3(Hub1,Nuts3,Wheel4))

tr(Jack2:jack,
jack_state2(Jack2,Hub1) =>
jack_state3(Jack2)

]).

operator(jack_up(Hub1,Jack4),
[
tr(Hub1:hub,
hub_state3(Hub1,Nuts2,Wheel3) =>
hub_state2(Hub1,Jack4,Nuts2,Wheel3))

tr(Jack4:jack,
jack_state3(Jack4) =>
jack_state2(Jack4,Hub1)

]).

operator(loosen(Nuts1,Hub2,Wrench4),
[
tr(Nuts1:nuts,
nuts_state2(Nuts1,Hub2) =>
nuts_state1(Nuts1,Hub2))

tr(Hub2:hub,
hub_state3(Hub2,Nuts1,Wheel3) =>
hub_state3(Hub2,Nuts1,Wheel3))

tr(Wrench4:wrench,
wrench_state1(Wrench4) =>
wrench_state1(Wrench4)

]).

operator(open_container(Boot1),
[
tr(Boot1:boot,
boot_state1(Boot1) =>
boot_state0(Boot1)

]).

6

operator(put_on_wheel(Wheel1,Hub2,Jack3),
[
tr(Wheel1:wheel,
wheel_state1(Wheel1) =>
wheel_state0(Wheel1,Hub2))

tr(Hub2:hub,
hub_state1(Hub2,Jack3) =>
hub_state0(Hub2,Jack3,Wheel1))

tr(Jack3:jack,
jack_state1(Jack3,Hub2) =>
jack_state0(Jack3,Hub2)

]).

operator(putaway_jack(Jack1,Boot2),
[
tr(Jack1:jack,
jack_state3(Jack1) =>
jack_state4(Jack1,Boot2))

tr(Boot2:boot,
boot_state0(Boot2) =>
boot_state0(Boot2)

]).

operator(putaway_wheel(Wheel1,Boot2),
[
tr(Wheel1:wheel,
wheel_state1(Wheel1) =>
wheel_state2(Wheel1,Boot2))

tr(Boot2:boot,
boot_state0(Boot2) =>
boot_state0(Boot2)

]).

operator(putaway_wrench(Wrench1,Boot2),
[
tr(Wrench1:wrench,
wrench_state1(Wrench1) =>
wrench_state0(Wrench1,Boot2))

tr(Boot2:boot,
boot_state0(Boot2) =>
boot_state0(Boot2)

]).

operator(remove_wheel(Wheel1,Hub2,Jack3),
[
tr(Wheel1:wheel,
wheel_state0(Wheel1,Hub2) =>
wheel_state1(Wheel1))

tr(Hub2:hub,
hub_state0(Hub2,Jack3,Wheel1) =>
hub_state1(Hub2,Jack3))

tr(Jack3:jack,
jack_state0(Jack3,Hub2) =>
jack_state1(Jack3,Hub2)

]).

operator(tighten(Nuts1,Hub2,Wrench4),
[
tr(Nuts1:nuts,
nuts_state1(Nuts1,Hub2) =>
nuts_state2(Nuts1,Hub2))

tr(Hub2:hub,
hub_state3(Hub2,Nuts1,Wheel3) =>
hub_state3(Hub2,Nuts1,Wheel3))

tr(Wrench4:wrench,

wrench_state1(Wrench4) =>
wrench_state1(Wrench4)

]).

operator(undo(Nuts1,Hub2,Wrench5,Jack3),
[
tr(Nuts1:nuts,
nuts_state1(Nuts1,Hub2) =>
nuts_state0(Nuts1))

tr(Hub2:hub,
hub_state2(Hub2,Jack3,Nuts1,Wheel4) =>
hub_state0(Hub2,Jack3,Wheel4))

tr(Wrench5:wrench,
wrench_state1(Wrench5) =>
wrench_state1(Wrench5))

tr(Jack3:jack,
jack_state2(Jack3,Hub2) =>
jack_state0(Jack3,Hub2)

]).

7

On Compiling Data Mining Tasks to PDDL ∗

Susana Fernández and Fernando Fernández and Alexis Sánchez
Tomás de la Rosa and Javier Ortiz and Daniel Borrajo

Universidad Carlos III de Madrid. Leganés (Madrid). Spain

David Manzano
Ericsson Research Spain

Madrid, Spain

Abstract

Data mining is a difficult task that relies on an exploratory
and analytic process of large quantities of data in order to
discover meaningful patterns and rules. It requires complex
methodologies, and the increasing heterogeneity and com-
plexity of available data requires some skills to build the data
mining processes, or knowledge flows. The goal of this work
is to describe data-mining processes in terms of Automated
Planning, which will allow us to automatize the data-mining
knowledge flow construction. The work is based on the use of
standards both in data mining and automated-planning com-
munities. We use PMML (Predictive Model Markup Lan-
guage) to describe data mining tasks. From the PMML, a
problem description in PDDL can be generated, so any cur-
rent planning system can be used to generate a plan. This plan
is, again, translated to a KFML format (Knowledge Flow file
for the WEKA tool), so the plan or data-mining workflow
can be executed in WEKA. In this manuscript we describe
the languages, how the translation from PMML to PDDL,
and from a plan to KFML are performed, and the complete
architecture of our system.

Introduction
Currently, many companies are extensively using data-
mining tools and techniques in order to answer questions
as: who would be interested in a new service offer among
your current customers? What type of service a given user
is expecting to have? These questions, among others, arise
nowadays in the telecommunication sector and many others.
Data mining (DM) techniques give operators and suppliers
an opportunity to grow existing service offers as well as to
find new ones. Analysing the customer generated network
data, operators can group customers into segments that share
the same preferences and exhibit similar behaviour. Using
this knowledge the operator can recommend other services
to users with a high probability for uptake. The problem is
not limited to operators. In every business sector, compa-
nies are moving towards the goal of understanding their cus-

∗This work has been partially supported by the Spanish
MICINN under project TIN2008-06701-C03-03, the regional
project CCG08-UC3M/TIC-4141 and the Automated User Knowl-
edge Building (AUKB) project funded by Ericsson Research.
Copyright c© 2009, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

tomers’ preferences and their satisfaction with the products
and services to increase business opportunities.

Date mining is a difficult task that relies on an exploratory
and analytic process of large quantities of data in order to
discover meaningful patterns and rules. It requires a data
mining expert able to compose solutions that use complex
methodologies, including problem definition, data selection
and collection, data preparation, or model construction and
evaluation. However, the increasing heterogeneity and com-
plexity of available data and data-mining techniques requires
some skills on managing data-mining processes. The choice
of a particular combination of techniques to apply in a par-
ticular scenario depends on the nature of the data-mining
task and the nature of the available data.

In this paper, we present our current work that defines
an architecture and tool based on Automated Planning that
helps users (non necessarily experts on data-mining) on per-
forming data-mining tasks. Only a standardized model rep-
resentation language will allow for rapid, practical and re-
liable model handling in data mining. Emerging standards,
such as PMML (Predictive Model Markup Language), may
help to bridge this gap. The user can represent and describe
in PMML data mining and statistical models, as well as
some of the operations required for cleaning and transform-
ing data prior to modelling. Roughly speaking, a PMML file
is composed of three general parts: the data information, the
mining build task and the model. But, during the complete
data mining process, not all of them are available. The data
part describes the resources and operations that can be used
in the data mining process. The mining build task describes
the configuration of the training task that will produce the
model instance. It can be seen as the description of the se-
quence of actions executed to obtain the model, so from the
perspective of planning, it can be understood as a plan. This
plan would include the sequence of data-mining actions that
should be executed over the initial dataset to obtain the fi-
nal model that could be also added to the third part of the
PMML. Therefore, a complete PMML file contains all the
information describing a data mining task, from the initial
dataset description to the final model, through the knowl-
edge flow that generates that model. We use a PMML file
containing only the data information, and leaving empty the
other two parts, as an input to create PDDL (Planning Do-
main Definition Language) problem files. These files allow,

8

together with the PDDL domain file and a planner, to auto-
matically create a plan or knowledge flow. This knowledge
flow will be executed by a machine learning engine. In our
case, we use one of the most used data mining tools, the
WEKA system (Witten & Frank 2005). In WEKA, knowl-
edge flows are described as KFML files. The results of this
process can be evaluated, and new plans may be requested
to the planning system. The plans generated by the plan-
ner for solving the translated PDDL problem are encoded in
XML and can be directly added to the PMML mining build-
ing task. However, so far, stable versions of WEKA do not
encode models in XML, so we leave empty the model part
of the PMML file. Instead, the system returns to the user
a result zip file containing all the model files together with
statistical information files in WEKA format. In this paper,
we describe the first implementation of such a tool, empha-
sizing the compilations between PMML and PDDL.

There has been previous work whose aim is also to apply
planning techniques to aumotatize data mining tasks (Amant
& Cohen 1997; Morik & Scholz 2003; Provost, Bernstein, &
Hill 2005), but any of them use standard languages to repre-
sent the knowledge, as we have done in the work presented
in this paper. Next section presents an introduction to data
mining. The remainder sections describe the general archi-
tecture, the languages used in the application, the modeliza-
tion of the DM tasks in PDDL, the implemented translators
and the conclusions.

Introduction to KDD and Data Mining
Knowledge Discovery in Databases (KDD) concerns with
the development of methods and techniques for analyzing
data. The first part of the KDD process is related to the se-
lection, preprocess and transformation of the data to be an-
alyzed. The output of this part of the KDD process is a set
of patterns or training data, described in terms of features,
typically stored in a table. Data mining is the following step
in the KDD process, and consists of applying data analysis
and discovery algorithms that generate models that describe
the data (Fayyad, Piatetsky-Shapiro, & Smyth 1996). The
modelling task is sometimes seen as a machine learning or
statistical problem where a function must be approximated.
The KDD process finishes with the interpretation and evalu-
ation of the models.

Learning algorithms are typically organized by the type
of function that we want to approximate. If the output of the
function is known “a priori” for some input values, we typi-
cally talk about supervised learning. In this case, we can use
regression (when the approximated function is continuous),
or classification (the function is discrete) (Mitchell 1997).
There are many models for supervised learning. Some ex-
amples are neural networks, instance-based, decision and re-
gression rules and trees, bayesian approaches, support vec-
tor machines, etc. When the output of the function to ap-
proximate is not known “a priori”, then we talk about unsu-
pervised learning. In this kind of learning, the training set is
composed only of the list of input values. Then, the goal is
to find a function which satisfies some learning objectives.
Different learning objectives can be defined, like clustering,

dimensionality reduction, association, etc, and they all may
require different models and learning algorithms.

The evaluation of a data mining problem typically re-
quires to apply the obtained model over data that were not
used to generate the model. But depending on the amount of
data, or the type of function modelled, different evaluation
approaches may be used, such as split (dividing the whole
data set in training and test sets), cross-validation, or leave-
one-out (Mitchell 1997).

Therefore, In the data mining process, there are four main
elements to define: the training data, the model or language
representation, the learning algorithm, and how to evaluate
the model. The number of combinations of those four ele-
ments is huge, since different methods and techniques, all
of them with different parameter settings, can be applied.
We show several examples of these operators in the paper.
Because of that, the data mining process is sometimes seen
as an expert process where data mining engineers transform
original data, execute different mining operators, evaluate
the obtained models, and repeat this process until they fit or
answer the mining problem. Because of the complexity of
the process, it is suitable as a planning problem that can be
solved with automated approaches (Fernández et al. 2009).

Architecture
Figure 1 shows the general architecture of the approach.
There are four main modules; each one can be hosted in a
different computer connected through a network: the Client,
the Control, the Datamining and the Planner. We have used
the Java RMI (Remote Method Invocation) technology that
enables communication between different servers running
JVM’s (Java Virtual Machine). The planner incorporated
in the architecture is SAYPHI (De la Rosa, Garcı́a-Olaya, &
Borrajo 2007) and the DM Tool is WEKA. Although, any
others could be used. Next, there is a description of each
module.

The Client Module
It offers a control command console interface that provides
access to all application functionalities and connects the user
to the Control module using RMI. It captures the PMML file
and sends it to the Control module. At this point, the PMML
file only contains the information concerning the dataset and
operations that can be executed in the data mining process.
The other two parts are empty. Before performing any DM
task, the corresponding dataset must be placed in the DM
Tool host, through this module.

The Control Module
It is the central module of the architecture that intercon-
nects and manages the planning and DM modules, serv-
ing requests from the user module. This module is also re-
sponsible of performing the conversions between the PDDL
and PMML formats invoking the PMML2PDDL external ap-
plication. It also transforms the output plan generated by
the planner to a KFML format used by the WEKA Knowl-
edge Flow. This KFML format transformation is performed

9

Figure 1: Overview of the architecture.

through the invocation of the external PlanReader applica-
tion.

The input to the module is the user choice together with
the required files to carry out that option. In case the user’s
option is to perform a DM request, the algorithm of Figure 2
is executed. First, the PMML2PDDL translator generates
the PDDL problem file from the PMML file. Then, the plan-
ner is invoked through RMI to solve the translated problem.
The returned plan is translated to a KFML file. Finally, the
DM Tool is invoked to execute the translated KFML file.
The result is a compressed file containing the model gener-
ated by the DM Tool and the statistics.

The Datamining Module
This module provides a Java wrapper that allows the execu-
tion of DM tasks in the WEKA DM Tool through Knowl-
edge Flow plans. The Java wrapper is able to obtain the
model output and the statistics generated as a result of the
Knowledge Flow execution. This module also contains an
Arff directory for managing the storage of the datasets that
are necessary for the PlanReader and WEKA executions.
The inclusion or removal of arff files are managed by the
user through the options offered in the command control
user interface.

DM-Request(pmml-file,domain):result

pmml-file: PMML file with the DM task
domain: PDDL domain

problem=PMML2PDDL(pmml-file)
plan=RMI-Planner(domain,problem)
kfml-file=Plan2KFML(plan)
result=RMI-DMTool(kfml-file)
return result

Figure 2: Algorithm for executing a DM request.

The input to the module is a KFML file and the output
is a compressed file including the model and the statistics
generated during the KFML execution.

The Planner Module
The planning module manages requests from the control
module receiving the problem and the domain in PDDL for-
mat. It returns the result to the Control module in XML for-
mat ready for the conversion to a KFML format. Currently,
planning tasks are solved by the planner SAYPHI, but the ar-
chitecture could use any other planner that supports fluents
and metrics. We have used SAYPHI because: i) it supports
PDDL (requirements typing and fluents); ii) it incorporates
several search algorithms able to deal with quality metrics;
iii) it is implemented in Lisp allowing rapid prototyping of
new functionalities; and iv) it is in continuous development
and improvement in our research group.

Standard Languages of the Tool
This section describes the two languages used in this work
(apart from PDDL). First, we describe PMML (Predictive
Model Markup Language), an XML based language for data
mining. Then, we describe KFML (Knowledge Flow for
Machine Learning), another XML based language to repre-
sent knowledge flows in data mining defined in the WEKA
tool (Witten & Frank 2005). The PDDL language is not
explained since it is a well-known standard in the planning
community. We use the PDDL 2.1 version (Fox & Long
2003) for handling classical planning together with numeric
state variables.

The Predictive Model Markup Language (PMML)
PMML is a markup language for describing statistical and
data mining tasks and models. It is based on XML, and it is
composed of five main parts:1

• The header contains general information about the file,
like the PMML version, date, etc.

• The data dictionary defines the meta-data, or the descrip-
tion of the input data or learning examples.

1The language is being developed by the Data Mining Group
(DMG). See www.dmg.org for further information

10

Models Functions
AssociationModel
ClusteringModel
GeneralRegressionModel
MiningModel
NaiveBayesModel
NeuralNetwork
RegressionModel
RuleSetModel
SequenceModel
SupportVectorMachineModel
TextModel
TreeModel

AssociationRules
Sequences
Classification
Regression
Clustering

Table 1: Models and Functions defined in the PMML stan-
dard

• The transformation dictionary defines the functions ap-
plicable over the input data, like flattening, aggregation,
computation of average or standard deviation, normaliza-
tion, principal component analysis (PCA), etc. In our
case, this knowledge defines the actions that can be ap-
plied over the data, which will be defined in the planning
domain file.

• The mining build task describes the configuration of the
training task that will produce the model instance. PMML
does not define the content structure of this part of the file,
so it could contain any XML value. This mining build
task can be seen as the description of the sequence of ac-
tions executed to obtain the model, so from the perspec-
tive of planning, it can be understood as a plan. This plan
would include the sequence of data-mining actions that
should be executed over the initial dataset to obtain the
final model.

• The model describes the final model generated after the
data mining process, i.e. after executing the mining build
task. There are different models that can be generated de-
pending on the data analysis technique used, ranging from
bayesian, to neural networks or decision trees. Depending
on the type of model the description will use a different
XML format.

The models implement some functions, and depending on
the function, they may introduce different constraints over
the data (which will have to be considered in the planning
domain file). For instance, a TreeModel can be used both for
classification or regression, but depending on the implemen-
tation itself, only one of such functions may be available.
If, for instance, only regression has been implemented, then
the class attribute of the dataset must be continuous if we
want to apply the TreeModel. The complete list of models
and functions defined in the PMML standard are defined in
Table 1. Different models can implement different functions
and, as introduced above, the applicability of the model to
a function may depend on the implementation of the model
itself and the advances of the state of the art, so they are not
constrained “a priori”.

A complete PMML file contains the information about the
five parts. However, during the data mining process, not
all the data is available. At the beginning, the PMML file
contains only the header, the data dictionary and the trans-
formation dictionary. In addition, it includes the different
models that may be used to find a solution. This can be con-
sidered as the input of the data mining process. The min-
ing build task contains the steps or process that should be
followed to obtain a model using the data described in the
PMML initial file. In our case, we generate this version
of the PMML file from the result of planning by encoding
the plans in XML. Finally, the model could be included af-
ter the data mining tool executes the data-mining workflow
generated by the planner. In our case, we generate the model
using the WEKA Knowledge Flow tool that receives as in-
put a KFML file. The tool automatically translates the plan
into the KFML file, but the model is not incorporated in the
PMML file, because WEKA does not encode it yet in XML.

WEKA and the Knowledge Flow Files (KFML)
WEKA (Witten & Frank 2005) is a collection of machine
learning algorithms to perform data mining tasks. It includes
all the software components required in a data mining pro-
cess, from data loading and filtering to advanced machine
learning algorithms for classification, regression, etc. It also
includes many interesting functionalities, like graphical vi-
sualization of the results. WEKA offers two different us-
ages. The first one is using directly the WEKA API in Java.
The second one consists of using the graphical tools offered:
the Explorer permits to apply data mining algorithms from
a visual interface; the Experimenter permits to apply differ-
ent machine learning algorithms over different datasets in a
batch mode; the Simple CLI, which permits to make calls
to WEKA components through the command line; and the
Knowledge Flow.

WEKA Knowledge Flow is a data-flow inspired interface
to WEKA components. It permits to build a knowledge flow
for processing and analysing data. Such knowledge flow can
include most of the WEKA functionalities: load data, pre-
pare data for cross-validation evaluation, apply filters, apply
learning algorithms, show the results graphically or in a text
window, etc. Knowledge flows are stored in KFML files,
that can be given as input to WEKA.

A KFML file is an XML file including two sections. The
first one defines all the components involved in the knowl-
edge flow, as data file loaders, filters, learning algorithms,
or evaluators. The second one enumerates the links among
the components, i.e. it defines how the data flows in the data
mining process, or how to connect the output of a compo-
nent with the input of other components. WEKA Knowl-
edge Flow permits to load KFML files, edit them graphi-
cally, and save them. KFML files can be executed both by
using the graphical interface or the WEKA API.2

A knowledge flow can be seen as the sequence of steps
that must be performed to execute a data mining process.
From our point of view, the knowledge flow is not more

2The WEKA API can be used to execute KFML files only from
version 3.6.

11

than the plan that suggest to perform a data mining process.
Later, we will show how a plan generated in our architecture
can be saved in the KFML format and executed through the
WEKA API.

Modelling Data-Mining Tasks in PDDL
The PDDL domain file contains the description of all the
possible DM tasks (transformations, training, test, visualiza-
tion, . . .). Each DM task is represented as a domain action.
The PDDL problem files contain information for a specific
dataset (i.e. dataset schema, the suitable transformation for
the dataset, the planning goals, the user-defined metric, etc.).
Domain predicates allow us to define states containing static
information (i.e. possible transformations, available train-
ing or evaluation tasks, etc.) and facts that change during
the execution of all DM tasks (e.g. (preprocess-on ?d
- DataSet) when the dataset is pre-processed). Fluents in
the domain allow us to define thresholds for different kinds
of characteristics (e.g. an execution time threshold, or the
readability of a model) and to store numeric values obtained
during the execution (e.g. the total execution time, the mean-
error obtained, etc.).

There are different kinds of actions in the domain file:
• Process Actions: for specific manipulations of the dataset.

For instance, load-dataset or datasetPreparation
for splitting the dataset or preparing it for cross-validation
after finishing the data transformation. Preconditions ver-
ify the dataset and test mode availability with the predi-
cates available and can-learn, respectively. Figure 3
shows the PDDL datasetPreparation action. It adds
the effect (eval-on) for allowing the training and test-
ing. We use fluents for estimating the execution time of
actions, whose values are defined in the problem. We as-
sume the execution time is proportional to the number of
instances (in fact thousands of instances) and depends on
the test mode. For example, we estimate that the prepara-
tion factor for splitting is 0.001 and for cross-validation is
0.005. The (loaded ?d) precondition is an effect of the
load-dataset action.

(:action datasetPreparation
:parameters (?d - DataSet ?t - TestMode)
:precondition (and (loaded ?d)

(can-learn ?d ?t))
:effect (and (eval-on ?d ?t)

(not (preprocess-on ?d))
(not (loaded ?d))
(increase (exec-time) (* (thousandsofInstances)

(preparationFactor ?t)))))

Figure 3: Example of PDDL process action.

• Transformation Actions: in the form of
apply-transformation-<filter>. Preconditions
verify field type constraints and whether the filter has
been included as a DM task for the dataset or not. The
action usually adds a fact indicating that the task has
been done (e.g. the normalize transformation adds to
the state the fact (normalized DataSet)). Figure 4
shows the attribute selection PDDL action. We assume
this is the last transformation we can perform because

afterwards we stop knowing the remaining attributes and
the metric estimation would return an unknown value.
Precondition (known-fields) checks it. Precondi-
tion (transformation ?i AttributeSelection)
verifies the filter has been included in the PMML file
and (preprocess-on ?d) prevents from applying the
transformation before performing the pre-process and
after preparing the data for splitting or cross-validation.
Again, we assume an execution-time increment that is
computed from several fluents whose values are defined
in the problem.

(:action apply-transformation-AttributeSelection
:parameters (?d - DataSet ?i - TransfInstance)
:precondition (and (preprocess-on ?d)

(known-fields ?d)
(transformation ?i AttributeSelection))

:effect (and (applied-instance ?d ?i)
(applied-transformation ?d AttributeSelection)
(not (known-fields ?d))
(increase (exec-time)

(* (* (filter-time AttributeSelection)
thousandsofInstances))

(* (dataDictionaryNumberOfFields)
(dataDictionaryNumberOfFields)))))

Figure 4: PDDL action representing the attribute selection
transformation.

• Training Actions: in the form of train-<model-
type>, where <model-type> can be classification,
regression or clustering. In each type, the action
parameters indicate different models previously defined
in the PMML file. There is a precondition for verifying
if the model instance is learnable, predicate learnable,
and another one to verify the model, predicate is-model.
These actions add to the state that the selected option is
a model for the dataset with the predicate is-<model-
type>-model. Figure 5 shows the PDDL action for train-
ing in a classification task. Training tasks always incre-
ment errors, in case of classification they are the classifi-
cation error, percentage-incorrect, and the readability of
the learned model, unreadability. And, we assume values
for these increments.

(:action train-classification
:parameters (?mi - ModelInstance ?m - Model ?n -
ModelName ?d - DataSet ?fi - FieldName ?t - TestMode)

:precondition (and (learnable ?mi)
(is-model ?mi ?m)
(implements ?m classification ?n)
(is-field ?fi ?d)
(dataDictionaryDataField-otype ?fi categorical)
(eval-on ?d ?t))

:effect (and (is-classification-model ?mi ?d ?fi)
(not (preprocess-on ?d))
(not (learnable ?mi))
(increase (unreadability)

(model-unreadability ?m))
(increase (percentage-incorrect)

(model-percentage-incorrect ?m))
(increase (exec-time)

(* (* (model-exec-time ?m)
(thousandsofInstances))

(* (dataDictionaryNumberOfFields)
(dataDictionaryNumberOfFields))))))

Figure 5: PDDL action for training.

• Testing Actions: in the form of test-<model-type>.

12

These actions usually follow their corresponding train-
ing action. For instance, cross-validation or split. They
are separated from the training actions, because they are
needed when handling the process flow in the KFML.
Testing actions add the fact that the learned model has
been evaluated.

• Visualizing and Saving Actions: in the form of
visualize-<result-option>. These actions are related to
goals defined in the problem file. Action parameters indi-
cate the preferred option depending on the learned model,
the pre-defined options in the PMML file and the goal de-
fined for the specific planning task. There is a precondi-
tion to verify if the visualization model is allowed for that
model, predicate allow-visualization-model.

The domain actions represent specific DM tasks. A
matching between domain actions and the DM tasks defined
in the KFML file is required. To have an idea of the com-
plexity of this planning domain, we have to take into account
that WEKA implements more than 50 different transforma-
tion actions or filters, more than 40 training actions for clas-
sification and regression, and 11 training actions for classi-
fication. Each of these transformation and training actions
can be parameterized, so the number of different instantia-
tions of those actions is huge. Obviously, not all of them
must be included in the PDDL files to generate a plan, and
the user can define in the PMML which of them s/he is in-
terested in using.

There are different ways to define the domain actions. For
instance, in our case the actions train-classification
and train-regression are coded separately because they
correspond to different DM tasks in WEKA. However, they
could have been merged in only one action, obtaining a more
compact domain representation with an easier maintenance.
With the current implementation we gain the opportunity of
faster integration with other DM tools different than WEKA.
The performance of the planner is not affected, since it per-
forms the search using grounded actions, so both domain
definitions will become equivalent in search time.

Information in the problem file is automatically obtained
from the PMML file using the translator described in the
next section. This information, specific to a dataset, is used
by the planner to instantiate all the possible actions speci-
fied in the PMML file by the user and to handle constraints
imposed to the planning task.

The whole domain contains the following actions.
load-dataset is always the first action in all plans. Then,
the plans can contain any number of filter actions such
as apply-transformation-DerivedField-2op,
apply-transformation-normalize,
apply-transformation-discretization or
apply-transformation-AttributeSelection.
There could be no filter action, as well. After the attribute
selection filter is applied no other filter is allowed. The
following action is the datasetPreparation action
that prepares the dataset for splitting or for a cross-
validation. Then, there are three possible actions for train-
ing, train-classification, train-regression
and train-clustering, another three for testing,

test-classification, test-regression and
test-clustering, and three more for visualizing
the model visualize-classification-model,
visualize-regression-model and
visualize-clustering-model. The last action in
all plans is the visualize-result for knowing the
learning results (errors, execution time, . . .).

Translators
PMML to PDDL
The PMML2PDDL translator automatically converts parts
of a PMML file with the DM task information into a PDDL
problem file. The problem file together with a domain file,
that is assumed to stay fixed for all the DM tasks, are the
inputs to the planner. The problem file contains the particu-
lar data for each DM episode, including the dataset descrip-
tion, the transformations and models available for that prob-
lem, and the possible preferences and constraints the user
required. An example of preference is minimizing the total
execution time. Obtaining an error less than a given thresh-
old is an example of constraint.

A PDDL problem file is composed of four parts: the ob-
jects, the inits, the goals and the metric. Inits represents
the initial state of the problem and there is one proposi-
tion for each fact in the state. There are some propositions
common to all problems (static part of the problem specifi-
cation) and others are translated from the PMML file (dy-
namic part). Goals represent the problem goals. So far, they
are fixed for all the problems, and consist of visualizing the
result, (visualized-result result text), for saving
the statistics required to analyze the generated DM models.
Metric represents the formula on which a plan will be eval-
uated for a particular problem. A typical DM metric con-
sists of minimizing the classification error, but others could
be used, as minimizing execution time or maximizing the
readability of the learned model. SAYPHI, as the planners
based on the enhanced relaxed-plan heuristic introduced in
Metric-FF (Hoffmann 2003), only work with minimization
tasks. So, we transform maximizing the understandability
of the learned model for minimizing complexity. The other
preferences considered in our model are: exec-time, for min-
imizing the execution time; percentage-incorrect, for mini-
mizing the classification error; and mean-absolute-error, for
minimizing the mean absolute error in regression tasks and
clustering. We can handle similar constraints.

The static part of the problem specification includes
all the propositions concerning the predicates is-model,
learnable, allow-visualization, available and
can-learn, explained in the previous section, and the ini-
tial values of the fluents. The dynamic part includes the in-
formation about the dataset, the constraints and preferences,
the transformations and the models available for the DM re-
quest. Figure 6 shows and example of PMML file represent-
ing the well-known Iris DM set, allowing only one trans-
formation (a discretization) and two models (a neural net-
work and a decision tree). In general, for most DM tasks, a
user would include in the PMML file all WEKA DM tech-
niques (there are plenty of them). In the example of PMML

13

file, the user also defines: two constraints, concerning the
execution time and the complexity; and one preference, to
minimize the percentage-incorrect value, or classification
error. We obtain information from the following parts of
the PMML: Header, DataDictionary, TransformationDic-
tionary and Models. Header includes the constraints and the
preferences. Constraints are translated by adding numeri-
cal goals to the PDDL problem. Preferences are translated
by changing the metric of the problem. DataDictionary in-
cludes one field for each attribute in the dataset and they are
translated into propositions in the initial state and objects
of the problem. TransformationDictionary is translated by
adding some objects and propositions in the initial state of
the problem. Finally, each model defined in the Models part
is translated by adding a proposition in the initial state.

Figure 6 shows an example of the translation from a
PMML file to a PDDL problem file. It is easy to see
how some information is translated. For instance, the
tag DataField in the PMML file generates some predi-
cates in the PDDL file, like dataDictionaryDataField-type,
dataDictionaryDataField-otype, one for each attribute
of the initial dataset. The transformation Dis-
cretize of the PMML file is translated by adding
the predicate (transformationInstance-type discretize

continuous). When a model appears in the PMML, as
<NeuralNetwork modelName=”nnmodel1” function-
Name=”classification” algorithmName=”Neural Net”
activationFunction=”radialBasis”>, it enables the plan-
ner to use neural networks. The parameters of that
model are also defined in the PMML file, so the predi-
cate (implements NeuralNetwork classification nnmodel1)

and other related predicates are added to the problem
file. Similarly, the preference described in the header
of the PMML file, <Constraint variable=”percentage-
incorrect” value=”minimize”/>, is translated by including
a metric (:metric minimize (percentage-incorrect)) in
the problem file; while the constraints <Constraint
variable=”exec-time” value=”30”/ > and <Constraint
variable=”complexity” value=”8”/ > are translated by
including the numerical goals (< (exec-time) 30) and (<

(complexity) 8).
The translator makes the following conversions from the

PMML file to the PDDL problem file (<variable> repre-
sents the value of field variable in the PMML file):

1. Translates entry <DataDictionary> into the following
propositions in the inits:

(a) (= (DataDictionaryNumberOfFields) <numberOfFields>)

(b) (dataDictionaryDataField-type <name> <dataType>),
for each <DataField> entry

(c) (dataDictionaryDataField-otype <name> <optype>),
for each <DataField> entry

(d) (is-field <name> DataSet), for each <DataField> en-
try

(e) Creates an object <name> of type SchemaFieldName in
objects

2. Adds the following proposition in the inits for each
<DefinedFunction> entry:

(a) (transformationInstance-type <name> <opType>)

(b) (transformation <name> valueX), where valueX is in
<DefinedFunction.Extension.WekaFilterOptions.option.value>
when variable=”filter” value=valueX>

(c) Create an object <name> of type transfInstance in ob-
jects

3. Adds the following proposition in the inits for each
<DerivedField> entry:

(a) (dataDictionaryDataField-type <name> <dataType>)

(b) (dataDictionaryDataField-type <name> <optype>)

(c) (derivedField-operation <name> <Apply.function>)

(d) (derivedField-source <name>

<Apply.FieldRef.field>) for each <FieldRef> in
each <DerivedField>

(e) Create an object <name> of type DerivedFieldName in
the objects

4. Adds the following proposition in the inits for each
<modelName> entry:
(implements <model> <functionName> <modelName>)

5. Adds a numeric goal (< (<Constraint variable>)

<value>) for each <DataMiningConstraints> entry

6. Translates entry <DataMiningPreferences> for
(:metric minimize (<Constraint variable>)) in metric.

In order to make the translation process easier and more
general, we have defined an intermediate XML file, trans-
lation.xml, to drive the translation explained above. The
translator interprets this file each time together with the input
PMML file and generates a PDDL problem file. So, it is pos-
sible to include, modify or eliminate PMML entries from the
translation process without changing the program, but mod-
ifying this file. This intermediate XML file permits to con-
figure the information we need from the PMML file, so that
in case the PMML file or the domain change we only have
to change this file without modifying the translator. For ex-
ample, the translation 1.(b) explained above is represented
with the following entry in the translation.xml file:

<elements value=”dataDictionaryDataField-type”
where=”DataDictionary/DataField”>

<field type=”attribute”>name</field>

<field type=”attribute”>dataType</field>

<format>(/0/ /1/ /2/)</format>
</elements>

Planning for DM Tasks
As we mentioned in the previous section, SAYPHI solves
the planning task depending on the metric specified in the
PMML file. SAYPHI has a collection of heuristic algorithms.
For this application, the planner performs a Best-first Search
that continues exploring nodes in order to find multiple solu-
tions. Figure 7 shows an example of a best-cost solution plan
when the translated PDDL indicates the percentage error as
the problem metric. Likewise, Figure 8 shows a best-cost
solution plan for the same problem, but using the execution
time metric. In the first plan a Neural Network is preferred

14

(a) Example of PMML file encoding a DM request for the Iris
domain. The PMML file has been simplified to eliminate non-
relevant information for the purpose of generating the problem
file.

(b) Problem file in PDDL generated from the PMML file shown
in (a). Again, irrelevant information has been eliminated.

Figure 6: Simplified PMML and PDDL problem files.

15

0: (LOAD-DATASET INITIALDATASET)

1: (DATASETPREPARATION INITIALDATASET CROSS-VALIDATION)

2: (TRAIN-CLASSIFICATION NN NEURALNETWORK

NNMODEL4 INITIALDATASET CLASS CROSS-VALIDATION)

3: (TEST-CLASSIFICATION NN INITIALDATASET NEURALNETWORK

CLASS CROSS-VALIDATION RESU)

4: (VISUALIZE-RESULT NN INITIALDATASET CROSS-VALIDATION

RESU TEXT)

Figure 7: An example plan minimizing the percentage error.

0: (LOAD-DATASET INITIALDATASET)

1: (DATASETPREPARATION INITIALDATASET SPLIT)

2: (TRAIN-CLASSIFICATION TREE TREEMODEL

TREEMODEL1 INITIALDATASET CLASS SPLIT)

3: (TEST-CLASSIFICATION TREE INITIALDATASET

TREEMODEL CLASS SPLIT RESU)

4: (VISUALIZE-RESULT TREE INITIALDATASET

SPLIT RESU TEXT)

Figure 8: An example plan minimizing the execution time.

in the train-classification action because in the de-
fault definition it has a lower cost than applying the same ac-
tion with another model. On the other hand, the second plan
has two differences. The Split parameter is selected instead
of Cross-validation, and Tree Model is preferred instead of
Neural Network. Both differences arise because these ac-
tions are cheaper in terms of execution time. The best-cost
solution using the readability metric coincides with the sec-
ond plan, since the Tree Model is the parameter the mini-
mizes the cost for the training action.

Most of the action costs rely on formulae af-
fected by pre-defined constants for each parame-
ter (e.g. a constant fluent defined in the initial
state, such as (= (model-percentage-incorrect
NeuralNetwork) 5). These constant values were set by
a data mining expert in order to reproduce common results
depending on different executed tasks. Accordingly, the
total cost for a solution is taken as an estimation, since the
real cost in this application can not be known in advance.
Sensing the environment after each action execution could
establish real costs, but we have not included this process at
the current state of the project.

Plan to KFML
This section describes the translator that generates the
KFML files. Once the planner generates a plan, it has to
be translated into a KFML file, so it can be executed by the
WEKA Knowledge Flow. The translator reads a plan in an
XML format. Figure 9 shows a plan (in a standard format,
not XML) generated by SAYPHI using the PDDL problem
shown in Figure 6.

The translator generates as output a new KFML file with
an equivalent plan plus some new actions that the WEKA
Knowledge Flow can execute. Each action in the PDDL
Domain corresponds to one or many WEKA components.
Therefore, the translator writes for each action in the plan
the corresponding set of XML tags that represent the WEKA

0: (LOAD-DATASET INITIALDATASET)

1: (APPLY-TRANSFORMATION-ATTRIBUTESELECTION

INITIALDATASET ATTRIBUTESELECTION4)

2: (DATASETPREPARATION INITIALDATASET CROSS-VALIDATION)

3: (TRAIN-CLASSIFICATION TREE TREEMODEL TREEMODEL1

INITIALDATASET CLASS CROSS-VALIDATION)

4: (TEST-CLASSIFICATION TREE INITIALDATASET

INITIALDATASET CLASS CROSS-VALIDATION RESULT)

5: (VISUALIZE-CLASSIFICATION-MODEL TREE

TREEMODEL GRAPH INITIALDATASET CLASS)

6: (VISUALIZE-RESULT TREE INITIALDATASET

CROSS-VALIDATION RESULT TEXT)

Figure 9: A example plan generated by SAYPHI.

...
<object class="weka.gui.beans.BeanInstance" name="2">
<object class="int" name="id" primitive="yes">2</object>
<object class="int" name="x" primitive="yes">450</object>
<object class="int" name="y" primitive="yes">145</object>
<object class="java.lang.String" name="custom_name">
CrossValidationFoldMaker

</object>
<object class="weka.gui.beans.CrossValidationFoldMaker" name="bean">
<object class="int" name="seed" primitive="yes">1</object>
<object class="int" name="folds" primitive="yes">10</object>

</object>
</object>
...

Figure 10: A part of the KFML file corresponding to
the DATASETPREPARATION action in the solution plan pre-
sented in Figure 9.

component. For instance, Figure 10 shows a brief section of
the KFML file generated from the plan in Figure 9. This
part corresponds to the third action in the plan, i.e., the
DATAPREPARATION action.

Actions appearing in a plan can correspond to one of these
cases:

• The action corresponds to exactly one WEKA compo-
nent. For instance, the LOAD-DATASET action corre-
sponds to the ArffLoader component of the knowledge
flow. Some additional information may be needed from
the PMML file (e.g., the URI of the dataset to be loaded).

• The action corresponds to many WEKA components and
the action parameters decide which component needs to
be selected. For instance, in the DATASETPREPARATION
action, the second parameter indicates the type of
operation. Thus, CROSS-VALIDATION corresponds
to the CrossValidationFoldMaker component in
the knowledge flow, and SPLIT corresponds to the
TrainTestSplitMaker component.

• The action corresponds to many WEKA components and
the action parameters only specify the name of a tech-
nique or model. In these cases, the translator needs to
extract that information from the PMML file in order to
decide which KFML components should be selected. The
information extracted from the PMML file includes the
name of the component and the parameters that has to be
written in the XML code. For instance, the TREEMODEL
parameter of the TRAIN-CLASSIFICATION action corre-
sponds to the J48 algorithm and some other component

16

properties defined in the PMML file (See Figure 6).

After writing all components into the KFML file, the
translator connects them in the order specified by the plan
using the linking primitives of KFML. Finally, the translator
adds some extra components in order to save the informa-
tion generated during the execution. That information are
the learned models and the results of the plan execution. Fig-
ure 11 shows the knowledge flow diagram that the WEKA
GUI presents when reading the KFML file generated for this
example.

Figure 11: The knowledge flow diagram of the KFML file
translated from the plan in Figure 9

Conclusions and Future Work
This paper presents a proposal for modelling data mining
tasks by using automated planning, based on extensive use
of standard representation languages. The contribution of
the work is twofold: modelling the data mining task as an
automated planning task and implementing translators able
to compile any data mining episode represented in the stan-
dard language PMML into the planning standard language
PDDL. We have defined a PDDL domain that contains ac-
tions to represent all the possible DM tasks (transformations,
training, test, visualization, . . .). The domain is assumed to
stay fixed for all the DM episodes, but each action contains
preconditions to control its activation. The PDDL problems
are automatically translated from a PMML file representing
a DM episode adding the propositions for activating the al-
lowed actions in the particular DM episode. This model al-
lows to deal with plan metrics as minimizing the total execu-
tion time or the classification error. During the planning pro-
cess the metrics are computed from a planning point of view
giving some estimated values for their increments experi-
mented in the actions, but we cannot know their true value
until a DM Tool executes them. Once the planner solves a

problem the solution plan is translated into a KFML file to
be executed by the Knowledge Flow of WEKA. The gen-
erated model and the statistics are returned to the user. We
have implemented a distributed architecture to automate the
process.

In the future, we would like to generate several plans to
solve the same problem, to execute them in WEKA and to
return all the models to the user. Probably, the best models
according to the planner are not necessarily the best models
according to the user. Thus, we would also like to apply
machine learning for improving the plan generation process
and the quality of the solutions.

References
Amant, R. S., and Cohen, P. R. 1997. Evaluation of a
semi-autonomous assistant for exploratory data analysis. In
Proc. of the First Intl. Conf. on Autonomous Agents, 355–
362. ACM Press.
De la Rosa, T.; Garcı́a-Olaya, A.; and Borrajo, D. 2007.
Using cases utility for heuristic planning improvement. In
Case-Based Reasoning Research and Development: Pro-
ceedings of the 7th International Conference on Case-
Based Reasoning, 137–148. Belfast, Northern Ireland, UK:
Springer Verlag.
Fayyad, U.; Piatetsky-Shapiro, G.; and Smyth, P. 1996.
From data mining to knowledge discovery in databases. AI
Magazine 17(3):37–54.
Fernández, F.; Borrajo, D.; Fernández, S.; and Manzano,
D. 2009. Assisting data mining through automated plan-
ning. In Perner, P., ed., Machine Learning and Data Min-
ing 2009 (MLDM 2009), volume 5632 of Lecture Notes in
Artificial Intelligence, 760–774. Springer-Verlag.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. Journal
of Artificial Intelligence Research 61–124.
Hoffmann, J. 2003. The Metric-FF planning system:
Translating “ignoring delete lists” to numeric state vari-
ables. Journal of Artificial Intelligence Research 20:291–
341.
Mitchell, T. M. 1997. Machine Learning. McGraw-Hill.
Morik, K., and Scholz, M. 2003. The miningmart ap-
proach to knowledge discovery in databases. In In Ning
Zhong and Jiming Liu, editors, Intelligent Technologies for
Information Analysis, 47–65. Springer.
Provost, F.; Bernstein, A.; and Hill, S. 2005. Toward intel-
ligent assistance for a data mining process: An ontology-
based approach for cost-sensitive classification. IEEE
Transactions on Knowledge and Data Engineering 17(4).
Witten, I. H., and Frank, E. 2005. Data Mining: Practi-
cal Machine Learning Tools and Techniques. 2nd Edition,
Morgan Kaufmann.

17

Modeling E-Learning Activities in Automated Planning ∗

Antonio Garrido and Eva Onaindia
Universidad Politecnica de Valencia.

Camino de Vera s/n, 46071 (Valencia). Spain

Lluvia Morales and Luis Castillo
Universidad de Granada.

Granada. Spain

Susana Fernández and Daniel Borrajo
Universidad Carlos III de Madrid.

Leganés (Madrid). Spain

Abstract

This paper presents three approaches to generate learning de-
signs using existing domain-independent planners. All of the
approaches compile a course defined in a standard e-learning
language into a planning domain, and a file containing stu-
dent’s learning information into a planning problem. The
learning designs are automatically generated from the plans
that solve the problems. The approaches differ in the kind of
planning domain generated, thus increasing the possibilities
of using existing planners: i) hierarchical, ii) including PDDL
actions with conditional effects, and iii) including PDDL du-
rative actions. We also analyse the pros and cons on the
knowledge engineering procedures used in each approach.

Introduction
Sequencing of learning activities, according to different stu-
dent’s profiles and pedagogical theories, has been a widely
studied subject by planning community for at least a decade
(Brusilovsky & Vassileva 2003; Castillo et al. 2009; Vrakas
et al. 2007). This sequencing depends on temporal condi-
tions given by the needs of each student, the course duration,
the available resources and even collaboration between tu-
tors and students, which makes the problem very interesting
for the AI P&S community.

However, acquiring enough information on educational
domains to represent them as a planning domain is not an
easy work at practice. Until few years ago, there was no
standard language to represent most of the many aspects
involved in learning activities sequencing. Thanks to the
recent rise and widespread use of specification languages
based on XML schemata, such as IMS-MD, IMS-LIP, and
IMS-LD (IMS-GLC 2001 2009), the e-learning community
can now represent information on educational domains in
full detail. Despite this, designing generic translators from
the information of those standards into a planning domain
representation can be difficult because of two main reasons:
i) people give different meanings and uses to the fields of
the standards, given that the standards provide some flexi-
bility on how to represent knowledge, and ii) there is a great
variety of planning paradigms.

∗This work has been partially supported by the Spanish
MICINN under projects TIN2008-06701-C03-03 and TIN2005-
08945-C06-05, and the regional project CCG08-UC3M/TIC-4141.

This paper focuses on how to model learning sce-
narios (learning objects and students) as planning do-
mains+problems, and on the automated translation from
standard e-learning languages to planning models. More
particularly, the paper presents a general architecture which
consists of three translation approaches to compile learning
designs, based on IMS-MD and IMS-LIP standards (IMS-
GLC 2001 2009), into planning domains, as depicted in Fig-
ure 1. These domains, together with the file compilations
that contain students’ learning information, are later solved
by existing domain-independent planners. Thus, the result-
ing plans represent tailored sequences of learning activities
that students must follow. And this represents an important
advantage: each learning design comprises a personalised
plan that fully fits each student’s necessities and preferences,
learning styles and lets him/her work at his/her own pace.
Finally, the plan is translated into another standard represen-
tation, called IMS-LD, that displays the learning design on
different on-line learning platforms. In essence, this paper
contributes with:
• An automated translation of IMS-MD and IMS-LIP e-

learning templates into three different planning compi-
lations: i) hierarchical, ii) PDDL-conditional, and iii)
PDDL-temporal.

• An intuitive graphic tool that enriches the metadata la-
belling of the learning objects. This enrichment plays an
important role, as it serves to complete information that is
not always described from an educational point of view,
but still needed for AI planning.

• An effective use of planning technology to generate learn-
ing designs that best suit students’ learning goals, thus
promoting a more personalised access to the learning ob-
jects.

• An additional translator that parses the resulting plans,
and generates the input resources (learning objects) and
learning design to be included in state-of-the-art learning
platforms, such as dotLRN and Moodle, thus closing the
e-learning cycle.
The paper is organised as follows. First, we briefly de-

scribe the e-learning basis on which our work is based. Next,
we include some related work. After that, we analyse how
to model learning designs in planning, and present the trans-
lation section with the templates used to convert e-learning

18

Figure 1: Overview of our system’s architecture.

standards into planning domains. Then, we introduce our
graphic tool that allows us to enrich the courses from a plan-
ning standpoint. Later, we discuss the options to use the
resulting plans. Finally, we conclude the paper and motivate
the future work.

Basic Background on E-Learning
There are many standards that the e-learning community
uses to deal with learning activities and their sequencing.
The most famous one is SCORM (Wisher 2009) which in-
tegrates some of the IMS (IMS-GLC 2001 2009) familiy
standards but not those that model student profiles and se-
quencing personalization. The IMS family standards are
composed, among others of the following languages:

• IMS-MD, which is responsible for describing learning ac-
tivities and relations among them. It uses an XML schema
with nested labels such as title, resourceType, learning-
Time, etc.

• IMS-LIP, which integrates every student’s profile data in
a single document. The standard has also nested labels;
e.g. identifier, name, preferences, competencies, etc.

• IMS-LD, which includes the relations between informa-
tion and sequencing of learning activities, and one or sev-
eral students’ profiles.

These standards are supported by some learning manage-
ment systems (LMS). We have established an XML-RPC
and SOAP communication protocol with two of them, Moo-
dle and dotLRN respectively, capable to retrieve and provide
information about them in order to be used in the real world.
Moodle supports IMS-MD and IMS-LIP standards and has
an API that returns them in a special format shown in Fig-
ure 2. dotLRN can additionally display learning activities
sequences using the IMS-LD standard.

The first two standards are relatively easy to use and that
is the reason why its extensive spread over the past years.
However, despite the IMS-LD’s first stable version is al-
ready six years old, it has not been widely accepted in the

Figure 2: Two learning objects of an XML course in Moodle
format.

e-learning community. It is really difficult for one person
to design a plan that considers most of the variables to se-
quence learning activities in a course and adapt that se-
quence to every student’s profile. And this is the main moti-
vation for using P&S techniques, as they can be very power-
ful to automatically generate IMS-LD documents containing
sequences of learning activities fully adapted to the students.

Related Work
The application of integrated P&S techniques to improve the
sequencing of learning activities from Intelligent Tutoring
Systems was first introduced in (Peachy & McCalla 1986).
The underlying idea for using P&S techniques is to deal
with causal (planning) and temporal+resource constraints
(scheduling) capabilities in an e-learning setting. Since then,
some works have appeared but proposing ad-hoc approaches
that do not consider standard labellings of learning objects.
In (Mohan, Greer, & McCalla 2003), an exhaustive IMS-
MD standard labelling over learning objects for the defini-
tion of a domain model was proposed, which acted as a pre-
cursor for more standard approaches.

The approach proposed in (Camacho, R-Moreno, & Obi-
eta 2007) works over e-learning courses and adapts the plan
sequencing to the IMS-LD standard. However, it does not
take advantage of the entire standards for domain modelling.
Also, it does not support temporal constraints on particular
learning activities, but on the entire course. The PASER sys-
tem (Kontopoulos et al. 2008) uses ontologies over learn-
ing activities curricula, after the planning process, to simu-
late the lack of information about its causal relations. How-
ever, that system does not support scheduling features, such
as temporal reasoning, or adaptation capabilities to learning
styles and tutor interaction. On the other hand, the approach
presented in (Ullrich & Melis 2009) combines both IMS-
MD metadata for domain modelling and a set of competen-
cies required by the students. This approach generates an
activities sequence over a domain-dependent intelligent tu-
toring system, which unfortunately makes it lose the ability
to generalise the translation process and a further application
of its results.

The work presented in this paper shares the ideas on e-
learning standard usage and generation of sequence of activ-
ities. But, we address that by using a knowledge engineer-

19

ing algorithm to directly generate the planning domain of a
course in a standard Planning Domain Definition Language
(PDDL), so that we can easily use state-of-the-art planners
to solve the problem.

Modelling Learning Design in Planning
Learning designs keep a strong resemblance with AI plan-
ning models. After all, they both rely on the underlying idea
of using a sequence of activities that are linked by cause-
effect relations and make it possible to achieve some (learn-
ing) goals. From a general perspective, most learning de-
signs share the following features:

• A course is defined by a set of different learning activities,
also known as learning objects. Usually, they are repre-
sented as XML schemata (see Figure 2). For example,
in the definition of an AI course, there may be a generic
task for reading the introduction to planning. And, there
could be several learning objects to accomplish it, such as
viewing a slide presentation, reading the introduction text
from the text book, searching for the concept of Auto-
mated Planning in the Web and reading a couple of pages,
or seeing a graph about planning. It is enough for the stu-
dent to follow any one of them to accomplish the task,
but more than one can be performed as well. This set of
options is usually called the Metadata (MD) set.

• Each activity can be more or less appropriate to each stu-
dent depending on the student’s profile. Therefore, we
need mechanisms to determine this profile. There are
many theories that classify students into a set of pro-
files. Two well-known examples are the Felder’s learn-
ing styles1 (Felder 1996) and the Honey-Alonso ones
(HoneyAlonso 2002). These learning styles can be trans-
lated as order rules or utilities according to the planning
paradigm used.

• Learning activities can have dependency relations among
them. For instance, before reading about PDDL, the stu-
dent should have some knowledge on predicate logic.
More formally, we support four types of relations that in-
clude hierarchical structures and ordering relations based
on content dependencies. The hierarchical structures use
the IsPartOf IMS-MD relation, which represents a hi-
erarchical aggregation of learning objects. Additionally,
there are three types of causal dependencies, Requires, Is-
BasedOn and References, as in LOM terminology (LOM
2002). We interpret the first two relations as hard require-
ments. In the case of the Required elements, all of them
have to be completed before initiating a new learning ob-
ject. Let us assume that ’A Requires B’ and ’A Requires
C’. In this case, B and C need to be finished before do-
ing A. In the case of the IsBasedOn elements, at least one
of them has to be completed. Assuming ’A IsBasedOn
B’ and ’A IsBasedOn C’, only B or C must be completed

1The learning styles model developed by Richard Felder in-
corporates four dimensions: the Perception dimension (sensi-
tive/intuitive), the Processing dimension (active/reflective), the In-
put dimensions (visual/verbal) and the Understanding dimension
(sequential/global).

before initiating A. Intuitively, the Requires and IsBase-
dOn relations represent the idea of conjunctive and dis-
junctive requirements. On the other hand, the course de-
signer might also recommend other previous objects by
means of the References relation. This relation does not
denote a hard requirement but a recommendation (soft re-
quirement) to complete a learning object before proceed-
ing with the next one.

• Each activity takes a standard time (duration) to fulfill,
commonly known as typical learning time. In Figure 2,
however, ITEM-task3 has no duration (typicalLearning-
Time) as it is derived from its aggregated learning objects.
In other words, duration is only specified for primitive ac-
tivities.

• Each learning activity belongs to a source type, such as
a lecture, a diagram, an exercise, etc. Although this does
not seem to be very relevant for planning, it really has a
positive or negative impact in the outcome of the activity.
According to education experts, the source type highly in-
teracts with the student’s profile. For instance, a lecture is
very recommendable for Felder’s verbal students but not
for visual ones, and just the opposite holds for a diagram.

• The Metadata set of learning objects is translated into
a planning domain where each learning object is repre-
sented as one or several planning actions. As a general
rule, we can state that one planning domain is defined
per course, but we can use course composition and cre-
ate more general and larger domains, thus providing more
opportunities to reuse the learning objects in other con-
texts. The planning problem comprises one or more stu-
dents, where the students’ profiles and initial background
are encoded as propositions included in the initial state.
Finally, the goals usually consist in attaining some levels
of knowledge in particular topics or even in accomplish-
ing the whole course.

It is important to note that this information is part of the
IMS standard and not specially introduced for AI planning.
But, to the specific purpose of using planning techniques,
it is essential not to have missing components and to deal
always with coherent information. For instance, a situation
like ’A Requires B’ and ’B Requires A’ would entail a failure
to find a plan2.

As seen from above, learning objects, with their dura-
tion, student profile’s dependence and the relations defined
in their metadata can be metaphorically considered as tra-
ditional actions used in AI planning domains. In particular,
each learning object can be simply modelled as an action, its
dependency relations as preconditions, and its outcomes as
effects. For instance, the learning objects of Figure 2 could
be modelled by means of a PDDL-like structure similar to
the next one:

2The tool that we present below allows the user to visually no-
tice this situation and, therefore, helps validate metadata labelling.

20

(:action ITEM-task3 ;; Algorithms
:parameters (?s - student)
:duration ... ;; defined by its aggregated actions
:precondition (and (ITEM-action6)

(ITEM-task5)
student’s profile requirements...)

:effect (and (ITEM-task3-done)
other student’s profile-dependent effects...)

)

(:action ITEM-action6 ;; Basic Algorithms Lecture
:parameters (?s - student)
:duration 9
:precondition (student’s profile requirements...)
:effect (and (ITEM-action6-done)

other student’s profile-dependent effects...)
)

The basic elements of an action, such as preconditions,
duration and effects, are easily recovered from each learn-
ing object’s metadata and generated in the planning trans-
lation. However, there are other elements that are not easy
nor intuitive, such as the IsPartOf (hierarchical structure)
or References (soft preconditions) relations, the condition-
ality/interaction that appears when dealing with different
source types and students’ profiles, etc. All these elements
impose important challenges during the planning compila-
tion, which are more or less significant depending on the
planning approach to be used. This reflects the need of em-
phasising the knowledge engineering methods to perform
such compilations.

Translators
This section describes in detail the three different compila-
tions to be subsequently used by domain-independent plan-
ners. The most intuitive approach is the hierarchical one,
where a learning design is modelled as a task hierarchy con-
taining durative actions. Next one is the PDDL-conditional
that includes PDDL actions with conditional effects and, fi-
nally, the PDDL-temporal approach that models durative ac-
tions. We also analyse the pros and cons on the knowledge
engineering procedures used in each approach.

Hierarchical Domain Compilation
This hierarchical domain compilation is based on an ex-
tended version of PDDL for handling temporal knowledge
in HTN Planners described in (Castillo et al. 2006).

When using a hierarchical approach there are two main
structures to take into account, tasks and durative actions.
Their characteristics, according to the compilation of an e-
learning domain, are the following:

To define tasks, the main subject (also called the main
task of the course) is formed by ordered subsets of subtasks
that have an IsPartOf relation with the main one. These sub-
tasks contain others and so on until the subtasks are related
to learning activities which are represented as primitive du-
rative actions.

Each task has one or more methods that contain ordered
tasks and/or durative actions. Their order is given either by
the IsBasedOn relation or by additional preconditions based
on order rules according to the Honey-Alonso learning style
(HoneyAlonso 2002) of each student and its relation with the
resource types of the learning activities in the method. For
example, if a task is formed by three durative actions, not
ordered by IsBasedOn relation, and its resource types are

exercise, narrativeText and simulation, then we have two
methods with the next preconditions:
If the student’s learning style is Pragmatic then
the sequence order is: exercise, simulation and narrativeText

If the student’s learning style is Theoretical then
the sequence order is: narrativeText, simulation and exercise,

where Pragmatic and Theoretical are constants related to
the kinds of learning styles for a student according to the
Honey-Alonso theory.

In the next lines, we describe the compilation of the Al-
gorithms subject (with identifier item-TASK3 in Figure 2).
It is related by IsPartOf relation with a subject identified as
item-TASK5 that Requires the durative action item-action6
which is part of Algorithms too. As they are completely re-
lated through a Requires relation, then item-TASK3 has a
unique method with no preconditions and tasks in the ex-
plicit order mentioned later.
(:task item_TASK3 (:task Optional_item_action12
:parameters(?id - stId) :parameters(?id - stId)
(:method unique (:method yes
:precondition() :precondition(availability ?id much)
:tasks(:tasks((item_action12 ?id)))
(item_action6 ?id) (:method no
(item_TASK5 ?id)))) :precondition()

:tasks()))

On the other hand, and taking into account that this
paradigm is based on temporal deadlines, if any of the ac-
tions aggregated in the task is related to it through the Refer-
ences relation, then an auxiliar task with two methods is cre-
ated. As in Optional item action12, the first method
does not contain any action or subtask and has no precondi-
tions. The second method must ’invoke’ the referenced ac-
tion only if the student has enough time according to his/her
profile.

Finally, to define durative actions we consider that each
of them has also conditions related to the student’s profile,
e.g. a required language level, a high performance, or mul-
timedia availability. Usually, these conditions are assigned
to actions with soft preconditions or with the same name but
different preconditions and durations. They help adapt a se-
quence according to the deadlines for each student, which
are imposed to each action related to the goal of the course
in the problem definition.

PDDL-Conditional Domain Compilation
This approach assumes each learning activity has an util-
ity value that depends on two factors: the student’s pro-
file and the learning source type of the activity. Accord-
ing to pedagogical theories, each learning source type is
related to the Felder’s learning styles, represented in the
student’s profile (Baldiris et al. 2008). So, for each pair
<student learning style,activity source type> there is a cor-
responding utility. We represent learning styles with predi-
cates and the activity utility with a fluent, as it is explained
next. The model also assumes that there is a learning
object named fictitious-finish-course-name that
contains the tasks required to fulfil the entire course.

We use one predicate for each Felder’s learning style. For
example, (sequential ?s - student ?p - profile level type).
The profile level type can take the value strong, moderate
or balanced. If the system determines that the student is, for

21

example, strong sensitive and strong active we would add in
the initial state of the PDDL problem the propositions (ac-
tive student1 strong) and (sensitive student1 strong).

Each learning object is translated into a PDDL action in
the following way 3:

• The XML label <title> is used as the action name.
• We define a predicate with the same action name, but ad-

joining the prefix task and the suffix done. It is added to
the action effects and represents the fact that the student
has performed such activity and prevents him/her from re-
peating it.

• The XML label <typicallearningtime> represents the ac-
tivity duration. We use a fluent to represent the time, (to-
tal time student ?s), that is increased in the amount of this
label in the action effects.

• The XML label <learningsourcetype> represents the ac-
tivity source type. Its possible values are lecture, nar-
rativetext, slide, table, index, diagram, figure, graph, ex-
ercise, simulation, experiment, questionnaire, problem-
statement, selfassessment and exam. We have used the
fluent (reward student ?s) to represent the activity utility.
Given that it depends on both the student’s learning style
and the activity source type, we use conditional effects.
For example, when the learning source of an activity is
a lecture, Felder’s pedagogical theory says that it is very
good for reflective, intuitive and verbal students. So we
add the following conditional effects to the PDDL action:
(when (reflective ?s strong)

(increase (reward_student ?s) 40))
(when (intuitive ?s strong)

(increase (reward_student ?s) 40))
(when (verbal ?s strong)

(increase (reward_student ?s) 40))

To compute the increasing values of the reward student
fluent, we base on a table defined in (Baldiris et al. 2008),
where rows represent learning source types, columns are
the Felder’s learning styles, and intersections can take the
values: very good, good or indifferent, depending on how
the source type adapts to the Felder’s style. And, we have
converted them into numbers, by some kind of normaliza-
tion.

• The XML label <relation> defines a relation between
two learning activities. We use two of the four types of
causal relations defined in the IMS-MD: Requires and
IsBasedOn, with the meaning defined above. In fact, a
learning object with an IsBasedOn relation is considered
as a fictitious action, because the student has to perform
only one of the actions in the or-condition and both the
reward and the total time remain the same.

Figures 3 and 4 show PDDL actions translated from
learning objects with relations of type Requires and Is-
BasedOn respectively. The first action describes the ac-
tivity simulates-strips-problem. It requires that the student
has already performed activity reads-classical-planning, it
takes 30 minutes, and it adds the corresponding rewards.
The learning source type is problem that is very good for

3This compilation takes as input an IMS-MD Metadata set.

strong active, sensitive and visual students and good for
strong global students. We add the precondition (not
(task strips done ?s)) to avoid including twice the
same action in the plan. The second action represents
that a student could perform the activity simulates-strips-
problem or experiments-strips-problem to accomplish the
task task strips done.

(:action simulates-strips-problem
:parameters (?s - student)
:precondition (and (task_reads-classical-planning_done ?s)

(not (task_simulates-strips-problem_done ?s)))
:effect (and (task_simulates-strips-problem_done ?s)

(increase (reward_student ?s) 5)
(increase (total_time_student ?s) 30)
(when (active ?s strong)

(increase (reward_student ?s) 30))
(when (sensitive ?s strong)

(increase (reward_student ?s) 30))
(when (global ?s strong)

(increase (reward_student ?s) 15))
(when (visual ?s strong)

(increase (reward_student ?s) 30))))

Figure 3: Example of a PDDL action translated from a learn-
ing object with a Requires relation.

(:action OR-fictitious-strips
:parameters (?s - student)
:precondition (and (not (task_strips_done ?s))

(or (task_simulates-strips-problem_done ?s)
(task_experiments-strips-problem_done ?s)))

:effect (and (task_strips_done ?s)))

Figure 4: Example of a PDDL action translated from a learn-
ing object with a IsBasedOn relation.

As we said before, the fictitious-finish-course-
name learning object contains, as a Requires relations, the
tasks required to fulfill the course. This learning object
is translated into a fictitious PDDL action with one effect,
(task course-name done ?s), and its preconditions are the
tasks required to complete the course, plus the predicate (<
(total time student ?s) (time threshold student ?s)), to avoid
the plan to exceed the time limit. This threshold is defined in
the planning problem and represents the total time the stu-
dent can devote to the course. The planning problem has
only the goal (task course-name done ?s).

This representation allows that any planner that supports
full ADL extension (including conditional effects) and flu-
ents can find a solution.

PDDL-Temporal Domain Compilation
This approach follows the same thread presented in the pre-
vious conditional compilation w.r.t. a non-hierarchical rep-
resentation of actions in PDDL. However, there are some
differences w.r.t. the action model:

• As conditional effects are not supported by all existing
planners, we do not generate actions with unbound pa-
rameters, but fully grounded actions. That is, actions
where all the parameters have been instantiated. This
means that the name of each predicate needs to include
now information about the student. All this process is
done automatically. Although this entails rather larger

22

domains when dealing with many students (only one op-
erator for all the students vs. as many grounded ac-
tions as students), it simplifies the generation of both pre-
conditions and effects that depend on the student’s pro-
file. Now, we do not need preconditions like (active
?s strong) nor conditional effects because the ac-
tion (with all its effects) is generated only if the student
is strong in the active dimension of the learning style.
In other words, through a previous automated ground-
ing process, the planning domain will be formed only by
those actions that are actually applicable for each student.

• All predicates are generalised to numeric fluents, i.e. all
the variable information in the domain is encoded as func-
tions. This means that, instead of using a STRIPS model
of actions where preconditions and effects are bi-valued
(true/false) predicates, now we can deal with a broader
domain of values that allows to keep different levels of
knowledge. This increases the expressivity of the model,
by allowing us not only metric rewards (e.g. (increase
(reward Student1) 30), like in the conditional
compilation) but also having preconditions such as (>=
(Task Reads-classical-planning Student1)
50). This represents better the fact of: i) achieving marks
after executing the tasks, and ii) requiring successful
scores before executing tasks.

• This model encodes durations as defined in PDDL2.1, and
its successors, by using the :duration. This value is di-
rectly taken from the typical learning time metadata of
the learning object. Thus, the PDDL domain can be sub-
sequently used by any temporal planner. Nevertheless,
this compilation also has the ability to model time as in
the conditional compilation; that is, by means of an artifi-
cial fluent (total time) that represents the time-line.
The advantage of doing this is that this approach provides
a domain compilation valid for existing temporal and non-
temporal metric planners.

• The hierarchical structure is flatly encoded by means of
two dummy actions, Start and End, that represent the
aggregation activity. Start contains the preconditions of
the aggregation activity and End its effects. On the other
hand, the actions generated for all the aggregated objects
have that Start as precondition. Obviously, both Start and
End have duration 0. Recalling the example depicted in
Figure 2, Figure 5 shows an example of the three actions
that are generated when encoding the hierarchical rela-
tions in a flat structure.

• The utilisation of numeric fluents in actions makes the in-
clusion of metric resources and their cost easier, as tradi-
tionally used in P&S. Particularly, this approach can also
model the cost of each action, in terms of the resources
used, by simply adding a new effect such as (increase
(resource cost Computer) value). The inclu-
sion of the resources cost will later allow the user to de-
fine more flexible metrics to be optimised in the planning
problem.

(:durative-action Start_ITEM-task3_Std1 ;; Algorithms
:parameters ()
:duration (= ?duration 0)
:condition (and (at start (= (Start_ORG-s2ctest2_Std1_done) 1))

(at start (= (Start_ITEM-task5_Std1_done) 1))
(at start (= (Start_ITEM-task3_Std1_done) 0)))

:effect (and (at end (increase (Start_ITEM-task3_Std1_done) 1))))

(:durative-action End_ITEM-task3_Std1 ;; Algorithms
:parameters ()
:duration (= ?duration 0)
:condition (and (at start (= (Start_ITEM-task3_Std1_done) 1))

(at start (= (Start_ITEM-task6_Std1_done) 1))
(at start (= (End_ITEM-task3_Std1_done) 0)))

:effect (and (at end (increase (End_ITEM-task3_Std1_done) 1))
increase other numeric expressions or resource_costs))

(:durative-action ITEM-action6_Std1 ;; Basic Algorithms Lecture
:parameters ()
:duration (= ?duration 9)
:condition (and (at start (= (Start_ITEM-task3_Std1_done) 1))

(at start (= (ITEM-action6_Std1_done) 0)))
:effect (and (at end (increase (ITEM-action6_Std1_done) 1))

increase other numeric expressions or resource_costs))

Figure 5: Durative actions generated for the learning objects
of Figure 2.

Problems Compilation
Once the domain is generated, we need to define problems
in such a way that, when the planner solves them, each plan
represents a learning design for a particular student. That
is, the sequence of learning actions a student should per-
form in order to complete the course. Usually, LMS have
mechanisms based on standards to access the relevant stu-
dent information for the designs. IMS-LIP has become a
standard for storing such student information. But, again,
this standard is too generic and tries to cover too many as-
pects. Therefore, it is necessary to select the relevant stu-
dent’s characteristics required for our planning problems and
the XML fields that contain them.

This section describes a proposal of IMS-LIP schema for
translating it into a planning problem. The proposal is valid
for the hierarchical domain and the PDDL domain with flu-
ents and conditional effects, although the translated propo-
sitions, obviously, differ in each domain in relation to the
domain predicates. So far, the planning problems for the
temporal domain must be defined separately because the
grounded domain makes an automatic translation difficult.
After all, when working with grounded actions, both the
planning domain and problem are packed together as the
grounded actions in the domain are only valid for that par-
ticular planning problem.

On the one hand, planning problems include propositions
to represent the objects, the initial state, the goals and a met-
ric to optimise. In our domains, the objects represent the stu-
dent’s information for the learning design. The initial state
represents the student’s profile, the initial values of the flu-
ents, the previous knowledge of the student, the language of
the course, and some other information (e.g. performance,
equipment, availability, etc.). The goal is usually to pass the
entire course or a part of it.

On the other hand, the core structures of the IMS-LIP
are based upon: accessibility information, activities, affili-
ations, competencies, goals, identifications, interests, qual-
ifications, certifications and licences, relationship, security

23

keys, and transcripts. Within each category several data ele-
ments and structures are defined. Some of these are specified
explicitly as data types (language strings, for the most part)
and others are defined as recursive hierarchical structures.
Thus, the question is how to match both structures, the IMS-
LIP and the planning problem ones, so that, an automatic
translation compiles an IMS-LIP file into a planning prob-
lem. Table 1 shows the XML fields we have used to allow
this compilation. The first column represents the IMS-LIP
code and the second column represents the corresponding
translation into the planning problem.

IMS-LIP Planning Problem
<identification><name>
<contentype><referential>
<indexid>student1 :objects student1

<accessibility> <preference>
<typename><typevalue>
Learner_Style_Processing

<prefcode>reflective.strong :inits (reflective student1 strong)
<accessibility><preference>
<typename><typevalue>
Learner_Style_HoneyAlonso

<prefcode>theoretical.strong :inits (honeyAlonso student1 theoretical)
<goal><typename>
<tyvalue>AI-course
<contentype><temporal>
<typename>Time_Threshold
<temporalfield>3881 :inits (= (time threshold student1) 3811)

:goals (task AI-course done student1)
<activity><typename>
<tyvalue>Task
<learningactivityref>

<text>graph_theory :inits (task graph theory done student1)
<accessibility><language>
<typename><tyvalue>English :inits (language level English student1 high)
<competency><contentype>
<referential><indexid>
performanceLevel
<description>

<short>High :inits (performance level student1 high)

Table 1: Example of a problem compilation from an IMS-
LIP. Irrelevant information has been eliminated.

Approaches Comparison
Table 2 shows the differences between the three approaches
regarding some characteristics. The first rows represent
where or how each planning feature is defined. For exam-
ple, the Hierarchical domain is translated from a course de-
fined in Moodle format and the PDDL-Temporal one can be
defined either in Moodle or in IMS-MD format. The trans-
lation is fully automated in all cases. ’Tool’ means that the
characteristic is defined through the Tool we have imple-
mented. The planning goals in the Hierarchical approaches
are defined in the IMS-LIP, while in the PDDL-Conditional
one are defined in a learning object of the Metadata set. The
row Deadline definition represents where the time limit each
student can devote to the course is defined. For example,
in the Hierarchical and PDDL-Conditional approaches, it
is a field in the IMS-LIP that is automatically translated.
The row Prerequisite definition refers to the previous knowl-
edge the student should have in order to follow the course.
The row LOM relations means the types of relations, ac-
cording to LOM terminology, supported for the approaches.
Soft preconditions refers to the fact that the learning design
can contain activities that, without being mandatory, pro-
vide some benefit to the student. This is possible through the
methods in the Hierarchical approaches and through the pre-

condition (< (total time student ?s) (time threshold student
?s)) in the PDDL-Conditional representation. Time manage-
ment represents how the approaches deal with time. The Hi-
erarchical and PDDL-Temporal approaches use durative ac-
tions while the PDDL-Conditional uses fluents. The PDDL-
Temporal can also compile the domain using a fluent to rep-
resent time instead of durative actions. The row Metrics
means whether the approach can manage quality metrics or
not. The last row represents the planner required to solve
the problems modelled by the approach. SIADEX (Castillo
et al. 2006) is the only planner able to generate learning
designs in the Hierarchical approach, because of the input
language. So far, there is no standard language for repre-
senting hierarchical domains in PDDL. The other two ap-
proaches compile the domains into PDDL, so any planner
that supports fluents, metrics, and conditional effects, in the
case of PDDL-Conditional, or durative actions in the case of
PDDL-Temporal, can solve the problems.

Characteristic Hierarchical PDDL-Conditional PDDL-Temporal
Domain definition Moodle IMS-MD Both
Problem definition Moodle and IMS-LIP IMS-LIP Tool
Goal definition IMS-LIP LO in MD Problem (Tool)
Deadline definition IMS-LIP IMS-LIP Problem (Tool)
Prerequisite definition IMS-LIP IMS-LIP Problem (Tool)
LOM relations All IsBasedOn All

Requires
Students’ profile Honey-Alonso Felder Both
Soft preconditions Method Domain -
Time management Durative actions Fluent Both
Metric No Yes Yes
Planner SIADEX Conditional effect Temporal

Metrics Metrics

Table 2: Approaches comparison.

The Hierarchical approach permits modelling more learn-
ing features, including durative actions, but only the planner
SIADEX can solve the problems. Also, the methods have to
be manually defined. Also, it cannot deal with quality met-
rics. The other approaches use PDDL and can deal with met-
rics such as minimizing the total time the student devotes to
the course. However, current state-of-the-art planners can-
not manage maximizing metrics, so a metric for maximizing
the total utility that the learning activities report to the stu-
dent is not easily applicable. The PDDL-Temporal approach
automatically generates grounded domains avoiding the use
of conditional effects, but it makes ulterior domain modi-
fications difficult, as, for example, trying to find ways for
maximizing the utility.

Tool
Once the three translation modules have been presented, we
describe the tool that supports the user on generating the
planning files. As indicated in Figure 1, the tool comprises
two parts and its main goals are twofold. First, the tool acts
as an interface for the translators, thus making this process
simple and transparent to the user. Second, the tool provides
a graphic visualization of the learning objects and their rela-
tions, and also allows the designer to modify and tune them
by means of intuitive drag&drop graphic components and
user-friendly input forms.

24

Support Interface for Translation

The tool contains options for both importing and exporting
files in standard e-learning formats, together with transla-
tion support to planning files. Particularly, we can easily
import/export the learning objects encoded as IMS-MD in
dotLRN or in Moodle XML files. As an example, Figure 6
shows a snapshot of the tool when importing a simple Moo-
dle course with the objects depicted in Figure 2. The possi-
bility of importing learning objects from common standards
is very convenient as it allows the designer to reuse many
of the objects available in web repositories. After that, the
tool uses the three different compilation methods described
in the previous section to generate the planning domains and
problems accordingly.

Graphic Visualization and Tuning of the Learning
Objects

The second part of the tool focuses on modelling e-learning
courses, acting as a complementary module to specify and
facilitate the completion and extension of metadata records
of learning objects, specially those related to the struc-
tural and logical relationships that are essential for planning.
Loosely speaking, the tool offers a much more intuitive rep-
resentation of the learning objects by using graphic elements
(see Figure 6) rather than the XML files (see Figure 2). This
is interesting as we can see at a glance the hierarchical struc-
ture, the aggregated objects, the students’ profiles, their re-
lationships and also helps notice some inconsistencies, such
as circular dependencies between learning objects (e.g. A
and B Require each other).

A clear advantage of our tool is that it can be used to
improve the quality of the learning objects, at least from
the planning perspective. The e-learning standards include
much information within the objects, in the form of meta-
data, but they are not always directly usable in planning. Ac-
tually, some of the items are not concerned with planning,
like the keywords, the format or the source of the objects.
Others are not equivalent to the same named items in plan-
ning, such as the resources: a resource in e-learning may be a
URL the student needs to visit, but not a shared resource that
imposes additional constraints and costs to the plan. Conse-
quently, we can use the tool to complete and tune the meta-
data labelling of the learning objects, making them more ac-
curate w.r.t. i) information about the student’s profile, ii)
required resources, iii) typical learning time, i.e. duration,
and iv) relationships among objects and their types. After
all, the more accurate the metadata of the objects is, the bet-
ter for the planner —it will have more opportunities to find
a plan better adapted to the student. Figure 7 shows one
of the forms that allow to input basic information about the
learning object (from the planning point of view), min and
max duration, requirements on profiles and previous con-
cepts, necessary resources, etc. With all this information,
and once the students’ information is modelled, the tool per-
forms a temporal domain compilation and generates both the
domain and the problem files in PDDL format, ready to use
by any existing domain-independent planner.

Figure 7: Input form with information about the learning
object ’Basic Algorithms Lecture’.

Use of Plans
Each plan generated by a domain-independent planner, us-
ing a domain and a problem as described above, represents
the learning design that best suits the student whose char-
acteristics are modeled in the problem. Learning platforms
include tools for executing the designs when the design is
represented in a specific language. For example, dotLRN
interprets IMS-LD, whereas Moodle has its own templates.
We have implemented two more translators: from the plans
of non-hierarchical planners to IMS-LD and from the plans
of a hierarchical planner to the Moodle templates.

The first translator compiles a plan into an IMS-LD that
dotLRN is able to execute. This is a zip file that contains the
input resources (learning objects), as well as the learning
design (output of the planner). The first part is basically
a copy of the input resources that is usually contained in a
directory. The second part consists of an XML file. Next, we
describe the main fields of this file (some others are easily
filled in from this information) and how they are generated
from the domain, problem and plan:

• Objectives: these are filled with the name of the goals
of the problem. The problem goals are always the main
effects of the final action of any domain.

• Prerequisites: these are the initial conditions on previous
knowledge that is required to follow this course. They are
the links to learning objects of other courses, or objectives
of other courses. This will allow us to perform multiple
course planning in the future.

• Roles: in this case, the only role is that of the learner, the
student for whom the learning design is generated.

25

Figure 6: Snapshot of the tool.

• Activities: for each action in the plan, an IMS-LD activ-
ity entry is generated. This field is just an enumeration of
those actions, and each one also includes a link to the cor-
responding learning object. Fictitious actions are omitted.

• Activity-structure: this IMS-LD concept relates to the
plan itself. So, here the sequence of actions in the plan
is represented as such. Given that the standard allows
other control structures, such as conditional plans with
branches, in the future we will study how to generate con-
ditional plans and the effect it has on the fact that students
follow different alternatives.

• Resources: for each learning object in the input IMS-MD,
a resource, that can be or not used by the plan, is defined.

Once the translator generates the zip file, it can be up-
loaded to dotLRN and be used by any student after a se-
quence of bookkeeping activities: defining the student’s
preferences, defining relevant roles of the course, initiating
the execution of the course and so on.

The second translator compiles the hierarchical plan into
a Moodle template. This template describes an XML file
which is automatically related with a course by Moodle. The
XML document contains several items with a student’s iden-
tifier and a related action, as in next lines.
<item>
<studentId> student1 </studentId>
<actionId> ITEM-action1 <actionId>

</item>
<item>
<studentId> student1 </studentId>
<actionId> ITEM-action6 <actionId>

</item>

The actions related with each student’s identifier are not
subjects of a course, but learning activities, i.e. durative ac-
tions which were previously stored in Moodle database us-
ing IMS-MD standard. The order in which items appear in
the document correspond to the plan with the learning ac-
tivities sequencing obtained for each student. Internally, hi-
erarchy of subjects is provided by Moodle according to the
information previously stored.

Moodle permits us to deal with collaborative plans. If
items of several students are interspersed, then dependency
between actions of a previous student and the next one must
be taken into account by the platform. Obtaining collabora-
tive plans to take advantage of this characteristic is a task to
be done in a short future.

Conclusions and Future Work
E-learning is about designing a sequence of learning activi-
ties a student needs to perform in order to complete a course.
Principally, this involves three main issues: course defini-
tion, student’s learning information and learning design ex-
ecution. There are languages to represent all of them based
on XML schemata, but an important effort needs to be done
to be fully automated.

This paper has proposed a three-approach procedure to
interpret and translate e-learning tasks into automated plan-
ning. A course definition is represented as a planning do-
main, the student’s learning information as a planning prob-
lem for that domain and the learning design as the plan gen-
erated by a domain-independent planner when solving that

26

problem. We have implemented translators from the cor-
responding e-learning languages into three different kinds
of planning domains and problems. These three domain
reasoners allow different planners to automatically generate
valid learning designs in a few seconds. However, we have
detected three main drawbacks. First, e-learning languages
are too generic and try to cover too many aspects, making
the implementation of general and suitable translators for all
LMS very difficult. Second, in spite of the expressive power
of e-learning languages, there are still few aspects that can-
not be represented and are essential in P&S. For example,
the definition of the resources involved in tasks, their costs,
the temporal constraints on availability and how these re-
sources are to be managed are important lacks in e-learning
languages. Finally, our domain modelling allows us to gen-
erate valid learning designs, but they cannot guarantee opti-
mal plans in terms of utility to the student.

In the future we want to find solutions to overcome the
previous drawbacks by addressing two parallel lines. Firstly,
we are interested in coming up with more expressive mod-
els of actions for planning e-learning activities. This will
increase the opportunities to: i) deal with course composi-
tion, and ii) validate and resolve courses with similar but
incommensurate learning objects. Secondly, we want to ex-
tend the tool to assist the course designer in making sure
that the same naming conventions are used. As one of the
anonymous reviewers suggested, the adoption of a common
ontology can be very useful (Kontopoulos et al. 2008).

References
Baldiris, S.; Santos, O.; Barrera, C.; J.G., J. B.; Velez, J.;
and Fabregat, R. 2008. Integration of educational specifica-
tions and standards to support adaptive learning scenarios
in adaptaplan. Special Issue on New Trends on AI tech-
niques for Educational Technologies. International Jour-
nal of Computer Science and Applications (IJCSA).
Brusilovsky, P., and Vassileva, J. 2003. Course Sequencing
Techinques for Large-Scale Web-Based Education. Inter-
national Journal Continuing Engeenering Education and
Lifelong Learning 13(1/2):75–94.
Camacho, D.; R-Moreno, M.; and Obieta, U. 2007.
CAMOU: A Simple Integrated e-Learning and Planning
Techniques Tool.
Castillo, L.; Fernández-Olivares, J.; Garcı́a-Pérez, O.; and
Palao, F. 2006. Efficiently handling temporal knowledge
in an htn planner. In Proceedings of the Sixteenth Interna-
tional Conference on Automated Planning and Scheduling,
ICAPS 2006, 63–72.
Castillo, L.; Morales, L.; Gonzalez-Ferrer, A.; Fdez-
Olivares, J.; Borrajo, D.; and Onaindia, E. 2009. Au-
tomatic generation of temporal planning domains for e-
learning problems. Journal of Scheduling. Accepted.
Felder, R. M. 1996. Matters of style. ASEE Prism 6(4):18–
23.
HoneyAlonso. 2002. Honey alonso learning
style theoretical basis in spanish. Available at
http://www.estilosdeaprendizaje.es/menuprinc2.htm.

IMS-GLC. 2001-2009. Ims specifications. Available at
http://www.imsglobal.org.
Kontopoulos, E.; Vrakas, D.; Kokkoras, F.; Bassiliades, N.;
and Vlahavas, I. 2008. An ontology-based planning system
for e-course generation. Expert Systems with Applications
35:398–406.
LOM. 2002. Draft standard for learning object meta-
data. IEEE. 15 july 2002. 6 oct. 2007. Available at
http://ltsc.ieee.org/wg12/files/LOM 1484 12 1 v1 Final Draft.pdf.
Mohan, P.; Greer, J.; and McCalla, G. 2003. Instructional
Planning with Learning Objects.
Peachy, D., and McCalla, G. 1986. Using Planning Tech-
niques in Intelligent Tutoring Systems. International Jour-
nal of Man-Machine Studies 24(1):77–98.
Ullrich, C., and Melis, E. 2009. Pedagogically Founded
Courseware Generation Based on HTN-planning. Expert
Systems with Applications 36(5):9319–9332.
Vrakas, D.; Tsoumakas, G.; Kokkoras, F.; Bassiliades, N.;
Vlahavas, I.; and Anagnostopoulos, D. 2007. PASER:
a curricula synthesis system based on automated problem
solving. Int. Journal on Teaching and Case Studies, Spe-
cial Issue on ”Information Systems: the New Research
Agenda, the Emerging Curriculum and the New Teaching
Paradigm” 1(1/2):159–170.
Wisher, R. 2009. Sharable Content Object Reference
Model(SCORM) 2004 4th Edition Documentation Suite.
ADL.

27

JABBAH: A Java Application Framework for the Translation Between Business
Process Models and HTN

Arturo González-Ferrer
Centro de Enseñanzas Virtuales

University of Granada
c/ Real de Cartuja 36-38, Spain 18071

arturogf@ugr.es

Juan Fernández-Olivares and Luis Castillo
Departamento de Ciencias de la Computación e IA

University of Granada
c/ Periodista Daniel Saucedo s/n, Spain 18071

{faro, l.castillo}@decsai.ugr.es

Abstract

HTN planning paradigm has been widely used dur-
ing the last decade to model and solve planning and
scheduling problems. Even so, little research have
been oriented to represent and generate these plan-
ning domains automatically with the help of software
tools. In this paper we present an extensible software
framework directed to cover this goal, proposing an
innovative knowledge engineering method that trans-
form a workflow graph into an equivalent nested pro-
cess model, which simplifies the subsequent mapping
to HTN-PDDL. Some results in the field of e-learning
management are also exposed.

1. Introduction
The difficulty of writing Planning and Scheduling (P&S) do-
mains is well known by the AI community, and usually a
lot of human effort is necessary to explore the real prob-
lems that are likely to be modeled, capturing the acquired
knowledge with accuracy into a planning domain, that is
usually coded using non-intuitive languages as PDDL (Long
and Fox 2003) or any of its flavours. Despite being a diffi-
cult task, still little work has focused in helping to do it in a
convenient way. However, this kind of problem is specially
suitable for the Knowledge Engineering (KE) discipline.

Even though there are already some approaches (Simp-
son, Kitchin, and McCluskey 2007; Vaquero et al. 2007;
Bouillet et al. 2007) devoted to the field of KE for P&S,
they are rather directed to be helpful for planning experts
(dealing with the modeling of world objects and actions).
The approach here presented is more aligned with (Barták et
al. 2008), and deals with the automatic generation of plan-
ning domains from expert knowledge introduced by using
existing tools and standard languages that are close to IT ar-
chitects and organization stakeholders.

Concretely, we propose in this paper the development of
a software framework that is able to automatically map this
acquired knowledge into P&S domain and problem defini-
tions. Our work is focused on the reuse of Business Process
Modeling (BPM) tools (Havey 2005). They are able to deal
with goals and tasks specification, environmental analysis,

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

design, implementation, enactment, monitoring and evalua-
tion of business processes (Muehlen and Ho 2006).

Exploiting the common field between BPM and P&S is
interesting, not only because we could use robust, formal
and mature software tools to capture the knowledge we want
to represent into the corresponding P&S domain (data, activ-
ities, rules, performers, etc), but also because we could reuse
existing process models that have already been designed by
software architects for a specific problem, offering P&S as a
possible solution for a very wide range of application fields,
taking as input a pre-existing process model. Moreover, in-
troducing an automated P&S system into the BPM life cy-
cle (Muehlen and Ho 2006) of a company, capable of both
interpreting and reasoning about an initial workflow model
representation, can provide support for decision making on
key issues like tasks organization, resources allocation, or
even requirement and use cases analysis.

The work here presented is based on the hypothesis that
the process structure, the ordering constraints and the con-
trol flow structures of a BPM model, can be captured by an
HTN knowledge representation language. Hence, we could
use an state-of-art HTN planner that takes this domain repre-
sentation as input and use its output in order to obtain action
plans helpful for management tasks. This existing equiv-
alence between both BPM and HTN made us consider the
development of a software tool to carry on the transforma-
tion of one model into the other.

So, the contribution of this paper is that, having a BPM
design of any organizational process, modeled under some
previous requirements, we can extract the corresponding
HTN planning domain and problem files directly from the
original process diagram without the interaction from any
planning expert. Moreover, this is done keeping the process
control-flow restrictions as well as the data model reflected
on it. Furthermore, some experiments have been carried on
to support the organization and management of e-learning
course development requests, allowing to check the useful-
ness of our approach.

The paper is structured as follows. Section 2 introduces
some concepts and technical background about the problem.
Section 3 details the Knowlegde Engineering procedure de-
veloped. Section 4 exposes some requirements on the input
process diagram. Section 5 exposes some results and Sec-
tion 6 describes some conclusions and lessons learned.

28

2. Technical Background
In this section we introduce the BPMN/XPDL business
modeling languages, which has been chosen for our work.
We also introduce workflow patterns, in order to convey why
we decide to use them as the main background concept for
our transformation, and which are also the basis for choosing
the Hierarchical Task Network (HTN) paradigm to model
the resulting planning domain.

2.1 BPMN/XPDL
XPDL stands for XML Process Definition Language. The
goal of XPDL (WfMC 2008) is to store and exchange a pro-
cess definition, offering an XML serialization of the Busi-
ness Process Management Notation (BPMN) graphical rep-
resentation of the process diagram. The main advantage of
using XPDL as modeling language is that it is commonly
used among business analysts, and it can be used to represent
the organization activity easily. There are a lot of modeling
tools that already incorporate XPDL natively or as an addi-
tional plug-in. Although some used directly BPEL (Busi-
ness Process Execution Language) (Garcı́a-Bañuelos 2008)
to design the process diagram, ideally this should be done
in XPDL, as it was thought for modeling, not for execution
(Palmer 2007). Next, an overview of the XPDL entities and
attributes considered in our work is exposed:

Process
(W. Process)

Type Declaration

Data Field

Pool

W. Relevant Data

System and
environmental data

Activity Set
(Embedded Subprocess)

Application

Transition
(Sequence Flow)ActivityParticipant

Block activity

SubFlow

Event

Task/Tool

Route

Gateway

Lane

Resource Repository
or Organization Model

performer

performer

uses
uses

uses

uses

Figure 1: XPDL metamodel

Activities. They comprise a logical, self-contained unit
of work, which will be carried out by participants and/or
computer applications. Activities are related to one another
via transitions.

Gateways. Special activities used to implement decisions
that affect the sequence flow path through the process.

Transitions. Transitions may be either conditional (in-
volving expressions which are evaluated, driving the se-
quence flow path) or unconditional, and may result in the
sequential or parallel operation of individual activities.

Lanes. They denote areas or departments of the organi-
zation or process, and every activity contained within that
particular lane will be done within that area. So, we can use

them to establish a way to define capabilities that a particu-
lar activity requires. So, a participant also needs to belong to
a specific lane, in order to be able to complete this activity.

Participants. They can be differentiated by their defini-
tion scope: a) Those defined at process level can be con-
sidered as possible resources that can be allocated to one or
more activities. They will have associated precondition def-
initions, established by the lanes the participant belongs to.
This membership can be specified as an extendedAttribute
tag for every participant at modeling time. b) Those defined
at activity level will force that specific activity to be done by
the participant specified.

Parameters and DataFields. These entities are used to
define the process data model. We can control flow from a
gateway by creating a parameter (which has an associated
data type) and values to be used in an associated rule. On
a conditional transition exiting the gateway, we can specify
that the transition will be followed only when parameter val-
ues match the expression specified in the rule. Information
that is internal to the process is represented as Data Fields
and information required outside the process is represented
by Parameters.
XPDL modeling tool We have used TIBCO Business Stu-
dio, a modeling tool that use the BPMN graphical notation,
is offered for free and includes support for latest release of
XPDL v2.1.

Taking advantage of our expertise on e-learning man-
agement, we have analyzed a specific organisational pro-
cess to manage the collaborative creation of e-learning
courses within the virtual learning center of the University
of Granada. This process implies the participation and in-
teraction of different roles (instructional designers, graphic
designers, HTML developers, sysadmins, tutors, etc.), and
it has an explicit activity time ordering (see figure 2). The
transformation of this process into a P&S domain will help
to make the most of the e-learning center workload, also of-
fering an estimation (to both managers and customers) about
the time needed to deploy the requested course.

2.2 Workflow Patterns

Workflow Patterns (van der Aalst et al. 2003) are those
generic structures found in a graph representation that cap-
ture frequently-used relationships between tasks in a pro-
cess, and that are typically nested to form the whole process
model. The XPDL language can represent some of them, al-
though it lacks of some power for the correct representation
of complex patterns (van der Aalst 2003). Therefore, only
the most basic ones are going to be considered throughout
the paper, those that can be well represented and are expres-
sive enough for the definition of most processes: serial, par-
allel split-join, and parallel exclusive-OR (usually used to
capture conditional structures). As shown later, our map-
ping process will work by detecting these workflow patterns
in a process model and translating each of them to its corre-
sponding HTN structure.

29

Training authors
on Instructional

Design

Content
Authoring

Authors Revision

Training tutors
on LMS use

Content
Processing

Media
opt imizat ion

Media
creation

CSS
adaptat ion

Flash
animations

Qualit iy revision

Content
assembly into

LMS

Notif ication
to

students

Students
registrat ion

A1

A3

A2 A9

A6

A11

A5 A7 A8

A10

A12

A13

A4

Start

End

optimize?

yes no

Training
Department

Authoring
Department

HTML Devel
Department

Graphic Design
Department

Sysadmin
Department

Quality
Department

Figure 2: An example organisational process modeled using the BPMN graphical notation, describing the development of
courses in a specific e-learning center. On the right side, text annotations boxes show the lane represented with point lines
on the left; the boxes, named A1-A13, represent the activities; the arrows represent the transitions; the elements with the
symbols ’x’ and ’+’ are the exclusive-OR and parallel gateways; the participants are not represented graphically, and can only
be explored within the BPM modelling tool. This model can be serialized as a XPDL stream, and later analyzed by JABBAH.

30

2.3 Hierarchical Task Network Planning
HTN planning domains are designed in terms of a hierarchy
of compositional activities. Lowest level activities, named
actions or primitive operators, are non-decomposable activ-
ities which basically encode changes in the environment of
the problem. On the other hand, high level activities, named
tasks, are compound actions that may be decomposed into
lower level activities. Every task may be decomposed fol-
lowing different schemas, or methods, into different sets
of sub-activities. These sub-activities may be either tasks,
which could be further decomposed, or just actions. HTN
paradigm is able to represent the hierarchical structure of
the domain and it is also expressive enough to capture the
expert knowledge in order to drive the planner to a desirable
solution.

HTN-PDDL notation The HTN planning domain lan-
guage used in this work is a hierarchical extension of PDDL
(Long and Fox 2003) that uses the following notation.

Types, constants, predicates, functions, and durative-
actions are used in the same way that in original PDDL lan-
guage. In addition, the task element is introduced to express
compound tasks. Its definition can include parameters, dif-
ferent decomposition methods with associated preconditions
(that must hold in order to apply the decomposition method)
as well as tasks to represent its corresponding lowest level
task decomposition.

At the problem definition, objects is used to define objects
that are present in the problem, init conditions to define the
set of literals that are initially true, and task-goals to define
the set of high level tasks to achieve.

Compound tasks, decomposition methods and primitive
actions represented in a planning domain mainly encode the
procedures, decisions and actions that are represented in the
original BPM model. More concretely, the knowledge rep-
resentation language, as well as the planner used, are also
capable of representing and managing different workflow
patterns present in any BPM process model. A knowledge
engineer might then represent control structures that define
both, the execution order (sequence, parallel, split or join),
and the control flow logic of processes (conditional and iter-
ative ones). For this purpose the planning language allows
sub-tasks in a method to be either sequenced, and then they
appear between parentheses (T1,T2) , or splitted, appearing
between braces [T1,T2].

We have used the IACTIVE
TM

planner for this paper, as
it is already known how to translate workflow patterns for
semantic web services composition (J.Fernandez-Olivares et
al. 2007), as well as its adaptation to temporal knowledge
(Castillo et al. 2006). In addition, it has already been used
in several applications (Castillo et al. 2007; Fdez-Olivares
et al. 2008).

Next section describes the KE procedure needed to extract
the P&S domain and problem from a process diagram.

3. Translation Overview
Roughly speaking, what we want to do is to identify com-
mon patterns in a workflow model (which can be clearly
seen as a graph), so that we can generate a tree-like structure,

much similar to HTN domains. This entails the resolution of
two main problems: a) analyze the workflow model to get a
corresponding graph, b) interpret the resulting graph, map-
ping it to a tree-like structure. To do this, a collateral chal-
lenge, out of AI Planning scope but necessary, is the trans-
formation of the graph into a tree-like structure, which has
been done using an algorithm described later at section 3.2.

So, our Knowledge Engineering proposal consists of three
different stages (see figure 3) which are necessary in order
to develop a sound approach for the problem of capturing
knowledge from a BPM model that will finally be repre-
sented into an HTN planning domain:

XPDL file
XPATH
Parsing

START

Intermediate DS

Graph Model

Branch
water-mark NPM BuildBlock Detection Equivalent

Tree Model

HTN-PDDL
code generation

domain

problem

AI Planner

Gantt diagram

Figure 3: The different stages of the translation process

a) Firstly, we need to parse the source XPDL document,
storing it into an intermediate data structure and graph model
that can be easily managed throughout the next stages.

b) Then, we need to detect the different blocks of work-
flow patterns (parallel and serial blocks), distinguishing their
kind from the knowledge acquired in the previous parsing
stage, and build up an equivalent tree-like model. This is
carried on by arranging those workflow patterns hierarchi-
cally, but also keeping the semantic information (about con-
trol flow and decisions) present in the process diagram.

c) Finally, we need to do a code generation phase, where
we analyze the tree model that has been populated previ-
ously, trying to generalize common patterns found in the
graph (i.e. serial or parallel split-joins patterns are always
coded in the same way), and writting the HTN-PDDL code
that corresponds to the tree-graph fragment analyzed.

Next, we proceed to give further insights on the develop-
ment of these 3 steps.

3.1 Mapping to an Intermediate Graph Model
This step takes as input a standard XPDL file (previously
exported from the BPM modeling tool used), reading it by
using XPATH(W3C 1999) parsing technology, which allows
searching only the XML entities we are interested in. Then,
it obtains as result a graph in which every node represents

31

an activity (or gateway) and every edge represents a transi-
tion between two activities (conditional or unconditional, as
exposed previously at BPMN/XPDL subsection). Further-
more, we will keep all the relevant information about par-
ticipants, lanes, parameters, etc. by using an associated data
structure that will be used throughout the mapping process.

It’s important to note that both gateways and transitions
elements are the main elements that drive the control flow
in XPDL workflow graphs. They are also the main elements
considered for our work and, from a workflow patterns per-
spective, they will define how to map organizational pro-
cesses into planning and scheduling domains, so that the fu-
ture plans developed by our software framework will mainly
act according to their definition in the process diagram.

At this point, we have developed a graph model of the
original process diagram that can be further worked out in
order to achieve our goal.

3.2 Block Detection: Mapping to a Tree Model
The goal of this stage is to build an equivalent tree model
from the graph obtained in the previous phase. Our work for
this level of the mapping process is based on previous re-
search done in (Bae et al. 2004), where an algorithm was de-
veloped to generate a tree representation of a workflow pro-
cess which was later used to derive ECA (event-condition-
action) rules, helpful for controling the workflow execution.

S

E

A1

A3

A2

AND

A4

ORA5 A6

OR

A7 A8

A9

AND

A10

AND A11

AND

A12

A13

1.0

0.5

0.5

0.5

0.250.25

0.5 0.5

0.25

0.25

0.5

1.0

1.0

Parallel block B1

Parallel block B2

Figure 4: Part of the block detection algorithm applied to
graph of figure 2. We can appreciate the branch-water mark
procedure as well as the workflow pattern detection.

The tree representation obtained is called a nested process
model (NPM) (Bae et al. 2004). It describes how to build
up a process model in a top-down manner, representing a
root node which is decomposed into a set of subprocesses
and tasks, and so on. It adopts and generalizes a hierarchi-
cal model, allowing to express a parent-child relationship
between subprocesses. We adapted this tree-like model to
our particular problem, the representation of P&S domains,
taking into account the control-flow information included in

gateways and transitions, as expressed before, adding adi-
tional information about the process and data model as well.
Thus, the algorithm for block detection described has the
next three steps:

1. The first step is to mark every node of the graph with
a weight, based on a branch-water procedure (see figure 4).
It simulates a pipeline network carrying water, being 1.0 the
quantity of water poured at the start node, and branching the
quantity through the pipe. If the water-level at a specific
node is l, and the flow is branched into k alternatives, then
l/k quantity of water is propagated through every alternative
node. The water-level measure is the method used to identify
the most inner block in the graph, which is important for
the next steps. It allows to build a NPM in a bottom-up
approach, as exposed next.

2. The second step is to identify serial and parallel work-
flow patterns (we call them blocks here) consecutively, using
the weight to identify the most inner block. Every time we
identify a serial or parallel block, we substitute all the nodes
that constitutes that block with a special SERIAL BLOCK
(SB) node or PARALLEL BLOCK (PB) node, obviously
linking the new node with the preceeding and succesors
nodes, in order to keep the graph being connected and two-
terminal (it has an unique start and end node). If the work-
flow graph fulfills the requirements commented before, it is
easy to see that this process ends having an unique SB or
PB block node that constitutes the root node for the nested
process model we want to build up.

3. Finally, if the root node is now expanded using the
nodes it grouped originally, placing them as children, and
we do this operation recursively with every SB or PB block
node, we can draw the new tree-like structure that we were
searching for. This is done as a typical breadth-first search
algorithm. The result of the procedure constitutes what we
called the nested process model (NPM) of the original BPM
diagram, using a bottom-up approach (see figure 5). Ob-
serve that those nodes with mininum weight lay at the lower
levels, and go up consecuently as their weight increase (this
is the reason to look first for the most-inner blocks).

Figure 5: An example of a Nested Process Model gener-
ated from the previous BPMN process model. Note that
leaf nodes correspond to activities and non-leaf nodes corre-
spond to serial and parallel blocks

32

There are some considerations we must stress on. Firstly,
we need to keep all the knowledge acquired in the parsing
stage (lanes, participants, parameters and its association to
gateways, etc.), being important to have custom implemen-
tations of graph nodes and edges. Second, we must keep the
nodes that gave rise to the new special block nodes, intro-
duced in the second step. And last, the knowledge present
in gateways must be transferred to the new parallel block
nodes (i.e., we must transfer the type of gateway, the param-
eters/rules that drives the flow, etc...), as soon as those gate-
ways nodes are not going to be present on the new built NPM
(but their semantic is maintained, including the relevant in-
formation mentioned into the newly created PB nodes). The
algorithm complexity is O(n2), being n the number of edges
of the workflow graph (Bae et al. 2004).

3.3 HTN-PDDL Code Generation
Now we give specific details about how we generate the
HTN planning domain and problem files, taking as basis
both the tree-like structure (the NPM, figure 5) and inter-
mediate data structures, already developed in the previous
phases.

As opposite to the bottom-up approach followed to cre-
ate the NPM, the generation of HTN-PDDL code is going
to follow a top-down approach. It is clear to see that, as
we already have a tree-like model, all we need to do is a
breadth-first search over the NPM, considering the informa-
tion relevant to every node (described along this section),
and considering also some patterns related with some kind
of nodes (see figure 6).

Next, we expose how to express the different elements of
an HTN-PDDL domain and file definitions. We also expose
the underlying conceptual mapping from XPDL source ele-
ments, reflecting both the process and data models.

Domain name and requirements. These HTN-PDDL
blocks are encoded as const strings (the requirements section
is considered always the same).

Types. The basic types considered are those that are going
to be useful in any planning domain: activity, participant
and lane. Of course, parameters data types must be also
generated (see the corresponding item below).

Constants. XPDL activities and lanes will be mapped
as HTN-PDDL constants, which are going to be used later
throughout the domain and problem files. This is automati-
cally extracted from the intermediate data structure obtained
in section 3.1, and they will be coded in lowercase characters
(i.e. activities will be coded as ax, being x the activity id).

Predicates. We must include, at least, two default predi-
cates, useful in almost any process model mapping:

1) (belongs to lane ?p - participant ?l - lane) . This pred-
icate is used to express which lanes the participant belongs
to, in other words, what abilities correspond to every par-
ticipant. It will be used to encode both initial conditions of
the problem (one predicate instance for every ability a par-
ticipant posess) and preconditions for the durative actions (a
precondition for every activity within a lane).

2) (completed ?a - activity) . This predicate will encode
initial conditions of the problem as well as preconditions and
effects for durative actions.

There are also some predicates that should be added dy-
namically, those that are related to parameters/rules match-
ing pairs (described later at parameters item).

Durative Actions. Every activity of the process diagram
corresponds to a leaf-node in the NPM and it is mapped as a
primitive durative action on the planning domain, as a frag-
ment following the next pattern:

(:durative-action Ax
:parameters(?w - participant)
:duration (= ?duration D)
:condition(belongs_to_lane ?w L)
:effect (completed ax))

For every k, being k an activity of the NPM, a correspond-
ing durative action Ax is generated, being x the id number,
whose effect is the completion of the activity ax (which was
coded as a constant previously, and the associated predicate
named completed). The duration of the activity, D, which
is coded in XPDL using an extendedAttribute tag, and the
lane the activity belongs to, L, are mapped directly from the
corresponding XML attributes present on the XPDL activity.

Realize that order constraints among activities, in non-
hierarchical planning paradigms, are coded through the use
of preconditions in durative actions, being necessary an
extra cause-effect analysis. However, in HTN planning
paradigm, order constraints are directly mapped into the cor-
responding syntactic structures developed to that end. So,
our approach does not need to abuse of precondition defini-
tion, simplifying the process, as exposed next in the defini-
tion of compound tasks.

Figure 6: Different patterns identified in the NPM represen-
tation that are mapped as HTN compound tasks. (a) a serial
block, (b) a split-join block, (c) a exclusive-OR block

Compound Tasks. The HTN-PDDL compound tasks are
mapped from those intermediate nodes (non leaf-nodes) of
the Nested Process Model. These nodes always correspond
to workflow pattern blocks (see figure 6), that are actually
specifications of different tasks with control flow mecanisms
that are coded as order constraints (sequential/parallel) or as
alternatives (if-then):

33

1. Serial Blocks. One activity must be executed after
other, following a sequence in time. This can be expressed
in HTN-PDDL as a sequence of primitive actions and/or
tasks surrounded by parentheses. Next example represents
the fragment of figures 6(a) and 7:

(:task SB1
:parameters ()
(:method blsb1
:precondition ()
:tasks ((A2 ?w1) (A4 ?w2)
(PB1 ?optimize) (A7 ?w3)
(A8 ?w4) (PB2)
(A11 ?w5))))

Figure 7: a serial block fragment

Note that, on one hand, durative actions Ax must be gen-
erated with the corresponding parameter ?wy which express
a resource that has to be allocated at planning-time (the par-
ticipant y is assigned the activity x). On the other hand, com-
pound tasks that are also part of the decomposition can be
generated with or without parameter, representing the for-
mal parameter which drives the flow in the original XPDL
process diagram (i.e. the parameter ’optimize’ in the exam-
ple above controls which flow to follow, as exposed next).

2. Parallel Split-Join Blocks. They represent a branch of
the process flow into two or more flows (split) that are car-
ried on simultaneously (without specifying which of them
should be executed first), and that finally converge into the
same flow again (join). These parallel split-join blocks are
represented in HTN-PDDL enclosed by square brackets, as
the following case, that represents the fragment of figures
6(b) and 8:

(:task PB3
:parameters ()
(:method blpb3
:precondition ()
:tasks ([(A3 ?w1)(SB1)]
(A12 ?w2))))

Note that A12, the right brother node of PB3 in figure
6(b), is the activity executed after the join gateway. This
scheme repeats for every parallel split-join block detected in
the nested process model.

A3

A2 A4 A11

BlockSB1

Figure 8: a parallel split-join block fragment

A6

A5

opt imize

= t rue

= false

Figure 9: a parallel exclusive-OR block fragment

3. Parallel Exclusive-OR Blocks. They represent blocks
which flow is controlled by a gateway node which has asso-
ciated both a formal parameter and a corresponding logical
expression that controls which alternative flow must be fol-
lowed. We generate a method for every possible alternative
to follow, using the expression as precondition of the defined
method, as the next example, that represents the fragment of
figures 6(c) and 9:

:task PB1
:parameters (?x - parameter)
(:method ifA5

:precondition (value ?x true)
:tasks (A5 ?w1))

(:method elseA6
:precondition (value ?x false)
:tasks (A6 ?w1))

It’s clear that we should also map the parameters and
expressions in such a way that different kind of parame-
ters/expressions pairs and its associated data types can be
added to the framework in a future. We have already done it
for boolean data type, as described next.

Parameters. Parameters are usually associated to
Exclusive-OR parallel blocks, and they can be initially ex-
pressed as follows, as soon as they have been modeled as
boolean parameters:

a) add an HTN-PDDL type ’parameter’.
b) add a HTN-PDDL constant for every parameter (i.e.

the parameter named optimize).
c) add a predicate (i.e. named value) to check boolean

values (true, false).
d) pass the corresponding parameter to the Exclusive-OR

block wherever it is used, as done in previous example with
parameter optimize. This is very easy, as the parameters have
been already stored in the intermediate data structure.

e) in the problem file, define the parameter as an initial
condition of the problem. Note that parameter values should
be passed to the AI planner somehow before interpreting the
domain and problem files generated (i.e. it can be given by
the user outside the framework).

Other data types could be included using a similar
methodology, but adding more powerful rule expressions
(step c) is still one of the features to be improved in the JAB-
BAH framework. Besides this mapping, we also tried refer-
ring to an external organizational data model stored in UML,
using some of the capabilities of the BPM modeller, as the
XPDL standard supposedly supports it, but this feature was
somehow experimental in the modeller and we could not

34

complete it. Using UML for storing the data model would be
ideal, as there are already authors (Vaquero et al. 2007) that
worked out a methodology to express this model in PDDL.

Objects. Every participant is going to be defined at the
problem file as an object (of ’participant’ data type). Init
Conditions. Besides parameter values mentioned above, we
must include the abilities that every participant (previously
defined as object) possesses, in other words, what lane the
participant belongs to (using the predicate belongs to lane
described before). Goals. The goal of the problem definition
file will be the root node of the NPM, which is always a
compound task, that can be iteratively decomposed in order
to generate all the process plan.

So we have described in previous sections the whole KE
process followed to map a BPM model to its corresponding
P&S domain and problem definitions. In the next section,
we introduce some restrictions on the input process model,
necessary to guarantee the correctness of our solution.

4. Input process model requirements
For the sake of the framework usability, we need to establish
some requirements on the input process model, owing to the
fact that not always the designed diagrams have the desired
properties for later processing (any BPM expert knows about
this circumstance). Thus, we have considered the next three
conditions on the input process model:

a) The input process model must include an unique start
node s and an unique end node e. Extrapolating this property
to the equivalent graph model, it must be two-terminal.

b) All the gateway nodes that split the flow in the input
process model, must have a corresponding gateway node
that joins the flow again. Extrapolating this property to the
equivalent graph model, it must be well-structured.

c) The input process model must be connected between
elements from start to end nodes, so that for every node,
always exists a path from s to e that goes through that node.
Extrapolating this property to the equivalent graph model, it
must be directed and connected.

The proposed requirements are demanded in order to
guarantee that the workflow pattern detection stage is car-
ried on correctly (b), as well as the branch water-mark pro-
cedure included in that stage (a, c). Some inspiring works
for the establishment of these requirements have been the
SESE (single-entry single-exit) regions of a graph (Garcı́a-
Bañuelos 2008), and the process structure tree (Vanhatalo,
Volzer, and Koehler 2009). It seems natural to delimit the
sort of process models that can be worked out, as usually
done in other research related to BPM (van der Aalst 1999).

Maybe, the most demanding requirement for the user are
(a, b), but fortunately some transformations have been al-
ready developed in order to obtain well-structured graphs
from unstructured ones (Vanhatalo et al. 2008) (which also
eliminates the need for an unique end node).These trans-
formations could be introduced either into BPM modeling
tools or into the JABBAH framework itself, in order to in-
crease the number of models it can analyze, being unneces-
sary to modify the diagram manually. Although no valida-
tion checking about the input has been developed yet in our

software tool, we would like to include it in a near future, so
that it can be helpful to the IT architects during the design
process by giving tips at design-time, similarly to any other
simulation engine included within traditional BPM tools.

5. Experiments
The JABBAH framework described above has been devel-
oped following an object-oriented methodology. It is based
on the Java graph library jgrapht, which provides a com-
plete and customizable library, covering to a large extent
our needs for creating graph data structures, with fully cus-
tomized nodes and edges implementation. Furthermore, its
corresponding visualization libraries, jgraph and jgraphlay-
out help us to develop a visual interface, allowing to see the
original graph extracted from the source XPDL document as
well as its corresponding NPM.

We have done some experiments by using JABBAH over
the process shown at figure 2. It represents the whole pro-
cess to develop and deploy a specific course within the e-
learning center at the University of Granada. Having an in-
coming course request, as well as some available workers
with different capabilities each, we want to assign an activ-
ity to every worker, so that we can have a plan over time that
tells the e-learning managers information about the workers
allocation as well as the end time of the whole course devel-
opment, which allows to do an anticipated decision-making
upon the course request.

Figure 10: Screenshot of JABBAH framework running over
the example process

The first thing to do is to design the process diagram (fig-
ure 2) with the help of the TIBCO Business Studio pro-
cess modeler. The only inputs the managers have to pro-
vide once the process model has been designed are a) the
estimated duration of every activity and b) the abilities ev-
ery specific worker posesses. Both requirements are usually
known by managers. Then, we export the diagram as an
XPDL file, and import that file using JABBAH, which will
show both the process diagram (on the left) and the corre-
sponding nested process model (on the right), as shown in
figure 10. Figures 4, 5 and 6 described the first two stages
of our KE procedure applied to the mentioned process, and
how the NPM is built up. At the same time, the HTN-PDDL

35

translation process is carried on over the NPM, saving the
domain and problem files in an output directory. We can
then interpret those files by using the IACTIVE

TM
planner,

and get the corresponding plan.
Using different abilities assignment for real workers at the

e-learning center, as well as estimated activities duration, we
have checked the viability of the output plans. An exam-
ple assignment as the following: Emilio (training), Storre
(authoring), Miguel (html), JoseBa (graphic), Arturo (ad-
min) and FMoreno (quality), would result on the output plan
shown as a Gantt diagram at figure 11.

Figure 11: Output plan as a Gantt diagram

So, we end up checking that the KE procedure developed
is useful within this particular scenario, and it can be extrap-
olated to multiple scenarios, as soon as the process diagram
is represented in the terms specified in this paper.

6. Conclusions and Lessons Learned
This paper has made some innovative contributions in or-
der to overcome the traditional drawbacks of P&S modeling,
specifically for the HTN paradigm. Mainly, a sound KE pro-
cedure has been developed in order to express BPM process
diagrams as HTN P&S domain, building up an intermediate
data structure that organises the source process diagram as a
nested process model, simplifying the subsequent transfor-
mation into HTN-PDDL code. This is very useful, not only
by the number of application areas it can give support to, but
also because most of the processes are being modeled with
BPM tools, what increases the usability of JABBAH.

What’s more, our paper hints at a future direction to fol-
low on the automatic capture and generation of HTN plan-
ning problems from organizational processes, and it could
give rise to any other profitable approaches, at least in the
area of Enterprise Resource Planning (ERP) and Supply
Chain Management (SCM), which has already been part of
previous research in P&S (Pardoe and Stone 2006). Some
results were obtained in the field of e-learning management,
which was very useful and interesting for the IT personal at
the e-learning center of the University of Granada. What’s
more, JABBAH can fill some existing gaps in BPM tools, as
exposed next.

6.1 Business Prospects
Understanding and estimating the time and cost to complete
a product development process is a key business challenge.

Typically, managers have relied in project management tools
(PMT) for planning purposes, but the interdependencies be-
tween time and resource constraints make it very difficult to
analyze activity costs and resource requirements using tradi-
tional PMTs . The introduction of computed-aided Business
Process Simulation (BPS) tools traditionally helped to cap-
ture the resource constraints, decisions rules and stochastic
behaviour of real situations. But, while the strength of BPS
tools relay in their ability to incorporate stochastic situations
in the model, their use imply that, to find the best resource
allocation scenario, the manager has to determine various
scenarios and simulate them (Tumay 1996). First, this is
not very realistic, as the simulation relays on subruns for
a specific scenario which is usually not repeatable, as the
constraints evolve in time. Second, BPS tools are based on
trial-and-error mecanisms that don’t help the manager to do
the correct allocation of resources to activities. Sometimes
this circumstance can be a serious problem as the constraints
get harder, making difficult to find a correct assignment.

It’s important to note that the resource allocation feature
is still a requirement to be improved in BPM/BPS tools
(Castellanos et al. 2006). The JABBAH framework directly
tackle both BPS inconvenients exposed above. On the one
hand, JABBAH would be used every time that a new order
request was received, being more realistic, as it would eval-
uate the existing constraints at that specific moment. On the
other hand, the traditional trial-and-error mecanism will be
replaced by JABBAH, as it helps the manager to decide a
good scenario, while keeping all the constraints defined in
the process.

Furthermore, the results obtained by the JABBAH frame-
work could be incorporated back into the BPM simulation
engine (usually, the simulation scenario is expressed using
an XPDL extension), so that the manager could simulate the
process with the obtained assignment. Hence, after some ex-
ecutions, workflow mining tools could be used to investigate
how much the processes have improved by using the new
tecnique (in terms of resources under-utilization or over-
utilization, in terms of production and benefits, etc).

JABBAH could be useful at project-based and customer
service-based processes, that is, processes where there are
customers which ask for a product which, after the corre-
sponding development process carried on by a collabora-
tive teamwork made up of different humans, departments or
roles (and why not, software applications or web services), is
finally supplied to the customer. This could be expanded to
other kind of projects as long as we improve the representa-
tion of the data model, which is one of our future challenges.

6.2 Future Work
The expression of temporal dependencies is surprisingly
poorly addressed by the different BPM standards, and can
be very difficult to introduce not only on the modeling side,
but also in the enactment side. A specific extension called
Time-BPMN (Gagné and Trudel 2009) has been created re-
cently to, on the one hand, simplify the temporal constructs
of the original BPMN, and on the other hand, allow the
specification of temporal constructs that were not possible
in the original BPMN. Specifically, the temporal constructs

36

of time points, intervals/durations, temporal constraints and
temporal dependencies have been considered in this exten-
sion, which is based on Allen’s interval algebra. As exposed
in (Castillo et al. 2006), the HTN-PDDL extension used in
JABBAH is able to correctly represent these temporal con-
structs. So, it seems reasonable that the next step of our work
will be the consideration of this extension, and the automatic
translation into HTN-PDDL of the temporal constructs that
can be depicted through Time-BPMN, so that our tool ac-
quire a better capability to express other complex scenarios.

Furthermore, we must emphasize that, though we used
XPDL in our work, the JABBAH framework has been de-
veloped with the idea of extensibility in mind, taking into
consideration future growth. That means that if we would
like to use the next BPMN 2.0 specification, that suppos-
edly will include an XML serialization itself, we could im-
plement a different parsing method, keeping the same inter-
mediate data structure populated correctly, as exposed pre-
viously at section 3.1. Similarly, the block detection algo-
rithm used (Bae et al. 2004), could be substituted by other
similar approaches. We would like to add the RPST (Van-
hatalo, Volzer, and Koehler 2009), in order to improve the
efficiency of the block detection method (O(n)), checking
also its behaviour for P&S domain generation. Last but not
least, since we used a language independent tree-like output
model, we could introduce a plug-in for any differen plan-
ning language, as long as they respect the HTN paradigm.

This would provide us a sandbox environment where we
could test different techniques, measuring how they behave
and how far will their capacity of expression go, in terms of
P&S modeling. The JABBAH framework has just started
and hopefully it can be tested over some other different
process models, so that we can enrich its design, which
still needs stressing on the improvement of the process data
model, as soon as the process model and control-flow per-
spective have been the ones that got an intense dedication at
this early stage of development.

References
Bae, J.; Bae, H.; Kang, S.; and Y.Kim. 2004. ”Automatic
Control of Workflow Processes Using ECA Rules”. IEEE
Transactions on Knowlegde and Data Engineering 16(8).
Barták, R.; Little, J.; Manzano, O.; and Sheahan, C. 2008.
”From enterprise models to scheduling models: bridging
the gap”. Journal of Intelligent Manufacturing.
Bouillet, E.; Feblowitz, M.; Liu, Z.; Ranganathan, A.; and
Riabov, A. 2007. ”A Knowledge Engineering and Planning
Framework based on OWL Ontologies”. In ICKEPS 2007.
Castellanos, M.; Casati, F.; Sayal, M.; and U.Dayal. 2006.
LNCS 3811. Springer. chapter ”Challenges in Business
Process Analysis and Optimization”, 1–10.
Castillo, L.; Fdez-Olivares, J.; Garcı́a-Pérez, O.; and Palao,
F. 2006. ”Efficiently handling temporal knowledge in an
HTN planner”. In Proceedings of 16th ICAPS, 63–72.
Castillo, L.; Fdez-Olivares, J.; Garcı́a-Pérez, O.; and
A. González, F. P. 2007. ”Reducing the impact of AI Plan-
ning on end users”. In Workshop on Moving P&S Systems
into the Real World (Keynote talk).

Fdez-Olivares, J.; Castillo, L.; Cózar, J.; and Garcı́a-Pérez,
O. 2008. ”Supporting clinical processes and decisions by
hierarchical planning and scheduling”. In Proceedings of
SPARK 08.
Gagné, D., and Trudel, A. 2009. ”Time-BPMN”. In Pro-
ceedings of 1st International Workshop on BPMN.
Garcı́a-Bañuelos, L. 2008. ”Pattern Identification and
Classification in the Translation from BPMN to BPEL”. In
Proceedings of OTM 2008, 436–444. Springer.
Havey, M. 2005. ”Essential Business Process Modeling”.
O’Reilly.
J.Fernandez-Olivares; Garzón, T.; Castillo, L.; O.Garcı́a-
Pérez; and Palao, F. 2007. ”A Middleware for the au-
tomated composition and invocation of semantic web ser-
vices based on HTN planning techniques”. In LNAI, vol-
ume 4788, 70–79. Springer.
Long, D., and Fox, M. 2003. ”PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains”. Jour-
nal of Artificial Intelligence Research 20:61–124.
Muehlen, M., and Ho, D. T.-Y. 2006. Business Process
Management Workshops, LNCS 3812. Springer. chapter
”Risk Management in the BPM Lifecycle”, 454–466.
Palmer, N. 2007. BPM and Workflow Handbook. Work-
flow Management Coallition. chapter ”Workflow and BPM
in 2007: Business Process standards see a new global im-
perative”, 9–14.
Pardoe, D., and Stone, P. 2006. ”Predictive Planning for
Supply Chain Management”. In Proceedings of ICAPS.
Simpson, R. M.; Kitchin, D. E.; and McCluskey, T. L.
2007. ”Planning domain definition using GIPO”. The
Knowledge Engineering Review 22:117–134.
Tumay, K. 1996. ”Business Process Simulation”. In Pro-
ceedings of Winter Simulation Conference, 93–98.
van der Aalst, W.; ter Hofstede, A.; Kiepuszewski, B.; and
Barros, A. 2003. ”Workflow Patterns”. Distributed and
Parallel Databases 14(1):5–51.
van der Aalst, W. 1999. ”Formalization and Verification of
Event-Driven Process Chains”. Information and Software
Technology 41(3):639–650.
van der Aalst, W. M. 2003. ”Patterns and XPDL: A criti-
cal Evaluation of the XML Process Definition Language”.
QUT Technical report FIT-TR-2003-06 1–30.
Vanhatalo, J.; Volzer, H.; Leymann, F.; and Moser, S.
2008. ”Automatic Workflow Graph Refactoring and Com-
pletion”. In LNCS, volume 5364. Springer. 100–115.
Vanhatalo, J.; Volzer, H.; and Koehler, J. 2009. ”The Re-
fined Process Structure Tree”. Data & Knowledge Engi-
neering 9(68):793–818.
Vaquero, T.; Romero, V.; Tonidandel, F.; and Silva, J.
2007. ”itSIMPLE 2.0: An Integrated Tool for Designing
Planning Domains”. In Proceedings of 17th ICAPS.
W3C. 1999. ”XML Path Language, v1.0”.
http://www.w3.org/TR/xpath.
WfMC. 2008. ”XML Process Definition Language Speci-
fication, v2.1”. WFMC-TC-1025 1–216.

37

PORSCE II: Using Planning for Semantic Web Service Composition

Ourania Hatzi1 , Georgios Meditskos2, Dimitris Vrakas2, Nick Bassiliades2,
Dimosthenis Anagnostopoulos1, Ioannis Vlahavas2

1Department of Informatics and Telematics, Harokopio University of Athens, Greece

2Department of Informatics, Aristotle University of Thessaloniki, Greece
{raniah, dimosthe}@hua.gr, {gmeditsk, dvrakas, nbassili, vlahavas}@csd.auth.gr

Abstract
This paper presents PORSCE II, an integrated system that
performs automatic semantic web service composition
through planning. In order to achieve that, an essential step
is the translation of the web service composition problem
into a planning problem. The planning problem is then
solved using external domain-independent planning
systems, and the solutions are visualized and evaluated. The
system exploits semantic information to enhance the
translation and planning processes.

1. Introduction
Web services nowadays are essential parts of the World
Wide Web, as they accommodate interoperability between
heterogeneous systems. However, in many cases, the need
for complex and integrated service functionality cannot be
fulfilled by a simple atomic web service, leading to the
requirement for web service composition. The task of web
service composition becomes significantly difficult, time-
consuming and inefficient as the number of available
atomic services increases continuously. Therefore, the
possibility to automate the web service composition
process is proved essential.
 Automated web service composition is significantly
facilitated by the development of the Semantic Web, since
the existence of semantic information permits composition
using intelligent techniques, such as AI Planning. Semantic
description of web services is accommodated through the
development of a number of standards such as OWL-S [6],
WSMO [11], SAWSDL [13] and WSDL-S [12].
 PORSCE II aims at automated semantic web service
composition through planning with semantic relaxation.
The first and very significant step in this process involves
translation of the web service composition problem to a
planning problem. This translation takes place between the
most prominent standards in each area: OWL-S [6] for
semantic description of web services and PDDL [5] for
definition of planning domains and problems. According to
user preferences, the translation process may take into
account semantics, resulting from the semantic analysis of

the domain; if so, semantically equivalent or relevant
concepts are also included, in order to cope with cases
when no exact plans can be found. The result of the
transformation process is a fully formulated planning
problem which incorporates all the required semantic
information. PORSCE II consequently exports the
planning problem to PDDL and invokes external planning
systems to acquire plans, which constitute descriptions of
the desired complex service. Each plan is evaluated in
terms of statistic and accuracy measures. Finally, the
system integrates a visual component which accommodates
plan visualization and modification.
 The rest of the paper is organized as follows: Section 2
discusses some related work, Section 3 provides an
overview of the OWL-S standard, while Section 4 outlines
the system architecture. Section 5 elaborates on the
translation process, including semantic analysis and
relaxation performed in the system. Section 6 presents the
rest of the system operations. Section 7 presents a case
study and performance evaluation and finally, Section 8
concludes the paper and poses future directions.

2. Related Work
One of the first systems that attempted automatic web
service composition is SHOP-2 [15]. The system uses
services descriptions in DAML-S, the predecessor of
OWL-S, and performs HTN planning to solve the problem.
The disadvantage of this approach lies in the fact that the
planning process, due to its hierarchical nature, requires
given decomposition rules, or methods, as they are referred
to, which have to be encoded in advance with the help of a
DAML-S process ontology.
 OWLS-Xplan [16] uses semantic descriptions of web
services in OWL-S to derive planning domains and
problems, and then invokes a planning module called
Xplan to generate the complex services. The system is
PDDL compliant, as the authors have developed an XML
dialect of PDDL called PDDXML. However, semantic
information provided from domain ontologies is not

38

utilized; therefore the planning module requires exact
matching for service inputs and outputs.
 Other approaches for automatic web service composition
are not further discussed here either because they do not
deal with the important issue of translating semantic web
service descriptions into planning terms or because they
require some prior, domain-specific knowledge of the
composition issues.
 The main advantage of the proposed framework with
respect to the aforementioned systems is the extended
utilization of semantic information, in order to perform
planning under semantic relaxation and find approximate
solutions. Furthermore, PORSCE II does not require any
prior, domain-specific knowledge to form valid, desired
complex services, apart from the OWL-S descriptions of
the atomic web services and the corresponding ontologies.
Finally, the system is able to handle cases of service failure
through simple service replacement, without the obligation
to perform planning again.

3. OWL-S
OWL-S is an upper ontology based on OWL [14], created
in the context of the Semantic Web in order to describe
knowledge concerning semantic web services. It is used in
combination with additional ontologies, which organize the
concepts appearing in the OWL-S descriptions. The use of
OWL-S renders the semantics of the descriptions machine
comprehensible; therefore it enables intelligent agents to
discover, invoke and compose web services automatically.
A web service description in OWL-S is comprised of three
parts [6]:

 Service Profile: describes what the service
accomplishes, limitations on service applicability and
quality, and requirements that the service requester
must satisfy to use the service.

 Process Model: describes the way a client can
communicate and use the service.

 Service Grounding: specifies the details of how an
agent can access a service, such as a communication
protocols and message formats.

 The approach presented here utilizes the semantic
information contained in the Service Profile of a specific
web service, along with the corresponding ontologies, in
order to translate the description in planning terms. An
example of an OWL-S Profile and the correspondences
between its elements of interest and the planning terms
they are translated into is provided in Section 5.1.

4. System Overview and Architecture
PORSCE II is the evolution of the prototype system
PORSCE [7]. The core translation component exists in
both systems; however, PORSCE II aims at a higher
degree of integration as it additionally contains a visual
interface, more elaborate relevance metrics, complex
service accuracy assessment and the ability to modify

complex web services. Furthermore, PORSCE II adopts a
different way of modeling the web service composition as
a planning problem, which reduces the complexity of the
planning problem, thus accelerating the planning process.
In order to highlight the planner independency of PORSCE
II, which enables the use of any domain independent
planning system based on PDDL, another external planner
has been included in addition to the original one.
The main features of the integrated system are:

 Translation of OWL-S atomic web service
descriptions into planning operators.

 Interaction with the user in order to acquire their
preferences regarding the complex service and desired
metrics for concept relevance.

 Enhancing the planning domain and problem with
semantically similar concepts.

 Exporting the web service composition problem as a
planning domain and problem in PDDL.

 Providing solutions by invoking external planners.
 Assessing the accuracy of the complex services.
 Visualizing and modifying the solution.

 PORSCE II comprises of the OWL-S Parser, the
Transformation Component, the OWL Ontology Manager
(OOM), the Visualizer and the Service Replacement
Component. An overview of the architecture and the
interactions among the components is depicted in Fig. 1.

Fig. 1 The architecture of PORSCE II.

 The OWL-S Parser is responsible for parsing a set of
OWL-S web service profiles and determining the
corresponding ontologies that the concepts appearing in the
web service descriptions belong to. The OWL Ontology
Manager (OOM), utilizing the Pellet DL Reasoner [2],
applies the selected algorithm for discovering concepts that
are similar to a query concept. The Transformation
Component is responsible for a number of operations that
result in the formulation of the planning problem from the
initial web service composition problem, and its
consequent solving. The purpose of the Visualizer is to
provide the user with a visual representation of the plan,
which in fact is the description of the complex service.
Finally, the Service Replacement Component enables the
user to replace a specific atomic web service in the
complex service sequence. Details on the system
functionality regarding the translation process and the rest
of its operations are provided in Sections 5 and 6.

39

 PORSCE II is implemented in Java and it is available
online, along with example problems, at
http://www.dit.hua.gr/~raniah/porsceII_en.html

5. Transformation Process
The transformation process includes the translation of the
web service composition problem into a planning problem
and its possible enhancement with semantic information.
The process starts at the OWL-S Parser, which parses the
OWL-S profiles of the available atomic web services and
forwards them to the Transformation Component. The
Transformation Component is responsible for a number of
operations, including translating the web service
descriptions received from the OWL-S Parser to planning
operators and enhancing them with similar concepts
derived from the OOM. Moreover, it interacts with the user
in order to formulate the planning problem, and exports
both the planning domain and problem to PDDL.

5.1. OWL-S to PDDL Translation
A planning problem in PORSCE II, in accordance with the
STRIPS notation [4], is a tuple <I,A,G> where I is the
initial state, A is the set of available actions that can be
used to modify states, and G is the set of goals. Each action
Ai has three lists of facts containing the preconditions of
Ai, the facts that are added to the state and the facts that are
deleted from the state after the application of Ai, denoted
as prec(Ai), add(Ai) and del(Ai) respectively
 A straightforward solution adopted by PORSCE II for
mapping the web service composition problem to a
planning problem is the following: Let IC be the set of
concepts that the user wishes to provide to the complex
service and GC its desired outputs (goals). If O denotes the
set of all the available concepts in the ontology, then
IC⊆O, GC⊆O and IC∩GC≡∅. The inputs that the user
wishes to provide formulate the initial state, while the
desired outputs of the complex service formulate the goals
of the problem: I = IC and G=GC. Both the input and
output sets are provided externally by the user.
 The available OWL-S web service profiles are used in
order to obtain the planning operators: each web service
description WSDi is translated to an operator Ai, using the
information in the each profile (Fig. 2).

Fig. 2 Mapping web services to planning.

More specifically:
 The name of the action is the rdf:ID of the profile:

()iname A .IDiWSD=
 The preconditions of the action are formed based on

the service’s input definitions (concepts):

() i kWSD .hasInputi
1

prec A { }
n

k =

≡∪

 The add effects of the action comprises of the
service’s output definitions (concepts):

() i kWSD .hasOutputi
1

add A { }
m

k =

≡∪

 The delete list is left empty, since in the current study
only services that do not have any negative effects in
the world model are dealt with: ()idel A ≡ ∅

 An example of an OWL-S to PDDL transformation is
presented in Fig. 3, where the mapping presented above is
marked. The web service description at hand concerns a
web service that accepts as input the activity Sightseeing
and presents the user with areas that offer this activity.

5.2. Semantic Analysis
The step of semantic analysis, parallel to the
transformation process, enables the system to translate the
web service composition problem to a planning problem by
taking into account semantic information. This step is
implemented by the OWL Ontology Manager (OOM).
During translation, the OOM is used extensively for
performing semantic relaxation, which is useful in cases
when an exact input/output matching plan is not available.
The OOM locates equivalent and semantically relevant
concepts; therefore, approximate plans can be created.

In our approach, two ontology concepts are considered
semantically similar if and only if

 they have a hierarchical relationship
 their semantic distance does not exceed a threshold

As far as the hierarchical relationship is concerned, four
hierarchical filters are used for its definition for two
ontology concepts A and B:

 exact(A, B): The two concepts should have the same
URI or they should be equivalent, in terms of OWL
class equivalence, i.e. A = B ∨ A ≡ B.

 plugin(A, B): The concept A should be subsumed by
the concept B, i.e. A B.

 subsume(A, B): The concept A should subsume the
concept B, i.e. B A. In both the plugin and the
subsume filters the subsumption relationships of
equivalent concepts are not considered.

 sibling(A, B): The two concepts should neither have
a hierarchical relationship, nor be disjoint; instead,
they should have a common superclass T, such as A

 T ∧ B T.

40

Fig. 3 Example of an OWL-S to PDDL

The semantic distance between two ontology concepts

can be calculated in PORSCE II using two methods:
The Edge-Counting Distance (ec) computes the

distance of two concepts in terms of the number of edges
found on the shortest path between them. An edge exists
between two concepts A and B if A is the direct subclass of
B, denoted as A d B.

The implementation of the ec distance between two
concepts, denoted as dec(A, B), returns a value between 0
and 1, with 1 denoting absolute mismatch, and considers
the following cases:

 exact(A, B) ⇒ dec(A, B) = 0: equivalent concepts
 A B ⊥ ⇒ dec(A, B) = 1: disjoint concepts
 plugin(A, B) ∨ subsume(A, B) ⇒ dec(A, B) = p/pmax.

If there is a hierarchical relationship between the two
concepts, the distance is equal to the number of
edges in their shortest path (p) normalized to [0..1]
using the maximum ec distance (pmax) found in the
ontology, which can be approximated as pmax = 2h -
1, where h is the maximum edge distance from a leaf
concept to the owl:Thing concept ().

 sibling(A, B) ⇒ dec(A, B) = min[dec(A, T) + dec(B,

T)]: the concepts have a sibling relationship and the
ec distance is the minimum of the sum of the ec
distances of each concept from the least common
ancestor T. Note that the owl:Thing is not considered
as a common ancestor, since ∀A, B : A ∧ B
and therefore, no special structural knowledge is
provided.

 The Upwards Cotopic Distance, denoted as duc(A, B), is
defined in terms of the upwards cotopic measure, denoted
as uc(A) that represents the set of the superclasses of the
concept A, including A itself [10]. In PORSCE II, the
upwards cotopic distance definition has been modified in
order to incorporate the semantics of an ontology
hierarchy. More specifically, the owl:Thing concept is not
considered in the uc measure, while the union and
intersection set operators take into account the concept
equivalence semantics. In that way concept set multiplicity
is ignored, that is, if A ≡ B, then {A, B, C} = {A, C} ∨ {B,
C}, and the concept set membership is semantically
checked, that is, if A ≡ B and D = {A}, then A ∈ D ∧ B ∈
D. Based on these remarks, the upwards cotopic distance is
defined as

41

-1
-1

() ()
(,) =1-

() ()uc
uc A uc B

d A B
uc A uc B

∩
∪

.

If two concepts have only the owl:Thing class as the
common superclass or they are disjoint, then their distance
equals to 1; otherwise, if the two concepts have a
hierarchical relationship, then duc(A, B) ∈ [0..1).

5.3. Semantic Awareness and Relaxation
The representation of the web service composition as a
planning problem is empowered if the planning system is
aware of semantic similarities among syntactically
different concepts (semantic awareness). The solution
adopted by PORSCE II involves enhancing the domain and
problem description with all the required semantic
information in a pre-processing phase and letting the
planner handle it as a classical planning problem. PORSCE
II adopts this solution in order to: a) be able to use any
planner, compliant with PDDL, as the semantic
enhancement applied to the domain remains transparent to
the planner, and b) minimize the interactions between the
planner and the OOM, which introduce an overhead on the
planning time.

In the pre-processing phase, the system uses the OOM
in order to acquire all the semantically relevant concepts
for both the facts of the initial state and the outputs of the
operators, discovered by the semantic analysis process
described in the previous section. The enhancement of the
problem by PORSCE II is based on the following rules:

 The original concepts of the initial state together with
the semantically equivalent and similar concepts form
a new set of facts noted as the Expanded Initial State
(EIS).

 The goals of the problem remain the same.
 The Enhanced Operator Set (EOS) is produced, by

altering the description of each operator, while
preserving the initial size of the set. More specifically,
the effects list of each operator is enhanced by
including all the equivalent and semantically similar
concepts for the concepts in the initial effects list.

Suppose, for example, that the initial state I of the problem
is the following:

I = {Sightseeing, Dates}

and that there are only the following two operators:
CityHotelMapService:
 prec={City, Hotel}, effect={Map}
SightSeeingAreaService:
 prec={Sightseeing}, effect={Area}

The OOM for a given distance metric and threshold
discovers the following relevant concepts:

Dates ≈ Duration
Area ≈ County,
Map ≈ GPSRoute

The pre-processor alters the problem definition to the
following:

EIS: {Sightseeing, Dates, Duration}
EOS: CityHotelMapService:

prec={City, Hotel}
effect={Map, GPSRoute}

SightSeeingAreaService:
prec={Sightseeing}
effect={Area, County}

The new problem, namely <EIS,EOS,G> is encoded into
PDDL and forwarded to the planning system in order to
acquire a solution. Note that the semantic information is
encoded in such a way that it is transparent to the external
planning systems, which can solve the problem as any
other classical planning problem.

6. Solution and Integration
PORSCE II aims at integrating the composition process,
including solving the problem through invocation of
external planning systems, visualization, evaluation and
modification of the solutions.

6.1. Acquiring Solutions
Since the transformation process results in the export of
both the planning domain and problem in PDDL, any
PDDL-compliant domain independent external planning
system can be used.
 Currently, two different planning modules have been
incorporated in the system: JPlan [1], which is an open-
source Java implementation of Graphplan and LPG-td [8].
Both planners proved to be remarkably fast and can handle
a respectable number of operators, which is very important
as the number of available web services is expected to
increase significantly over time. After the planning process
is completed, JPlan provides the plan, in its own format,
which comprises of a simple sequential list of actions.
LPG-td, on the other hand, provides the plan in a format
that complies with PDDL+. The plan in this case might not
be sequential, but structured in levels; actions belonging to
the same level can be executed in an arbitrary sequence,
however all actions of a certain level must be completed
before any action of the following level can be executed.
Subsequently, these plans are visualized and their accuracy
is evaluated.

6.2. Complex Service Accuracy Assessment
Semantic relaxation and the use of multiple planners may
produce a number of complex services, for which statistics
and quality metrics have to be calculated. Such metrics
include the number of actions and the number of levels in
the plan, as well as a plan distance quality metric, which
indicates the accuracy of the plan, when semantic
relaxation takes place.

For the calculation of the plan semantic distance, each
concept appearing in the inputs or outputs of the actions of

42

the plan is annotated by the OOM with a semantic distance
di with respect to the original concept it was derived from,
using the selected similarity metric. A concept distance of
0 reveals identical or equivalent concepts. Additionally,
each concept is annotated with a weight wi, which
represents the kind of hierarchical relationship to the
original concept, as in some cases certain hierarchical
relationships might be more desirable than others.

These values are combined to form a plan semantic
distance. For example, when the upwards cotopic distance
metric is used, the plan semantic distance is calculated as a
weighted product of these concepts, as the product
represents better the semantic distance in this case:

0

The plan accuracy metric in both cases is calculated as 1-
PSD; therefore, if there is exact input to output matching,
or if only equivalent concepts are used, then the plan
quality metric value is 1, while it decreases as the plan
becomes less accurate.

, 0
n

uc i i i
i

PSD w d d
=

= ≠∏

6.3. Visualization and Modification
The Visualizer enhances comprehensibility by

providing a visual representation of the complex service
and facilitates plan manipulation. The complex service is
represented as a schema of simple service invocations,
showing inputs and outputs (Fig. 7, 8).
The Visualizer module invokes and interacts closely with
another module of the system, the Service Replacement
Component, which discovers all actions that could be used
alternatively instead of the chosen one, using advice from
the OOM for equivalent and relative concepts. An action A
is considered an alternative for an action Q of the plan as
far as it does not disturb the plan sequence and the
intermediate states, that is prec(A) ⊆ prec(Q) and add(A) ⊇
add(Q). The selected alternative service substitutes the
original one both in the plan and in the visualization.

Fig. 4 The steps for the demonstration.

7. Demonstration and System Evaluation
This section aims at demonstrating the use and evaluating
the performance of the system through a case study,
following the general course depicted in Fig. 4.
 The test sets used to perform experiments were obtained
from the OWLS-TC version 2.2 revision 1 [3], while
several service descriptions were modified or added to
these domains, accommodating the demonstration of the
capabilities of the system. The web services that were
modified or added to the domain are depicted in Table 1.

Table 1. The added / modified web services.
Service Inputs Outputs
BookToPublisher Book,

Author
Publisher

CreditCardCharge OrderData,
CreditCard

Payment

ElectronicOrder Electronic OrderData
PublisherElectron
icOrder

PublisherIn
fo

OrderData

ElectronicOrderIn
fo

Electronic OrderInformat
ion

Shipping Address,
OrderData

ShippingDate

WaysOfOrder Publisher Electronic
CustomsCost Publisher,

OrderData
CustomsCost

The transformation of the web service composition

problem to a planning problem includes translating all
available OWL-S atomic web services, including the
aforementioned ones, to PDDL operators. It also
incorporates the representation of the requirements about
the complex service, which the user can express through a
dialog interface such as the one depicted in Fig. 5.

Fig. 5. Defining initial and goal states and desired

planners.

The scenario implemented here concerns the electronic
purchase of a book. The user provides as inputs a book title
and author, credit card info and the address that the book
will be shipped to, and requires a charge to credit card for
the purchase, as well as the shipping dates and the customs
cost for the specific item. The initial state corresponds to
the inputs of the complex service, while the goal state
represents the desired complex service outcome.

The next step is optional semantic relaxation,
performed through semantic enhancement. The user
defines semantic metrics and thresholds through the
interface depicted in Fig. 6.

43

Fig. 6. The semantic enhancement interface.

At this point, the system exports the formulated (and

possibly semantically enhanced) planning domain and
problem to PDDL. Consequently, it invokes external
planners to acquire solutions.

The plans produced by JPlan and LPG-td for the
specific case study using the operator set described above,

without including any semantically relevant concepts are
presented in Fig. 7.

While exact matching of input to output concepts is
obligatory in the classical planning domains, in the web
services world the case can be different, as it is preferable
to present the user with a complex service that
approximates the required functionality than to present no
service at all. The semantically similar concepts obtained
from the OWL Ontology Manager enable the system to
compose alternative services that approximate the desired
one in case there are no exact matches, by performing
semantically relaxed concept matching. Such an
approximate service for the specific case study is presented
in Fig. 8. The calculated accuracy of this service is
different from the accurate ones presented in Fig. 7.

Fig. 7. The plans from JPlan (top) and LPG-td (bottom) for the specific case study.

Fig. 8. Approximate complex service.

44

In order to study the behavior of the system as the
number of available web services increases, web service
profiles were added to the domain progressively in batches.
The time performance results presented in Table 2 were
obtained from a number of runs of the system on a
machine with Dual-Core AMD Opteron Processor at
2.20GHz with 1GB of RAM memory and concern times
for preprocessing, transformation of the OWL-S service
profiles to PDDL actions and planning using LPG-td.

Measurements took place for domains of different
sizes, namely 10, 100, 500 and 1000 OWL-S profiles.
Some of the experiments were performed without semantic
relaxation (X), while others were performed with semantic
relaxation using either the edge-counting distance metric
(E) or the upwards cotopic metric (C). The preprocessing
time did not show significant fluctuation, as it depends
only on the number and structure of the processed
ontologies and not on the number of available web
services. The total transformation time evidently increased
as the number of available web services increased,
however the average transformation time per web service
profile converged to approximately 0.8 seconds for the
exact matching and the edge-counting distance metric
cases. In the upwards cotopic metric distance, the increase
in the average transformation time is significant as
available web services increase, due to the higher
complexity of the algorithm used for the calculation of the
upwards cotopic relevance between two concepts. As far as
average planning time is concerned, LPG-td shows an
increase in planning time as the number of actions
increases, however it is still proved remarkably fast.

Table 2. Time measurements in milliseconds.

umber of web
ervices

10 100 500 1000

Preprocessing time 5857 6104 5875 5703
X 4594 70062 350836 792109
E 4531 75725 335477 796797

Total
transformation
time C 4585 74688 728633 3901141

X 459 700 702 792
E 453 671 757 797

Transformation
time per web
service C 459 746 1457 3901

X 1 13 16 17
E 4 6 15 16

Planning time
(LPGtd)

C 3 5 16 16

8. Conclusions and Future Work
This paper presented PORSCE II, which combines

planning with semantic object relevance in order to
approach the semantic web service composition problem.
Each web service composition problem is translated into a
planning problem, possibly enhanced with semantically
relevant concepts and exported to PDDL. The system
integrates external planning system which perform
planning with the desired degree of semantic relaxation.
The obtained plans, which represent descriptions of the

desired complex web service, are evaluated, visualized and
modified.
 Future goals include the extension of the system in order
to translate the plan describing the complex service into
OWL-S so the complex web service can be invoked and
provide feedback. In addition, another goal concerns
incorporating the quality distance metric with plan
statistics in a common metric. Furthermore, integration
with the VLEPPO system [9] is a promising future
direction, in order to accommodate design and solving of
the web service composition problems. Finally, it lies in
our immediate plans to study ways to enhance the services
representation and explore the ability to produce various
complex services according to non-functional properties.

References
[1] JPlan: Java Graphplan Implementation,
http://sourceforge.net/projects/jplan
[2] E. Sirin, B. Parsia, B. Grau, A. Kalyanpur, and Y. Katz,
Pellet: A Practical OWL DL Reasoner, J. Web Semantics, 2007
[3] OWLS-TC version 2.2 revision 1,
http://projects.semwebcentral.org/ projects/owls-tc/
[4] R. Fikes, N. J. Nilsson, "STRIPS: A new approach to the
application of theorem proving to problem solving", Artificial
Intelligence, Vol 2 (1971), 189-208.
[5] M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A.
Ram, M. Veloso, D. Weld, D. Wilkins, "PDDL -- the Planning
Domain Definition Language". Technical report, Yale University,
New Haven, CT (1998).
[6] OWL-S 1.1. http://www.daml.org/services/owl-s/1.1/
[7] O. Hatzi, G. Meditskos, D. Vrakas, N. Bassiliades, D.
Anagnostopoulos, I. Vlahavas, A Synergy of Planning and
Ontology Concept Ranking for Semantic Web Service
Composition, IBERAMIA 2008, 11th Ibero-American
Conference on AI, Lisbon, Portugal, October 14-17, 2008.
Proceedings. Lecture Notes in Computer Science 5290 Springer
2008, pp 42-51.
[8] A. Gerevini, A. Saetti, I. Serina, LPG-TD: a Fully
Automated Planner for PDDL2.2 Domains" (short paper), in
International Planning Competition, 14th Int. Conference on
Automated Planning and Scheduling (ICAPS-04).
[9] O. Hatzi, D. Vrakas, N. Bassiliades, D. Anagnostopoulos, I.
Vlahavas, VLEPpO: A Visual Language for Problem
Representation, 26th Workshop of the UK Planning and
Scheduling Special Interest Group (PlanSIG 2007), Roman
Bartak (Ed.), pp. 60 – 66.
[10] A. Maedche and V. Zacharias, Clustering Ontology-Based
Metadata in the Semantic Web, European Conf. Principles of
Data Mining and Knowledge Discovery, 2002.
[11] WSMO, http://www.wsmo.org/
[12] WSDL-S, http://www.w3.org/Submission/WSDL-S/
[13] SAWSDL, http://www.w3.org/2002/ws/sawsdl/
[14] OWL, http://www.w3.org/TR/owl-ref/
[15] E. Sirin, B. Parsia, D. Wu, J. Hendler and D. Nau, 2004.
HTN planning for web service composition using SHOP2.
Journal of Web Semantics, 1(4) 377–396.
[16] M. Klusch, A. Gerber, M. Schmidt: Semantic Web Service
Composition Planning with OWLS-XPlan. AAAI Fall
Symposium on Semantic Web and Agents, USA, 2005.

45

Augmenting Instructable Computing with Planning Technology

Clayton T. Morrison
University of Arizona

Department of Computer Science
1040 E. 4th Street

Tucson, Arizona 85721

Daniel Bryce
Utah State University

Department of Computer Science
Old Main 414

Logan, Utah 84322

Ian R. Fasel
Antons Rebguns
University of Arizona

Department of Computer Science
1040 E. 4th Street

Tucson, Arizona 85721

Abstract

Advances in human-instructable computing are con-
tributing to a new breed of computer systems that can
be taught by natural instruction rather than requiring di-
rect programming. The current approach in the MABLE
“electronic student” emphasizes the interface that maps
different modes of instruction to machine learning al-
gorithms that can learn the concepts and task knowl-
edge being taught. While the interface provides more
natural interaction with the system, there are still many
constraints put on how the teacher teaches, in particular
in what the teacher can assume about MABLE’s ability
to compose previously learned concepts. We present a
method for automatically translating MABLE’s learned
task knowledge into a STRIPS planning domain, and
planner-generated plans back into MABLE’s knowledge
representation. In this way, existing planning technol-
ogy is used to augment MABLE’s problem solving abil-
ity. This allows us to relax the requirement that the
teacher explicitly teach every composite procedure and
also provides a role for planning to contribute directly
to learning in a more capable student.

Introduction
Human-instructable computing aims to build computational
systems that can be taught through natural instruction rather
than requiring programming by specially-trained engineers.
We are currently working in the DARPA Bootstrapped
Learning Project to build a human-instructable “electronic
student” called MABLE, the Modular Architecture for Boot-
strapped Learning Experiments (Mailler et al. 2009).
MABLE consists of a set of learning strategies designed
to interpret different instruction methods naturally used by
humans. These instruction methods include giving declar-
ative definitions and descriptions, providing examples and
demonstrations, and giving feedback based on student ac-
tions. MABLE interacts with a teacher that provides instruc-
tion by using these methods to teach concepts that build on
one another – bootstrap – to more complex concepts and
skills. These concepts, in turn, are represented in MABLE’s
knowledge representation language, Interlingua.

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

However, there are still a number of unnatural require-
ments placed on the teacher of MABLE. In the current sys-
tem, lessons teach self-contained concepts, such as the ac-
tions corresponding to steps in a procedure. The lessons,
however, tend to be specific to what is involved in execut-
ing the action and do not always include information about
the action’s effects and preconditions. For MABLE to under-
stand how to compose its previously learned actions into a
composite procedure, the teacher must give an explicit later
lesson that wraps the actions as steps in an HTN-like proce-
dure.

We have developed a learning strategy called Learning by
Noticing (LbN) whose job is to identify patterns in teach-
ing and concept use that might be otherwise implicit – i.e.,
not directly included in the teacher’s utterances or part of
the target concept being taught in the lesson. By observing
the lessons that teach atomic steps in a procedure, LbN con-
structs action models that fill in action effects and in some
cases preconditions of actions. These action models provide
the raw materials for defining planning operators.

To make full use of these nascent planning operators, we
have developed a process that translates these action mod-
els into the PDDL planning language (McDermott and the
AIPS’98 Planning Competition Committee 1998) so that
compound procedures using the component actions as steps
can be identified through planning. We target planning
for the STRIPS domain and use an implementation of the
Graphplan planning algorithm as our planner (Blum and
Furst 1997). When planning is successful, the plan produced
by the planner is translated back into Interlingua and incor-
porated into MABLE’s knowledge base. In this way, LbN ac-
tion model construction combined with planning technology
relaxes the need for the teacher to necessarily teach every
compound procedure through an additional explicit lesson.

For the purposes of the ICKEPS competition, our method
is best viewed as a service translating concepts taught
in MABLE’s Interlingua (IL) knowledge representation to
PDDL and PDDL-expressed plans back to IL. A key con-
tribution of our method is that it is not merely translating
IL to and from PDDL but also performs inference to fill in
the action models for the learned Interlingua task knowl-
edge. From a broader perspective, although we are trans-
lating from IL to PDDL, the vision is for translating from
human interaction to formal concept representation and pro-

46

cess languages like PDDL, in a human-instructable comput-
ing framework. We believe our tool demonstrates the ben-
efits of both action model learning as well as the benefits
of light weight planning for instructable computing, and the
potential for instructable computing to provide a natural hu-
man interface for teaching planning knowledge.

The following sections present a brief overview of the
MABLE architecture and its learning environment, followed
by a description of IL, the language underlying MABLE’s
knowledge representation. We then present how LbN con-
structs action models, followed by a discussion of our
method for translating from IL to PDDL, and planner-
generated plans back into IL for MABLE’s use. We conclude
with a discussion of future directions for exploiting the syn-
ergy between instructable computing and planning.

MABLE and the Learning Environment
MABLE is currently being developed within a larger interac-
tion framework that includes a simulated Environment and
Teacher. All three components interact with each other on a
message Timeline.

The Environment simulates a perceivable world, keeping
track of its state and any changes produced by actions from
the Teacher or MABLE. The Environment posts perceptual
update messages representing the current world state to the
Timeline. A variety of simulators are currently available for
use as the Environment. These include a version of the clas-
sic “blocks world”, the 2-dimensional robocup soccer sim-
ulator (Kitano et al. 1997), a simulation of an unmanned
aerial vehicle in a 3-dimensional world, a 2-dimensional
tactics-level wargame simulation, and a simulation of the
system control for the International Space Station. For ex-
position, we take the bulk of our examples from the more
familiar blocks world simulator.

A set of structured curricula have been authored by hu-
mans to teach various concepts in each of the different sim-
ulator domains. Some concepts depend on others, so the
curricula are decomposed into sets of lessons that depend on
one another. Each lesson aims to teach one concept. These
lessons form “rungs” in a partially-ordered curriculum “lad-
der”, with some lessons making use of the concepts taught
in earlier lesson rungs. Lessons themselves also have struc-
ture. They begin with a set of teaching epochs, in which the
Teacher teaches a concept according to one of the natural in-
struction methods. These are followed by a testing epoch, in
which the Teacher sends messages including an imperative
for MABLE to answer questions or perform actions. A grade
is assessed according to MABLE’s performance in a test.

The simulated Teacher itself executes teaching and testing
epochs as a script, with some allowance for interaction based
on MABLE’s possible response messages. The scripts man-
age initializing the Environment state and the generation of
Teacher messages. Teacher messages include utterances and
imperatives, as well as action messages that induce changes
in the Environment world state.

MABLE’s task is to observe the messages that come across
the Timeline and use them to build a model of the cur-
rent state of teaching (and testing), using the messages from
the Teacher and percept updates from the Environment to

learn. The Mable architecture itself consists of a set of
modules that work together to incrementally learn concepts
from the Timeline messages. A set of learning strategies
provide component interfaces to the different methods the
teacher uses for teaching concepts. For example, the Pro-
cedureByTelling strategy interprets declarative teacher ut-
terances to construct the component steps in a procedure;
on the other hand, the ConditionByExample strategy iden-
tifies how the teacher is providing examples of a rule. In
all cases, learning strategies extract, interpret and repackage
data from the Teacher and Environment messages to con-
struct concepts. Learned concepts are represented in IL and
stored in MABLE’s knowledge repository. When appropri-
ate, strategies invoke learning services, dedicated machine
learning algorithms that can help with concept learning. For
example, (i) a predicate learning service is driven by induc-
tive logic programming, (ii) regression algorithms can learn
numeric functions, and (iii) reinforcement learning is used to
learn policies by feedback. All module activities are coordi-
nated by a control module, which has the job of identifying
learning targets, ensuring the appropriate learning strategies
and services are invoked, and ensures that progress is being
made toward learning the target concept in order to perform
well in the testing epoch. Finally, MABLE’s execution en-
gine is used to execute IL and monitor procedure execution,
for example when a learning strategy requests to evaluate an
IL expression, or in order to answer an imperative messages
sent by the Teacher. We will return to the execution engine
in the next section.

Interlingua
The Interlingua (IL) language has been designed to accom-
modate a broad spectrum of duties (Oblinger 2008). IL pro-
vides the building blocks necessary to construct the variety
of concepts MABLE will need to represent as background
knowledge and as the result of learning. These include rules,
a type hierarchy of classes, functions, and procedures. IL
is also expressive enough to define other languages as ex-
tensions within IL. In particular, the Interaction Language
(ITL) is a specialized IL extension that is used to represent
all messages that appear on the Timeline between MABLE,
the Teacher and the Environment. Here we present the com-
ponents of IL and ITL that we need as background to ex-
plain how models of actions are constructed and how we
will translate the models and problem instances into PDDL.

Core IL consists of three component languages. The first
of these is the syntax language and is used to define types,
using the is construct, and properties, using the arg con-
struct. For example, the expression
is Dog Animal;

defines a type called Dog that is a sub-type of Animal.
Properties associate values with instances of a type (called
the property’s host type). They are named and also impose a
constraint on the type of values that may be bound to them.
For example, the expression
arg Dog age Integer;

defines a property of a Dog called age, and only Integers
can be associated with a Dog’s age. All IL types that have

47

properties associated with them are called composites; Dog
is therefore a composite. IL also defines a set of atomic types
that have no properties associated with them (and therefore
no property-based composite structure); IL provides familiar
atomic types such as Numbers, Integers, Floats, Booleans,
Strings and Symbols. All property values can also be bound
to a special atomic Null value, irrespective of the type con-
straints placed on the property value; this is a feature of IL
that we will return to, below.

Like many other typed object-oriented programming lan-
guages (e.g., Java), properties associated with inherited
types are also inherited and associated with the new type. A
new type may have new properties associated with it, which
are then added to the list of properties inherited, or a prop-
erty of a new type may restrict inherited properties by giv-
ing them new, compatible type restrictions. In the case of
restriction, the new type restriction must be a subtype of the
type restriction of the inherited property.

Unlike many languages, however, IL also allows for mul-
tiple inheritance. That is, a type A might inherit from types
B and C. More formally, the is type assertion is reflexive
and transitive, but not symmetric, and combined with the
possibility of multiple inheritance, this means the overall
type hierarchy structure is that of a directed acyclic graph
(DAG). Figure 1 shows a portion of the type hierarchy for
the blocks world domain. Here, the Object type inherits
from both the Composite and Percept types. Multiple
inheritance poses a critical challenge to translating IL con-
cepts into typical planning domain representations such as
PDDL; we will address this in our translation, below.

Composite
Symbol name

Object

Percept

PhysicalObject
Symbol color

FlatObject

TableBlock
FlatObject support

Claw
Block blockGrasped
PhysicalObject objectBeneath

Figure 1: Portion of the blocks world type hierarchy; prop-
erty definitions are displayed below their host type, with
the property value type constraint followed by the property
name.

For convenience, IL defines a “macro” called
defSyntax that combines type inheritance and property
associations of a type in one expression. For example,
defSyntax Dog extends Animal (
Integer age
Symbol color);

defines our Dog with its age property, and also includes the
property color, which is a Symbol; a defSyntax may in-
clude multiple extensions for multiple inheritance.

The second core IL language, the instance encoding lan-
guage, is used to express ground instances and their property

value bindings, as they exist in real or simulated worlds at a
particular time. For example
Dog(name=Rover, color=black, age=3)

describes a Dog named Rover that is age 3 and is black in
color.

Finally, the third core language of IL is the code body
language. This language specifies functions and procedures
that can be executed. An expression defining a code body
includes specification of a code body interpreter which han-
dles executing the code body. IL provides several code in-
terpreters, including one for evaluating functions, another
for running recursive procedures that are formed with com-
binations of control statements such as “if” and “while”, and
an interpreter for evaluating predicates defined in first-order
predicate logic.

The following example defines a function to add 1 to an
input integer:
defSyntax Add1 extends Function

(Integer arg);
defCode Add1 FunctionEngine

FunctionBody(Return(Plus(arg,1)));

The defSyntax defines a new type of Function called
Add1, and it has the property arg that is an Integer.
The corresponding defCode specifies that the body of
the code will be interpreted and executed by the
FunctionEngine. The FunctionEngine knows how to
execute the Plus function, which takes two argument; the
reference to arg is interpreted as whatever value is bound
to the arg property in an instance of the Add1 type. In this
sense, properties and their values are treated by the code in-
terpreters as arguments for the code body. The return value
of Plus is then returned as the value of executing Add1.

c
b

a
d

claw Percept(Block(name=a,color=blue,support=d),
 Block(name=b,color=green,support=c),
 Block(name=c,color=red,support=d)
 Table(name=d,color=black),
 Claw(name=claw,color=white,
 objectBeneath=a,
 blockGrasped=Null))

Figure 2: Example blocks world state and its IL Percept rep-
resentation.

Interaction Language
We finish this summary of IL by presenting components of
the Interaction Language (ITL) we will use in our discussion
below. ITL is a specialized language built within IL that de-
fines the composite terms used for interaction between the
Teacher, Environment and MABLE. Percept expressions
are generated by the Environment simulator and describe the
current state of the environment. Percepts wrap ground IL
instance expressions that describe the state of the world. Fig-
ure 2 depicts an example blocks world state and the corre-
sponding Percept message describing it.1

1In order to make our examples of IL instance expressions more
concise, we will often drop properties/value pairs that would other-

48

Observations of the execution of actions that affect the
Environment simulator are presented in a different form.
First, in addition to the specialized executable language
terms (such as Plus), MABLE is also provided with a set
of primitive simulator commands. These are defined in the
same way as other executables (with defSyntax and def-
Code), but their execution interpreter specifies the Environ-
ment simulator and they are interpreted as direct commands
to the simulator. While the defSyntax tells MABLE what ar-
guments the action takes and their general type constraints, it
does not say how the actions are to be used, i.e., what values
should be bound to arguments; these bindings are taught by
the Teacher or acquired by observation (by the LbN learning
service).

MABLE observes the Teacher executing an action when
a Timeline message contains a special ITL term, like the
following:
TeacherAction(action=Grasp());

This indicates that the Grasp action has been executed.
Only primitive simulator actions will show up in these mes-
sages. In order for the Teacher to specify that a non-
primitive action is being executed (e.g., one that the Teacher
is currently teaching MABLE), an utterance like the follow-
ing is used:
Utter(utterance=WatchMe(DoWith(

MoveOnto(Block(name=a),
Block(name=b)))));

Finally, ITL imperatives are used to direct an agent to exe-
cute some command or code body. The Teacher and MABLE
can both send messages with imperatives to the Environment
in order to execute simulator commands. When an impera-
tive is directed from the Teacher to MABLE, it is a request
for MABLE to execute a code body. In most cases the im-
perative request directly names the action the Teacher ex-
pects MABLE to have learned a code body for and to exe-
cute. However, the Teacher can also use the special impera-
tive MakeSo to specify a world state the Teacher would like
MABLE to achieve.

The Limits of Execution
We can now state precisely what MABLE is missing that the
LbN learning service partially provides and that our plan-
ning language translation service completes. MABLE’s exe-
cution engine executes IL code bodies either when prompted
by a learning strategy or service, or when the Teacher re-
quests MABLE to do so. In general, these calls specify, in
the instance encoding language, the name of the form to
be executed along with any values bound to properties (in
this case, treated as arguments). The execution engine does
not itself know how to select which action to execute with-
out this information.2 The procedure interpretation language

wise be present in the expression. For example, the contents of the
Percept in Figure 2 would also include the Percept instance
name, and the list of objects would be enclosed as a list bound to
the perceptsGained property).

2Internally, MABLE’s knowledge repository keeps track of mul-
tiple hypothesized learned code definitions, and a process guided
by control selects the “best” current hypothesis.

does include control flow constructs and recursive procedure
and function calling, but this machinery only works once the
procedure has been selected for execution. The execution
engine itself does not have a mechanism for determining
that one or more executable code bodies could be used to
achieve some specified state or result, such as that specified
in a MakeSo imperative. In the next section, we describe
how the LbN learning strategy learns action models that can
answer Teacher MakeSo imperatives.

Learning by Noticing
In general, MABLE’s learning strategies respond to and do
their work based on specific classes of messages and per-
cepts from the Teacher and world. A notable exception is
the Learning by Noticing (LbN) learning strategy. LbN’s
primary job is to analyze incoming messages and mine them
for patterns that may indicate information relevant to learn-
ing that is not otherwise explicitly expressed in teacher ut-
terances or world percepts. When LbN identifies such pat-
terns, it makes them explicit by posting the findings in spe-
cial Relevant messages and as hypothesized new con-
cepts, both made available to the other learning strategies
in MABLE.

LbN cannot look for all patterns, so it relies on a set of
heuristics to decide what kinds of patterns to search for. One
of LbN’s core heuristics is to look for changes in the world
state that result from observed actions. This requires build-
ing a transition model of world states. For the purpose of
building models of actions, this transition model is based on
Percept messages describing world state changes. (Other
heuristics also use Teacher utterances and imperatives.)

LbN treats the sequence of Perceptmessages that come
over the Timeline as a time series of structured objects. To
construct pattern identifiers, LbN decomposes this set of
structured objects into a set of atomic events over which ran-
dom variables are defined. For our presentation here, we fo-
cus on representing instances of properties and their value
binding. Each atomic event is defined as a pattern consisting
of four pieces of information: the type of the host composite
(the composite the property is associated with), the compos-
ite’s unique identifier (its name), the property name, and the
value currently bound to the property.3 If the property value
is itself another composite object (as opposed to an atomic
value), then the value is represented by the name of the com-
posite. For example, the following instance

Block(name=block-47,
support=Table(name=table-3)),

is represented as the property-binding event

[Block, block-47, support] <= table-3

These events are also used to build generalized patterns, for
example by “wild-carding” the name of the object instance:

[Block, *, support] <= table-3

3We ignore here two other classes of random variables: repre-
senting how many instances of a type exist at a given time, and
the values of derived relations resulting from other functions and
predicates, such as Near and Distance.

49

This pattern matches any instance of a Block who’s
support property is bound to table-3. These event pat-
terns are used to define random variables whose values can
be tracked over time as well as used to define probabilities.

The final representation of random variables resembles a
discrete-time sensor readout, where the “sensors” are ran-
dom variables determined by the event patterns that exist in
the world at each time they are sampled.

For building models of the effects of actions, LbN keeps
track of how the random variables change when actions are
executed. A minor complication here is that there may be
several Perceptmessage updates about the world state be-
tween each action. To handle this, LbN divides the Timeline
of Percept messages into chunks based on the boundaries
of lessons and the time ticks at which actions are executed:
the first chunk consists of the percepts between the start
of the lesson and the first action; the second chunk between
that first action and the second, and so on, with the effects
of the last action being the world state updates between the
last action execution and end of the lesson. Although mul-
tiple Percept updates may happen within the chunk, LbN
only pays attention to the state of the world by the end of the
chunk.4 In this work, all primitive actions are atomic and
their effects are assumed to occur within the chunk directly
after the action. An action a taken at time t is denoted at.
The world state just prior to the action is represented by the
world state changes of the previous chunk of Percept up-
dates up to time t, and is denoted st. The world state after
executing at is st+1 and is represented by the world state at
the end of the Percept update chunk after t, but before action
at+1 (or the end of the lesson).

The random variables defined for st and their changes
from st to st+1 provide for a variety of models of how ac-
tions effect changes in the world. LbN makes use of sev-
eral heuristics to identify whether actions may be relevant to
some aspect of the unfolding world state. However, in order
to meet the demands of constructing action models that con-
form to the semantics of STRIPS planning operators, LbN
uses the following two-stage construction process.

First, LbN keeps track of the values of each property-
binding event before and after an action is taken and then
looks for cases where taking an action consistently causes
the properties to change from one value to another. LbN col-
lects statistics for such transitions, and when the probability
of change, P (Xt+1 6= u|at, Xt = u), exceeds a threshold,
the random variable involved in the transition is treated as
a candidate effect of the action. These candidate random
variables are collected for each action.

In the second phase, LbN then analyzes for each action
the set of random variables identified as candidate effects.
The random variables denote properties that are believed
to be consistently affected by the execution of the action.

4Because a number of Percept updates might have occurred
since the start of the chunk, this means LbN may be ignoring im-
portant information about the dynamics of world changes between
any two actions. This is a topic of ongoing research; in the work
we present here, this information loss has not affected LbN’s over-
all ability to construct action models, but we expect it may in the
future.

For these candidate effects to be considered as a model
of a STRIPS operator, the properties themselves must be
“hosted” by (i.e., belong to) a composite instance that sat-
isfies one of the following identifiability criteria:

1. The host instance is always unique in every situation in
which the action is taken (e.g., there is always one and
only one Claw in the blocks world simulation). LbN
identifies this condition by counting the number of in-
stances of a type it observes; if there is always one and
only one, then the host instance of the property satisfies
this criterion.

2. The host instance is the value of one of the arguments to
the action.

3. The host instance appears as one of the values bound to
another property in the set of candidate effects.

The purpose of this test is to ensure we can always identify
the relevant properties that are changing as a result of the
action, even if their host composite changes from one action
execution to another (as in criteria 2 and 3).

If this test is satisfied for each candidate effects property,
then LbN can lift the representation of the candidate effects,
replacing the (non-Null) ground values in the specific ac-
tion execution instances with variables (leaving Null val-
ues in place); host composites are also consistently replaced
with variables. The same variables are used within the set
of candidate effects properties when the following condition
holds: Across all of the instances of the action being taken,
the (non-Null) value of candidate effect property A in state
st always appears bound in state st+1 to candidate effect
property B. All other ground values are assigned different
random variables.

As an example, suppose LbN identifies that the Release
action affects the random variables representing the property
bindings for the support property of a Block and the
blockGrasped and objectBeneath properties of the
Claw, so that for a particular instance, the changes to the
properties are as follows:
Block(name=a) support :
Null -> Table(name=d)

Claw blockGrasped :
Block(name=a) -> Null

Claw objectBeneath :
Table(name=d) -> Block(name=a)

Each of the properties satisfies one of the identifiability cri-
teria. If this same pattern of properties and value changes
consistently occurs for all instances of the Release action,
then the following lifted representation of the action model
is produced:
?a support :
Null -> ?b

?c blockGrasped :
?a -> Null

?c objectBeneath :
?b -> ?a

The variables are also typed. Variables that replace host
composites of properties are given the type of the host com-
posite, and variables replacing property values are given the

50

type of the property’s value type constraint. In the above
example, this means that ?a is of type Block and c is
of type Claw, according to the type hierarchy and prop-
erty assignments in Figure 1. ?b poses a conflict because
as the outcome of the change in the support property,
it is constrained to be a Block, but as the prior value of
objectBeneath, it is a PhysicalObject. As long
as the IL type definitions are consistent, then one type will
always be a subtype of another. In such cases, we always
choose the more restrictive type, so ?b is constrained to be
of type Block.

Identifying the effects of MoveClaw provides another il-
lustration. In this case, MoveClaw takes a single argument,
constrained to be a PhysicalObject, which according
to the type hierarchy in Figure 1 includes Blocks, Tables
and even the Claw itself. LbN, however, has already identi-
fied that the argument always ends up being the value bound
to the Claw’s objectBeneath property after the action
MoveClaw arg1 = Block(name=a)
Claw objectBeneath :
Table(name=d) -> Block(name=a)

Again, the property satisfies one of the identifiability cri-
teria. In this case, Block(name=a) is replaced in two
places by the same variable, but the Table(name=d) gets
a unique variable:
MoveClaw arg1 = ?a
?b objectBeneath :
?c -> ?a

Again, the variables are typed according to the roles they
play in the property definition. And as with variables ?b of
Release, the conflict between possible type constraints for
variable ?a is chosen to be the more restrictive Block.

LbN can identify and construct these models only when
effects are consistently produced by an action, and only
when enough data are presented in the form of action ex-
ecutions with observed prior and outcome world states. But
when the data is available and LbN does identify these tran-
sitions, then LbN can provide lifted action models that can
be used for STRIPS planning.

A PDDL Translation Service for Interlingua
After teaching a set of actions through a series of lessons,
the Teacher may request that MABLE MakeSo some world
state. IL provides a variety of terms that can be used to de-
scribe a world state, but here we focus on two: SameAs and
Of. SameAs is a predicate that asserts that two arguments
are the same. Of also takes two arguments, where the first
gives the symbol name of a property, and the second gives
the name of a composite instance. In this way, Of is used to
refer to the value of a property of a composite instance. The
following example combines these terms:
MakeSo(SameAs(Of(support,a),b))

This imperative requests that MABLE transform the current
state (which for the following example we will assume is
that depicted in Figure 2) into the state where the support of
a, which happens to be a Block, is b, which also happens
to be a Block.

This triggers MABLE’s control module to execute the IL-
to-PDDL translation service. The first task this service en-
gages is to create the domain model, translating from IL con-
cepts and action models into a PDDL domain model. The
translation service executes the following steps:

STEP 1: Identify action models and associated types
and properties. We do not need to translate the entire
MABLE knowledge repository; nor do we need to translate
all of the elements currently observed within the world state.
Instead, what we translate will be driven by the current set of
action models provided by LbN. For this working example,
we assume that in addition to the action models defined for
Release and MoveClaw, LbN has also formed a model
for Grasp:

?a support :
?b -> Null

?c blockGrasped :
Null -> ?b

?c objectBeneath :
?b -> ?a

The translation service takes these definitions and collects
all of the different types and properties referenced. Only
these types and properties need to be translated to the PDDL
domain definition, and only current world objects that are
members of these types need to be translated to the PDDL
problem definition. Any other objects in the world and any
other types in the MABLE knowledge base are irrelevant
– they play no role in the current action effects model, so
won’t help in planning.

STEP 2: Translate IL types into PDDL. The IL multiple
inheritance type system is not directly compatible with most
standard planning domain representations, such as PDDL,
because they are restricted to single inheritance. There is an
active strand of research that is looking at various methods
for translating multiple inheritance into single inheritance
systems (Dao et al. 2004; Crespo, Marquès, and Rodriguez
2002). However, for our purposes here, rather than using the
PDDL :types features, instead we treat types as a property
of objects in the PDDL domain, and therefore translate types
as PDDL domain predicates. In order to ensure there are no
accidental name clashes in the translation from existing IL
type and object names, the following naming convention is
used: each IL type is translated to a PDDL domain predicate
by appending t- to the IL type name to create the predicate
name. For example, the IL type Block is translated as:
(t-Block ?t) (The variable name doesn’t matter here).

In the PDDL problem domain, types must then be as-
serted for each object, in the :init clause. Each ob-
ject is not just an instance of its base type, but also
every ancestor type the base type inherits from. A
predicate assertion is added for each ancestor. Thus,
a Block object named b will have the following list
of type assertions: (t-Block b), (t-FlatObject
b), (t-PhysicalObject b), (t-Object b),
(t-Percept b), and (t-Composite b).

STEP 3: Translate IL properties into PDDL. IL
Properties naturally translate to PDDL predicates in the
:predicates domain definition. For example, the prop-

51

erty support associated with Block is translated as
(again using a special naming convention): (p-support
?b ?f). However, this definition does not itself put con-
straints on the two variables. Type checking will now be
moved into the action precondition clause, and it is up to
the translation process to keep track of the appropriate type
constraints. For example, if the support predicate is
asserted in an action precondition as (p-support ?b
?f), then the translation process must also include the type
constraint assertions on ?b and ?f: (t-Block ?b),
(t-FlatObject ?f).

All properties can be bound to the special Null value.
Rather than reify Null as a special object, instead we treat
it as a predicate, one for each property. For example, the
condition of the support property being set to Null is
translated as: (isNull-support ?s).

STEP 4: Translate Action Models into PDDL. The ba-
sic building blocks for translating IL action models to PDDL
have already been defined. The lifted action models con-
structed by LbN specify the properties that change. Each
component property change model specifies four things: the
property that changes, the host composite the property is as-
sociated with, and the value of property before the action (at
st) and after (st+1). For example, the support property in the
Release action model has been lifted so that the host com-
posite is represented by variable ?a, which is constrained to
by of type Block, and in st it is Null, and then in st+1 be-
comes set to the value of variable ?b, which is constrained
to be type Block. To represent this change, the prior value
of support is asserted in the :precondition clause
of Release as an instance of the p-support predicate
with its associated action-model-assigned value. If the value
assignment was a variable, that would be asserted along
with the host composite variable. But in this case, the sup-
port is Null, so the isNull-support predicate is as-
serted: (isNull-support ?a). For the effect out-
come, the resulting value of support at st+1 is asserted
as (p-support ?a ?b) in the :effect clause for
Release. We also need to negate the isNull predicate:
(not (isNull-support ?a)). Once these precon-
dition and effect predicate assertions are made, we assert
the type constraint predicates for any variables mentioned
in the precondition clause, in this case for ?a and ?b. Fi-
nally, any variables we have mentioned so far are added to
the :parameters clause. We repeat the above translation
for each of the property effects components of Release, in
this case for blockGrasped and objectBeneath. The
final translated action definitions is as follows:
(:action Release

:parameters (?a ?b ?c)
:precondition

(and (_t-Block ?a)
(_t-Block ?b)
(_t-Block ?c)
(_isNull-support ?a)
(_p-blockGrasped ?c ?a)
(_p-objectBeneath ?c ?b))

:effects
(and (not (_isNull-support ?a))

(_p-support ?a ?b)
(not (_p-blockGrasped ?c ?a))
(_isNull-blockGrasped ?c)
(not (_p-objectBeneath ?c ?b))
(_p-objectBeneath ?c ?a)))

The above steps are repeated for each action model provided
by LbN. This, along with the prior steps, completes the do-
main definition.

STEP 5: Complete Problem Definition. The final step
in the translation process is to complete the problem defini-
tion. First, all of the objects that are of the types identified
in STEP 1 are added as to the :objects clause; objects
are added according to the name. For the world state repre-
sented in Figure 2, this would include: a, b, c, d and claw.
As described in STEP 2, ground type predicates are asserted
for all of the types these objects inherit.

Finally, the MakeSo request is translated as described at
the beginning of the section and asserted as the ground for-
mula in the :goal clause.

This completes the the translation to PDDL. The PDDL
form is then provided to a planner (in our case, an imple-
mentation of Graphplan), and a plan is produced. The plan
produced by the planner consists of a sequence of ground
actions. For the example we have constructed throughout
this section, the plan is:

(((MoveClaw C Claw Table))
((Grasp C Claw Table))
((MoveClaw A Claw Table))
((Release Claw C A)))

The translation schemes between the IL and PDDL versions
of the actions make the translation back to IL simple, pro-
ducing:

MoveClaw(C)
Grasp()
MoveClaw(A)
Release()

This ground plan may solve the particular problem instance
defined in the problem. However, we generalize this solution
using the same lifting technique we used above.

This new capability also opens the possibility for the
Teacher to make use of MABLE’s planning ability to teach
compound actions whose defcode procedure consists of the
steps in the plan. To do this, the Teacher can provides an
explicit name and syntax for the action to be learned, along
with arguments corresponding to the arguments the teacher
expects the action would take to achieve the MakeSo re-
quest. For example:

DoWith(MoveOnto(a,b))

Combined with the lifted solution plan, the next composite
procedure learned by MABLE is as follows:

MoveOnto(?x, ?y)
Do(InSequence(
MoveClaw(?x),
Grasp()
MoveClaw(?y),
Release()));

52

Of course, this learned procedure is not necessarily gen-
eral enough. For example, there are a number of precondi-
tions not represented here:

1. The Claw may already be above the block to be moved,
so the initial move isn’t needed.

2. The Claw may currently grasp an object, so need to first
release the currently held block, and do so not above the
block that is to be moved.

3. The Claw may already have the target block grasped.

These conditions still need to be learned (either through trial
and error or further instruction)

Conclusion
Our ability to successfully create a plan, execute it and have
it successfully achieve the target goal given the current state,
is based entirely on how complete and accurate our current
action models are.

There are (at least) two places where our action models
may fail us: (1) An incomplete model for planning: our ac-
tion models may not be complete in the sense that they may
not provide enough information for the planner to identify a
sequence of actions that will transform the world state to the
goal state; and (2) an incomplete or incorrect model of the
world: our action models may also be inaccurate with re-
spect to the world: we may think an action will bring about
some change in the world when in fact it either doesn’t, or
the effect is conditional on other world states being true or
other actions taken, or our actions may have other effects we
haven’t represented. Also, successfully constructing a plan
and achieving the world state does not mean our action mod-
els are correct, as pointed out at the end of the last section.

All of these are possibilities and we won’t know without
trying to form a plan and executing it. In this sense, form-
ing a planning model for a given problem description in IL,
attempting to build the plan, and then attempting to execute
the plan, are all components of an experiment. Failure at
any step of the process from translation, to planning, to exe-
cution can be very informative: (1) Failure during planning
may provide information about deficits in the completeness
of action models, and could lead to questions and other tests
or explorations to fill out our action models. This is a topic
for future work, likely including looking a plan-generation
traces and analyzing the partial plan graph; and (2) Suc-
cessfully generating a plan but then failing during execution
provides information about where things might go wrong.
Here, we will want to look at the execution trace and analyze
where the world appears to have diverged from the expected
plan execution model.

The translation framework we have presented here (in de-
tail!) still leaves quite a number of questions unanswered
and many directions for improvement. The following are
directions for future work:

1. Augment the planner to analyze a partial plan graph or
plan trace in cases of planning failure.

2. Handle conditional plans: take different actions depend
on results of a test

3. Handle planning with objects that may be “created” and
“destroyed” by actions. For example, the action of “cut-
ting” a piece of paper in half in a sense “destroys” the
original paper and now produces two separate objects.
This is a deep issue in planning domain knowledge en-
gineering, but one that will have to be addressed in full
human-instructable computing in the real world.

4. Handle numeric values; MABLE learns numeric functions
and many of the domains involve numeric property values
that are affected by actions.

5. Finally, handling IL lists. They will likely be handled sim-
ilar to how other composite objects are manipulated, but a
special set of list manipulation actions need to be defined
and appropriately represented.

Acknowledgments
This work was supported in part by contract HR0011-07-C-
0060 with the Defense Advanced Research Projects Agency
(DARPA) as part of the DARPA Bootstrapped Learning Pro-
gram.

References
Blum, A., and Furst, M. 1997. Fast planning through plan-
ning graph analysis. Artificial Intelligence 90:281–300.
Crespo, Y.; Marquès, J.; and Rodriguez, J. 2002. On the
translation of multiple inheritance hierarchies into single
inheritance hierarchies. In Black; Ernst; Grogono; and
Sakkinen., eds., Proceedings of th Inheritance Workshop
at ECOOP 2002, 30–37.
Dao, M.; Huchard, M.; Libourel, T.; Pons, A.; and Villerd,
J. 2004. Proposals for multiple to single inheritance trans-
formation. In Proceedings of MASPEGHI’04: 3rd Work-
shop on Managing SPEcialization/Generalization Hierar-
chies.
Kitano, H.; Asada, M.; Kuniyoshi, Y.; Noda, I.; and Os-
awa, E. 1997. Robocup: The robot world cup initiative.
In Proceedings of the first internationa conference on au-
tonomous agents, 340–347. New York, NY: ACM.
Mailler, R.; Bryce, D.; Shen, J.; and Oreilly, C. 2009.
MABLE: A modular architecture for bootstrapped learn-
ing. In The Eighth International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS09).
McDermott, D., and the AIPS’98 Planning Competition
Committee. 1998. PDDL - the planning domain defini-
tion language. Technical report, Yale University, Available
at: www.cs.yale.edu/homes/dvm.
Oblinger, D. 2008. Bootstrapped learning – external mate-
rials. Technical report, http://www.sainc.com/bl-extmat/.

53

From Requirements and Analysis to PDDL in itSIMPLE3.0

Tiago Stegun Vaquero1,2 and José Reinaldo Silva1 and Marcelo Ferreira3

Flavio Tonidandel3 and J. Christopher Beck2

1 Department of Mechatronics, Universidade de São Paulo, Brazil
2 Department of Mechanical & Industrial Engineering, University of Toronto, Canada

3 IAAA Lab, Centro Universitário da FEI - São Bernardo do Campo, Brazil
tiago.vaquero@poli.usp.br, reinaldo@usp.br, m fer@uol.com.br, flaviot@fei.edu.br, jcb@mie.utoronto.ca

Abstract

Transforming requirements of real planning applications into
a sound input-ready model for planners has been one of
the main challenges in the study of Knowledge Engineering
within AI planning. However, few tools and methods have
been developed to facilitate this transformation process. it-
SIMPLE is a research project dedicated to support the de-
sign phases of such planning models. In this papers we de-
scribe how requirements in UML are translated to solver-
ready PDDL models in itSIMPLE3.0. We also present the
translation from UML to Petri Nets for domain analysis. Fi-
nally, an overview of the tool support for analysis of plans
returned by planners is exposed.

Introduction
It is well-known that real planning applications require care-
ful design process, especially during the initial phases of a
development project. Requirements gathering and modeling
are two of the main challenges that usually impact directly
on the final planning application. Extracting relevant knowl-
edge from different sources (e.g. documents, experts, users,
stakeholders) and then representing it in a sound model is
indeed a hard task. Knowledge Engineering (KE) concepts
have been investigated to help the designer. However, few
tools and languages have been applied to facilitate the initial
design phases, in which knowledge is gradually transformed
from an informal representation to a formal model that can
be sent to AI planners.

The itSIMPLE (Vaquero et al. 2007) project is a research
effort to develop reliable KE tools for planning. Unlike other
tools, itSIMPLE focuses on initial phases of a disciplined
design cycle for creating sound models of real domains. The
tool provides an integrated environment that combines lan-
guages and tools for supporting designers in the design pro-
cess. In such environment, requirements gathering and mod-
eling are performed using the Unified Modeling Language
(UML) (OMG 2005), a general purpose language broadly
accepted in Software Engineering and Requirements Engi-
neering. The Petri Nets formalism (Murata 1989) is used
to analyze the requirements in the UML models. A PDDL
representation (up to 3.1) of the resulting UML model is au-

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tomatically provided to be read by AI planners. The plan-
ning solutions given by these solvers are then simulated and
evaluated in the tool.

This papers aims to expose the translation processes be-
hind the itSIMPLE3.0 framework. We focus on the transla-
tion from UML models to PDDL and also the representation
of some UML components in Petri Nets. The main contri-
butions of this paper are:
• A mapping process from UML to a solver-ready PDDL

model;
• A Petri Nets representation of UML models for planning

domain analysis;
This paper is organized as follows. First, we give an

overview of itSIMPLE3.0 and its language framework. Next,
we describe the translation processes that guide the user
from requirements in UML and Petri Nets-based analysis to
a PDDL model. We then give a brief description of the tool
support for analyzing plans returned by solvers. Finally, we
present the conclusion and future work.

itSIMPLE3.0 and its Language Framework
itSIMPLE is an open source project that aims to support de-
signers in the knowledge engineering processes of real plan-
ning applications (Vaquero et al. 2007). itSIMPLE’s inte-
grated environment focuses on the crucial initial phases of a
design such as requirements specification, modeling, model
analysis, and plan evaluation (Vaquero et al. 2007). The tool
has been applied and tested since 2005 in several real plan-
ning applications including petroleum supply ports (Sette et
al. 2008), project management (Udo et al. 2008), manu-
facturing (Vaquero et al. 2006), information systems, and
intelligent logistic systems. itSIMPLE3.0, the latest version,
brings new features such as the UML timing diagram for
time-based models, new PDDL translation capabilities, flex-
ibility in using planners, and an extended plan analysis tool.

The itSIMPLE environment allows users to follow a disci-
plined design process to create knowledge intensive domain
models, from the informality of real world requirements to
formal representations that can be directly read by solvers.
The suggested design process, shown in Figure 1, follows
a cycle of phases inherited from Software Engineering and
Design Engineering, combined with modeling experiences
of real planning domain.

54

Figure 1: Design process in itSIMPLE3.0

In the proposed process, requirements gathering and mod-
eling are perform using UML. This diagrammatic language
is an established notation for object-oriented design com-
monly used for modeling software applications, web appli-
cations, and business processes (OMG 2005). itSIMPLE al-
lows designers to analyze UML models, including their dy-
namic characteristics, by using the Petri Nets (PN) formal-
ism. Petri Nets are a well-known schema to represent work-
flow, discrete events and discrete dynamic processes in gen-
eral (Murata 1989). The simulation of the resulting PN can
reveal the need for refinements of the UML models. To de-
liver the analyzed UML model to a planner, itSIMPLE uses
the standard PDDL representation which most planning sys-
tems support. As a final step, the tool supports designers dur-
ing plan analysis, including simulation with UML diagrams
and plan evaluation using acquired metrics. All adjustments
and maintenance on the model, resulting from analysis, are
performed manually in the UML representation.

In order to facilitate the translation between languages in
the proposed design process, itSIMPLE uses the well-known
language XML (Bray et al. 2004) as a core language for stor-
ing all information from UML diagrams (reflecting directly
the UML model). Petri Nets and PDDL have direct rep-
resentation in XML. For example, Petri Nets Markup Lan-
guage (PNML) (Billington et al. 2003) is a XML-based rep-
resentation of PNs while eXtensible Planning Domain Def-
inition Language (XPDDL) (Gough 2004) is a XML-based
representation of PDDL. The tool utilizes these two XML-
based languages as means of achieving the PN representa-
tion and the PDDL model. All internal verifications and
translations are performed in the data available in the core
XML file, as shown in Figure 2.

Translation Processes

The main translators available in itSIMPLE3.0 are based
on mapping processes. Knowledge inserted in the tool us-
ing UML diagrams are first stored as an XML representa-
tion which is then mapped to PN and PDDL. Depending on
which translation is requested by users, the tool extracts the
necessary data from the central XML-based representation.

Figure 2: The architecture of the integrated languages

From UML to XML
itSIMPLE3.0 provides designers a set of UML diagrams as
a front-end to requirements elicitation and domain model-
ing. Five diagrams are available: (1) use case diagram for
requirements; (2) class diagrams for static characteristics of
the domain; (3) state machine diagrams for dynamics; (4)
the new timing diagrams for time-based domain features;
and (5) the object diagrams for problem and constraint def-
initions. Besides these diagrams, UML provides a prede-
fined formal language called Object Constraint Language
(OCL) (OMG 2003) to describe expressions on UML mod-
els, especially in class diagrams, state machines and object
diagrams. OCL was designed to specify domain invariants,
pre- and post-conditions of actions, and application-specific
constraints.

Figure 3: UML diagrams in itSIMPLE3.0

All UML diagrams and expressions are stored directly in
an XML representation. In fact, these diagrams are just a di-
agrammatic view of the knowledge in the XML model. The
data input through the diagrams are represented using proper

55

XML tags that can be easily mapped back into a graphical
representation of UML. The following example is a simpli-
fied XML representation of a class from UML.

<class id="6">
<name>Truck</name>
<description>class Truck</description>
<stereotype>agent</stereotype>
<attributes> ... </attributes>
<operators> ... </operators>
<generalization .../>
<constraints> ... </constraints>

</class>

Since the XML model reflects the UML diagrams in
essence, the following descriptions of the translation pro-
cesses use the term UML/XML as the central model of the
planning domain in itSIMPLE.

From UML/XML to Petri Nets
In this translation, which is specific to dynamic analysis, it-
SIMPLE captures the data from state machines diagrams of
UML/XML. These diagrams contain the knowledge directly
related to dynamics. The tool creates a PNML representa-
tion of the state machines that will be graphically expose
to the user as Petri Nets for visualization and simulation.
While simulating the PNs, designers can validate the flow
of the tokens in order to identifying deadlocks, parallelism,
concurrency and inconsistent sequences of actions.

The PNML fits properly in itSIMPLE’s analysis process
not only because it is a XML-based representation, but also
because it provides the concept of modules, called modu-
lar PNML (Kindler and Weber 2001), which is similar to
object-oriented concepts. The modular PNML allows the
definition of modules. A module in PNML encapsulates a
set of places (states) and transition that defines the behavior
of an object or artifact. A Petri Net in PNML can be created
by instantiating and combining modules.

The following sections describe the mapping process
from state machine diagram to modular PNML based on
two analysis processes provided by itSIMPLE3.0: Modular
Analysis and Interface Analysis (Vaquero et al. 2007). It is
important to note that these dynamic analysis are still in a
preliminary stage and so far the tool uses only structural el-
ements of the state machine diagrams to produce Petri Nets
in PNML. Pre and post conditions of actions (described in
OCL) are not considered yet. However, even with some
limitations, the translation to PNML is still useful since it
provides a simulation mechanism and also opens the oppor-
tunity to apply model checking techniques available in the
Petri Nets literature (Murata 1989).

Modular Analysis
The Modular Analysis supports users in verifying the be-
havior of each class individually, taking into account depen-
dencies with other classes. In order to perform this analy-
sis, every state machine (representing a class) is a module in
the modular PNML. Each state in a UML state machine is
converted to a place in the PNML module while every ac-
tion (arc) is converted to a transition element in the PNML

module. Since the actions connect states in the UML dia-
gram, the resulting transitions will connect the correspond-
ing places in the module. The ‘initial state’ element in state
machine indicates the initial token position in the module.

As an example of a PNML module, lets suppose a state
machine diagram representing a class CD where an action
t (that does not depend of any other class) leaves a state s1
and goes to the state s2. In this example, an ‘initial state’
points to s1. The state machine diagram would be translated
as a module d in the PNML in the following simplified form:
<module name="d">

<interface> ...
</interface>
<place id="{s1}">

<initialMarking>
<text>1</text>

</initialMarking>
</place>
<place id="{s2}"> ... </place>
<transition id="{t}"/>
<arc source="{s1}" target="{t}" />
<arc source="{t}" target="{s2}" />

</module>

In this modular PNML approach, actions that belongs to
other classes are distinguished graphically, creating a depen-
dency relationship in the modules. Furthermore, actions that
depend on other classes receive an extra state, as a precondi-
tion, also to represent dependency. Figure 4 shows an exam-
ple of Petri Net modules derived from Package and Airplane
state machines of the Logistic domain. All transitions in the
Package’s module (a) indicate that they affect the behavior
of such class; however, they belong to and depend on other
classes (modules), in this case the classes Truck and Air-
plane. On the other hand, Airplane’s module shows actions
load and unload represented differently. This graphical dif-
ference shows that the actions belongs to the Airplane but
they depend on other modules, such as Package. The action
fly does not depend on other modules and it is then repre-
sented as a simple transition.

Interface Analysis
The Interface Analysis investigates the dynamic interactions
among modules. During this analysis, designers can verify
not just one but many modules together, visualizing their
dependencies. In this analysis, state machines are trans-
lated individually as modules, following the same approach
of Modular Analysis. However, the chosen modules are
joined in a single PNML representation following the ap-
proach described in (Kindler and Weber 2001). When mod-
ules are combined, actions that appears in different diagrams
are merged graphically as shown in Figure 5. As a result, a
PNML file is generated and shown to users for simulation.

From UML/XML to PDDL
As opposed to the previous translation process, translat-
ing from UML/XML to PDDL requires that all knowledge
contained in UML/XML must be represented in the PDDL
model. In this procedure, the UML/XML model is rep-
resented as a PDDL model by means of XPDDL. Since

56

Figure 4: Modular Analysis of (a) Package and (b) Airplane

XPDDL to PDDL translation is a straightforward process
(as seen in (Gough 2004)), in this section we will directly
refer to the mapping from XML/UML to PDDL.

Because PDDL models are divided in two files, domain
and problem, the following descriptions focus on each trans-
lation process individually.

Domain Translation
A PDDL domain file contains static information about
the model and the specification of actions/operators. This
information is found in the UML/XML representation in
the class diagrams, state machine diagrams, and timing
diagrams.

Mapping Types
The mapping process starts from the class diagrams, in
which all defined classes are extracted and represented in the
:types section of the domain file. The hierarchy relationship
is respected and represented in PDDL. For example, a class
Truck, which is a specialization of a class Vehicle, would
be represented as Truck - Vehicle in PDDL types. Figure 6
shows the mapping rules for types in PDDL.
Mapping Predicates and Functions
Predicates and functions are also mapped to PDDL from
class diagrams, specifically from classes’ attributes and as-
sociations. Generally, attributes defined as Boolean are rep-
resented as predicates in the :predicates section of PDDL
(for example, attribute clear of class Block is mapped as
(clear ?x - Block)). Integer or Float are represented as flu-

Figure 5: Interface Analysis of the classes Package, Truck
and Airplane

Figure 6: Mapping PDDL types from class diagrams

ents in :functions of PDDL.
Some of the attributes are treated distinctly based on the

chosen version of PDDL. For example, attributes that are de-
fined as having their types of another class may depend on
PDDL version (e.g., attribute onTable of a Block class is of
type Table). In version 2.1, 2.2, and 3.0 these attributes are
represented as predicates, for instance (onTable ?x - Block
?y - Table). Conversely, in version 3.11, these cases are nat-
urally mapped as fluents in :functions, for example (onTable
?x - Block) - Table.

Parameterized attributes are also used in UML class di-
agrams. For example, the attribute distance(from:City,
to:City) of type Float from a class CityMap is a possible
parameterized attribute in a class diagram. In these cases,
the representation depends on the attribute’s type as describe
above. For the distance example, it would be represented in
the :function section of PDDL as (distance ?from - City ?to
- City).

Attributes defined in classes that have stereotype “util-
ity” are treated as global variables. The translation of these

1PDDL3.1 http://ipc.informatik.uni-freiburg.de/PddlExtension

57

attributes to PDDL follows the same approach described
above, but the class’s name is not mentioned. For example,
attribute totalfuel (Float) from a class called Global (utility)
would be mapped as (totalfuel) in the section :functions of
PDDL.

Associations are treated as predicates in PDDL as
well. For example, lets suppose that class Truck has an
association, called ‘at’, with class Place. This association is
mapped as (at ?x - Truck ?y - Place) in PDDL predicates.
Figure 7 illustrates some of the main rules for translating
predicates and functions in PDDL.

Figure 7: Mapping PDDL predicates and functions from
class diagrams

Mapping Actions
Since classes hold the name and parameters of their oper-
ators, itSIMPLE represents each action in the PDDL do-
main based on this information. As an example, opera-
tor Truck::drive(t:Truck, from:Place, to:Place) from a UML
class is mapped as (:action drive :parameters ?t - Truck
?from - Place ?to - Place)). However, pre and post con-
ditions are generally not specified in class diagrams, but in
the state machine diagrams. Figure 8 shows the mapping of
the name and parameters of actions.

In itSIMPLE’s state machine diagrams, the pre- and post-
conditions of each operator and the states are defined in
OCL expressions (OMG 2003). These expressions are used
in the actions to represent their conditions in the diagram.
Moreover, each state is defined by the possible values of the
class’s attributes using conjunctive and disjunctive OCL ex-
pressions.

Figure 8: Mapping PDDL action’s name and parameters
from class diagrams

Since an operator can affect different classes of objects,
the conditions of such operators can be spread among the
state machine diagrams. The mapping process collects all
preconditions and postconditions of each operator, merging
all state machines. In order to translate merged conditions
expressed in OCL, itSIMPLE has a map that correlates OCL
expressions and PDDL conditions. For example, if the ex-
pression ‘block.clear = true’ is found in an operator’s pre-
condition, the tool would add the following expression into
the proper action of PDDL: (clear ?block). Another exam-
ple: ‘truck.currentLoad = truck.currentLoad + 1’ in a post-
condition would be represented as (increase (currentLoad
?truck)) in PDDL.

It has been observed that some of itSIMPLE’s users define
pre- and post-conditions of actions directly in the class dia-
grams using OCL expression. In this case, itSIMPLE does
not perform the state machine merging process; instead,
the tool performs the expression mapping directly. Figure
9 shows some examples of the mapping rules for translat-
ing OCL expressions into PDDL conditions. A complete
map of pre and post-conditions in OCL into XPDDL and
PDDL is described in the user documentation available in
the project’s website.2

Since OCL expressions on post-conditions work with
variables attribution, itSIMPLE’s translator must treat the
cases where negating predicates are necessary. For exam-
ple, if the OCL expression ‘truck.at = from’ appears in the
precondition and ‘truck.at = to’ appears at the postcondition
of an action drive, the tool would automatically add the
condition (not (at ?truck ?from)) in the :effect of a PDDL
action, along with (at ?truck ?to) condition.

Mapping Temporal Characteristics of Actions
With the new timing diagrams added in itSIMPLE3.0, tem-
poral characteristics of actions can also be modeled and
translated to PDDL. The timing diagram was added in or-
der to address challenging domains such as those involving
time. This diagram is a timeline based approach to capture
temporal aspects of actions. When this diagram is used in a
planning approach, it is intrinsically connected to the state
machine diagrams which supply all significant states and at-
tributes of an object.

There are two approaches to modeling temporal aspects
in a domain using timing diagrams. The first one has a more

2User documentation. http://dlab.poli.usp.br

58

Figure 9: Mapping OCL expression to PDDL conditions

general view of the model in which all objects are presented
in a single diagram. This approach shows the how long the
objects remain in each of their states in a possible sequence
of actions. Each object in this diagram receives a frame that
is linked to a shared timeline. The timeline represents the
general duration of the possible sequence of actions. Each
object’s state is linked to time points that represent its dura-
tion. Figure 10 shows an example of a timing diagram using
two objects. This diagram illustrates that each one has its
own life-cycle that contains all states of the object and also
the duration of each state.

The second approach shows the temporal details of a spe-
cific action. The goal is to describe how attributes and prop-
erties change during an action execution. OCL expressions
are also used for defining the evolution of these attributes.
Only the objects related to such action can participate in the
diagram, as shown in Figure 11.

Currently, only the second approach is considered in the
translation process to PDDL. If an action is represented in
a timing diagram, this action will be a durative-action in
PDDL. Accordantly to the latest version of PDDL, there are
three types of temporally annotated conditions and effects:
(1) at start, specifies that a variable must have a specific
value when the action is triggered; (2) the over all specifies
that a variable has to hold its values during the execution
of the action; and (3) the at end specifies that the variable
must has a specific value at the end of the action. When

Figure 10: Timing diagram in itSIMPLE3.0

an OCL expression is defined in the timing diagram, each
property is translated to PDDL surrounded by one of these
three temporal operators, depending on how they appear in
the diagram. OCL expressions are also translated to PDDL
following the processes described previously. For example,
expression ‘attribute = attribute + number’ in the effects
would be interpreted as (increase (attribute) number) in
PDDL surrounded by a temporal operator (e.g., at end) (Fox
and Long 2003).

Mapping Constraints
The first constraint treated in itSIMPLE’s translator is re-
lated to the association multiplicity on the class diagrams.

Figure 11: Timing diagram of an action in itSIMPLE3.0

59

In the association ‘at’ mentioned before, a Truck can only
be at one Place at a time. The multiplicities are represented
as constraints (using ‘always’ operator) in the section :con-
straints of a PDDL 3.0 domain(Gerevini and Long 2006). In
fact, these constraints reinforce (make explicit in the model)
what most of time are implicit on action’s conditions and
effects. Figure 12 illustrates this mapping rule.

Figure 12: Mapping association multiplicity to PDDL con-
straints

As a new feature in itSIMPLE3.0, users can also specify
constraints on classes, attributes or associations in class dia-
grams by using OCL. For example, one could want to con-
strain the battery power level of a Robot inserting the follow-
ing OCL expression in the class: inv: self.powerlevel <20.
This expression would be represented in the domain section
:constraints from PDDL 3.0 as (always (forall (?r - Block)
(<(powerlevel ?r - Robot) 20))). The translation process
of these constraints is restricted to the available mapping of
OCL expression to PDDL described previously.

Problem Translation
A PDDL problem file considered in itSIMPLE3.0 can
contain five main elements: objects, initial state, goal con-
ditions (objective state), metrics, and problem constraints.
This information is found in the object diagrams of the
UML/XML representation.

Mapping Objects
The tool provides a dedicated object diagram (called object
repository) to hold all objects used in a set of planning
problems. Every object’s name, along with the respective
class’s name, in the repository is translated and inserted to
the section :object of a PDDL problem file. The mapping
rule for objects in PDDL is shown in Figure 13.

Figure 13: Mapping PDDL objects from object repository

Mapping Initial and Goal States
In every problem, there are at least two object diagrams, the

init and the goal. The translation process for both diagrams
follows the same mapping approach. Starting from the
init snapshot, the tool seeks an object’s attributes and their
values in order to represent them in PDDL. For example, a
graphical object truck1 with attribute capacity equals to 100
would be represented as (= (capacity truck1) 20) in section
:init of PDDL. Another example is an object blockA with
attribute clear equal to true that would be represented as
(clear blockA) in PDDL. Since associations are also treated
as predicates, as previously described, their translation is
also straightforward. For instance, truck1 associated with
place1 through association ‘at’ in the object diagram would
be mapped as (at truck1 place1). Another general example
of creating the PDDL initial state from object diagrams is
presented in Figure 14. The goal state (:goal) follows the
same translation process as for the :init.

Figure 14: Mapping PDDL init from object diagram

Mapping Problem Constraints
Additional object diagrams can be used to represent the
Timed Initial Literal concept from PDDL 2.2 (Edelkamp and
Hoffmann 2004) and also the State Trajectory Constraints
concept from PDDL 3.0 (Gerevini and Long 2006). When
considering timed initial literal, users usually create specific
situations or facts in time using object diagrams for describ-
ing exogenous events. Each diagram is attached to a specific
point in time representing that all containing elements (as-
sociations and attributes with their respective values) will
be true at such time point. This approach follows the same
translation process as the init state; however, elements in the
diagram are translated to the section :init preceded by the
specified point in time. An example would be (at 5 (clear
blockA)) in PDDL 2.2.

In order to model state trajectory constraints, users can
also create object diagrams that represent situations to be
constrained. These object diagrams are attached to the de-
sired constraint using basic modal operators such as always,
sometime, at-most-once, and at end or never (always not).
In this case, the whole snapshot is first translate to PDDL as
described for init and goal states. Then, it is inserted in the
:constraints section of a PDDL 3.0 problem file surrounded
by the desired basic modal operator such as (:constraints
(and (always (<facts from the object diagram>)).

Mapping Metrics
Finally, user can insert in the model OCL expressions con-
taining an object’s attributes that affect directly the qual-
ity of plans. These expressions must be generally maxi-
mize or minimize, depending on the problem. Following
the approach of mapping OCL expression to PDDL con-
ditions, itSIMPLE inserts the translated expression in the
:metric section of PDDL. For example, a minimization of

60

the expression ‘robot1.traveldistance + robot1.powerusage’
would be translate to (:metric minimize (+ (traveldistance
robot1) (powerusage robot1))) in a PDDL representation.

With both PDDL files created, itSIMPLE can deliver the
PDDL model to a chosen planner.

Plan Analysis Support
For complex problems, lack of knowledge or ill-defined re-
quirements can propagate to specifications and then to the
problem submitted to the planner. Either of these scenar-
ios (and others) may lead to the generation of poor qual-
ity plans. In these cases, bad plans and defects to a set of
requirements must be spotted and fixed. Following these
principles, itSIMPLE3.0 allows users to test the generated
PDDL model with a set of modern planners (Metric-FF, FF,
SGPlan, MIPS-xxl, LPG-TD, LPG, hspsp, and SATPlan) in
order to analyze the quality of the produced plans. Plan anal-
ysis starts from plan visualization and simulation in UML to
a plan evaluation based on domain metrics.

Plan visualization and simulation, provided by the func-
tionality called “Movie Maker” (Vaquero et al. 2007), are
performed by capturing the response of a planner and exe-
cuting the plan from the initial state to the goal state. This
process creates a sequence of UML object diagrams that
simulates the plan, state by state. Plan evaluation can be
performed by selecting the domain metrics that directly ef-
fect the plan quality and observing their evolution during the
simulation. Preference on values of these metrics can be de-
fined by correlating the values to grades. These preferences
allow itSIMPLE to evaluate the plan and produce a plan re-
port that provides an overall grade for the plan, along with
the charts showing the evolution of the metrics.

Conclusion
In this paper, we presented the translation processes avail-
able in itSIMPLE3.0, a KE tool that has been developed to
support designers in the development of real planning do-
mains. We have described how requirements modeled in
UML can be analyzed by Petri Nets and translated to an
input-ready PDDL model for planners. The UML to Petri
Nets translation opens the possibility to validate and analyze
the model by using simulation and model checking tech-
niques available in the PNs literature. The translation from
UML to PDDL 3.1 provides a mechanism for testing and
analyzing models with planners. The analysis gives the op-
portunity to improve models and, consequently, the quality
of plans.

As future work, we have been investigating new meth-
ods for plan analysis such as virtual prototyping of plans
and plan comparison that will reinforce the gradual improve-
ment of domain models. New UML diagrams have been also
studied to be included in itSIMPLE. The first candidate is
the activity diagram which will represent HTN domains and
some predefined strategies for planning. Finally, we plan to
include the System Modeling Language (SysML3) to the it-
SIMPLE’s framework for model verification and validation.

3www.omgsysml.org.

Acknowledgments
The authors are especially grateful to the researchers and
students involved directly and indirectly in the project, as
well as the many others who have, from time to time, sent
suggestions on improvements to the itSIMPLE tool. This
work has been supported in part by CNPq and CAPES.

References
Billington, J.; Christensen, S.; van Hee, K.; Kindler, E.;
Kummer, O.; Petrucci, L.; Post, R.; Stehno, C.; and We-
ber, M. 2003. The petri net markup language: con-
cepts, technology, and tools. In Proceedings of the 24th
Int Conf on Application and Theory of Petri Nets, LNCS
2679, Springer, 483–505.
Bray, T.; Paoli, J.; Sperberg-McQueen, C. M.; Maler, E.;
and Yergeau, F. 2004. Extensible Markup Language
(XML) 1.0 (Third Edition). Technical report.
Edelkamp, S., and Hoffmann, J. 2004. Pddl 2.2: The lan-
guage for classical part of the 4th international planning
competition. Technical report, Fachbereich Informatik and
Institut fr Informatik, Germany.
Fox, M., and Long, D. 2003. Pddl2.1: An extension of
pddl for expressing temporal planning domains. Journal of
Artificial Intelligence Research (JAIR) 20:61–124.
Gerevini, A., and Long, D. 2006. Preferences and soft
constraints in pddl3. In Gerevini, A., and Long, D., eds.,
Proceedings of ICAPS workshop on Planning with Prefer-
ences and Soft Constraints, 46–53.
Gough, J. 2004. Xpddl 0.1b: A xml version of pddl.
Kindler, E., and Weber, M. 2001. A universal module
concept for petri nets. In Proceedings of the 8th Workshops
Algorithmen und Werkzeuge fr Petrinetze, 7–12.
Murata, T. 1989. Petri nets: Properties, analysis and appli-
cations. In Proceedings of the IEEE, volume 77, 541–580.
OMG. 2003. UML 2.0 OCL Specification m Version 2.0.
OMG. 2005. OMG Unified Modeling Language Specifica-
tion, m Version 2.0.
Sette, F. M.; Vaquero, T. S.; Park, S. W.; and Silva, J. R.
2008. Are automated planners up to solve real problems?
In Proceedings of the 17th World Congress The Interna-
tional Federation of Automatic Control (IFAC’08), Seoul,
Korea, 15817–15824.
Udo, M.; Vaquero, T. S.; Silva, J. R.; and Tonidandel, F.
2008. Lean software development domain. In Proceed-
ings of ICAPS 2008 Scheduling and Planning Application
woRKshop. Sydney, Australia.
Vaquero, T. S.; Tonidandel, F.; Barros, L. N.; and Silva,
J. R. 2006. On the use of uml.p for modeling a real ap-
plication as a planning problem. In Proceedings of the
16th International Conference on Automated Planning and
Scheduling (ICAPS), 434–437.
Vaquero, T. S.; Romero, V.; Tonidandel, F.; and Silva, J. R.
2007. itSIMPLE2.0: An integrated tool for designing plan-
ning environments. In Proceedings of the 17th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2007). Providence, Rhode Island, USA.

61

	Cover
	Foreword
	Contents
	LOCM: A tool for acquiring planning domain models from action traces
	On Compiling Data Mining Tasks to PDDL
	Modeling E-Learning Activities in Automated Planning
	JABBAH: A Java Application Framework for the Translation Between Business
Process Models and HTN
	PORSCE II: Using Planning for Semantic Web Service Composition
	Augmenting Instructable Computing with Planning Technology
	From Requirements and Analysis to PDDL in itSIMPLE3.0

