
Generation of Macro-operators via Investigation of Actions Dependencies in Plans

Lukáš Chrpa
Department of Theoretical Computer Science and Mathematical Logic

Faculty of Mathematics and Physics
Charles University in Prague

chrpa@kti.mff.cuni.cz

Abstract

There are a lot of approaches for solving planning prob-
lems. Many of these approaches are based on ‘brute
force‘ search methods and do not care about structures
of plans previously computed in certain planning do-
mains. By analyzing these structures we can obtain
useful knowledge that can help in finding solutions for
more complex planning problems. The method de-
scribed in this paper is designed for gathering macro-
operators by analyzing of training plans. This analysis
is based on investigation of action dependencies in the
training plans. Knowledge gained by our method can be
passed directly to planning algorithms to improve their
efficiency.

Introduction
Despite significant improvement in planning systems in last
years many automated planning algorithms are based on
‘brute force‘ search techniques accommodated with heuris-
tics guiding the planner towards the solution (Bonet &
Geffner 1999). Hence an important question is how to find
such information or knowledge that can be transformed into
efficient planning heuristics. Several heuristics are based
on the structure of Planning Graph (Blum & Furst 1997).
These heuristics provided good results on many problems
but on the other hand the analysis of Planning Graph it-
self does not seem to reveal complete information hidden
in the plans structures. An approach in (Hoffmann, Por-
teous, & Sebastia 2004) describes Landmarks - facts that
must be true in every valid plan. Another work (Knoblock
1994) presents a structure called Causal Graph which de-
scribes dependencies between state variables. The most re-
cent studies (Gimenez & Jonsson 2007; Katz & Domshlak
2007) analyze Causal Graph with respect to complexity of
planning problems. Both the Landmarks and the Causal
Graphs are tools based on analyzing literals, giving us useful
information about the planning domain, but almost no infor-
mation about the dependencies between actions. One of the
most influential works from the area of actions dependencies
(McCain & Turner 1997) defines a language for express-
ing causal knowledge (previously studied in (Geffner 1990;
Lin 1995)) and formalizes actions in it. One of the newest

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

approaches (Vidal & Geffner 2006) based on plan space
planning techniques over temporal domains gives very good
results, especially in parallel planning, because it handles
better supports, precedences and causal links. There are
other practical approaches such as (Wu, Yang, & Jiang 2005)
where knowledge is gathered from plans stochastically and
(Nejati, Langley, & Konik 2006) where learning from ex-
pert traces is adapted for acquiring classes of hierarchical
task networks. Finally, papers (Chrpa & Bartak 2008b;
2008a) define relations describing action dependencies and
present methods based on these relations.

Another way for improving efficiency of planners rests
in using macro-actions (or macro-operators) (Korf 1985)
that represent sequences of primitive actions. The advan-
tage of using macro-actions is clear - shorter plans are ex-
plored to find a solution - and there are some techniques
for finding macro-actions (Newton, Levine, & Fox 2005;
Coles, Fox, & Smith 2007). One of the most outstanding
works in the area of macro-actions is Macro-FF (Botea et al.
2005), system for generating macro-operators through do-
main analysis. However, an efficient procedure for finding
macro-actions (or macro-operators) remains a hard problem
and many planners are still unable to handle well macro-
actions together with primitive actions.

In this paper, we extend the work (Chrpa & Bartak 2008b)
by providing a method generating macro-operators in terms
of plans analysis by investigation of action dependencies.
The method is used for learning macro-operators from train-
ing plans solving less complex planning problems to be
helpful in solving more complex planning problems. In
other words, the method provides knowledge which is en-
coded back to the domain. The method is designed to be
used as a supporting tool for planners.

The paper is organized as follows. The next section intro-
duces basic notions from the planning theory. Then, we pro-
vide brief theoretical background of the problem of actions
dependencies in plans. After that, we describe the method
for gathering macro-operators from training plans. Then,
we present and discuss the evaluation of the method. Fi-
nally, we discuss exploitation of the proposed method and
possible directions of future research.

Preliminaries
Traditionally, AI planning (in state space) deals with the
problem of finding a sequence of actions transforming the
world from some initial state to a desired state. State s is
a set of predicates that are true in s. Action a is a 3-tuple
(p(a), e−(a), e+(a)) of sets of predicates such that p(a) is
a set of predicates representing the precondition of action a,
e−(a) is a set of negative effects of action a, e+(a) is a set of
positive effects of action a, and e−(a) ∩ e+(a) = ∅. Action
a is applicable to state s if p(a) ⊆ s. If action a is applicable
to state s, then the new state s′ obtained after applying the
action is s′ = (s \ e−(a)) ∪ e+(a). A planning domain is
represented by a set of states and a set of actions. A planning
problem is represented by a planning domain, an initial state
and a set of goal predicates. A plan is an ordered sequence
of actions which leads from the initial state to any goal state
containing all of the goal predicates. For deeper insight in
this area, see (Ghallab, Nau, & Traverso 2004).

In this paper we consider Typed STRIPS representation
of planing problems. This representation allows definition
of planning operators like ‘templates‘ of actions. Clearly,
actions are grounded instances of planning operators.

Action dependencies in plans
Planning is basically about action sequencing. Clearly, ac-
tions in a valid sequence forming the plan are dependent in
the sense that one action provides predicates serving as pre-
conditions for other actions. In this section, we formally
describe this dependency relation and present some of its
useful features.

Every action needs some predicates to be true before
the action is applicable. These predicates are provided by
the initial state or by other actions that were performed
before. If we have a plan solving a planning problem, we
can identify which actions are providing these predicates
to other actions that need them as their precondition. The
following definition describes this relation formally.

Definition 1.1: Let < a1, . . . , an > be an ordered
sequence of actions. Action aj is straightly dependent
on the effects of action ai (denoted as ai → aj) if and
only if i < j, (e+(ai) ∩ p(aj)) 6= ∅ and there does not
exist any k1, . . . , kl such that i < k1, . . . , kl < j and
(e+(ai) ∩ p(aj)) ⊆

⋃l
t=1 e+(akt).

Action aj is dependent on the effect of action ai if and only
if ai →∗ aj where →∗ is a transitive closure of the relation
→. To describe negation of this relation, we will simply use
ai 9∗ aj .

The relation of straight dependency on the effects of
action (hereinafter straight dependency only) means that
ai → aj holds if some predicate from the precondition of
action aj is provided by action ai and ai is the last action
providing the predicate before action aj . Notice that an
action may be straightly dependent on more actions. The
relation of dependency on the effects of action (hereinafter
dependency only) is a transitive closure of the relation
of straight dependency. We can extend Definition 1.1 by

describing that an action is straightly dependent on the
initial state or that the goal is straightly dependent on
some action. However, to model these dependencies we
can also use two special actions in the style of plan-space
planning: a0 = (∅, ∅, s0) (s0 represents the initial state) and
an+1 = (g, ∅, ∅) (g represents the set of goal predicates).
Action a0 is performed before the plan and action an+1 is
performed after the plan.

Remark 1.2: Negation of the relations of straight depen-
dency and dependency is marked in the following way:
• ai 9 aj means that aj is not straightly dependent on ai.
• ai 9∗ aj means that aj is not dependent on ai.

Let us now define the complementary notion of action
independency. The motivation behind this notion is that
two independent actions that are adjacent can be swapped
in the action sequence without influencing the plan (it was
formally proved in (Chrpa & Bartak 2008b)).

Definition 1.3: Let < a1, . . . , an > be an ordered
sequence of actions. Actions ai and aj (without loss of
generality we assume that i < j) are independent on the
effects (denoted as ai = aj) if and only if ai 9∗ aj ,
p(ai) ∩ e−(aj) = ∅ and e+(aj) ∩ e−(ai) = ∅.

The symbol for relation of independency on the effects
(hereinafter independency only) looks symmetrical even
though according Definition 1.3. it is not. The reason for
using the symmetrical symbol is hidden in the previously
mentioned property of the independency relation (recall that
independent adjacent actions can be swapped without loss
of plan validity).

Remark 1.4: Since the relations of dependency and in-
dependency are not complementary, we define the following
symbol:
• ai ↔ aj means that aj is not independent on ai.

Computation of the relation of straight dependency is
quite straightforward. The idea is based on storing of the
index of the last action which created the particular pred-
icate. Concretely, each predicate p is annotated by d(p)
which refers to the last action that created it. We simulate
execution of the plan and each time an action ai is executed,
we find the dependent actions by exploring d(p) for all pre-
conditions p of ai. The relation of straight dependency can
be naturally represented as a directed acyclic graph so the
relation of dependency is obtained as a transitive closure of
the graph, for example using the algorithm from (Mehlhorn
1984). The relation of independency can be easily computed
by checking of every pair of actions ai and aj such that i < j
and the actions satisfy the conditions from Definition 1.3.

Identifying actions that can be assembled
By assembling of two primitive actions we obtain a new
macro-action. The result of applying the macro-action to
some state is identical to the result of applying the primitive
actions to the same state. A macro-action which is obtained

Figure 1: Four different situations for moving the intermedi-
ate actions (grey-filled) before or after one of the boundary
actions (black-filled).

by assembling of actions ai and aj (in this order) will be
denoted as ai,j , formally:
• p(ai,j) = (p(ai) ∪ p(aj)) \ e+(ai)
• e−(ai,j) = (e−(ai) ∪ e−(aj)) \ e+(aj)
• e+(ai,j) = (e+(ai) ∪ e+(aj)) \ e−(aj)
This approach can be easily extended for more actions, see
(Chrpa, Surynek, & Vyskocil 2007).

It is clear that we have to decide which actions can be
assembled. We analyze several previously computed plans,
where we focus on actions (instances of operators) that are
(or can be) often consequent. We can analyze the plans by
looking only for consequent actions. However in such a case
we may miss many actions that can be performed conse-
quently but in the plans there are some other actions placed
between them. If such intermediate actions can be moved
before or after them without loss of plan validity then we can
assemble even non-consecutive actions. We use the main
property of independent actions (can be swaped if adjacent)
for detection if a pair of action can be assembled (we can
make them adjacent). Figure 1 shows four different situa-
tions (actually two situations and their mirror alternatives)
for moving the intermediate actions. Clearly, if the inter-
mediate action is adjacent and independent on the boundary
action we can move this action before or after the boundary
action. If the intermediate action is not independent on one
of the boundary actions we have to move it only before or af-
ter the other boundary action which means that this interme-
diate action must be independent on all actions in between
(including the boundary action). The following algorithm is
based on repeated application of these steps. If all interme-
diate actions are moved before or after the boundary actions
then the boundary actions can be assembled. If some inter-
mediate actions remain and no of the steps can be performed
then the boundary actions cannot be assembled. Formally:
Function DETECT-IF-CAN-ASSEMBLE(IN index i,
IN index j, IN independency relation S, OUT list of in-
dices L, OUT list of indices R) : returns bool
D := {k|i < k < j}
L := R := ∅
Repeat
chg := false

k := min(D) // min(D) returns the smallest ele-
ment from D or 0 if D is empty

If k > 0 and (i, k) ∈ S then
D := D \ {k}
chg := true
L := L ∪ {k}

EndIf
k := max(D) // max(D) returns the greatest ele-
ment from D or 0 if D is empty
If k > 0 and (k, j) ∈ S then
D := D \ {k}
chg := true
R := R ∪ {k}

EndIf
Z := {x|x ∈ D ∧ (i, x) 6∈ S}
k := max(Z)
If k > 0,(k, j) ∈ S and ForEach l ∈ D ∧ l > k
(k, l) ∈ S holds then
D := D \ {k}
chg := true
R := R ∪ {k}

EndIf
Z := {x|x ∈ D ∧ (x, j) 6∈ S}
k := min(Z)
If k > 0,(i, k) ∈ S and ForEach l ∈ D ∧ l < k
(l, k) ∈ S holds then
D := D \ {k}
chg := true
L := L ∪ {k}

EndIf
Until not chg

If D = ∅ then Return true else Return false
EndFunction

Anyway, if the previous algorithm returns true (ie. actions
can be assembled) we obtain also lists of action indices rep-
resenting actions that must be moved before (respectively
after) actions ai and aj . Usage of the lists will be explained
in the following section.

Generating macro-operators
As mentioned before planning domains include planning op-
erators rather than ground actions. Assembling operators
rather than actions is more advantageous, because macro-
operators can be more easily converted to more complex
problems than macro-actions. The idea of detection such
operators that can be assembled is based on investigation of
training plans, where we explore pairs of actions (instances
of operators) that can be assembled more times.

Let M be a square matrix where both rows and columns
represent all planning operators in the given planning do-
main. Field M(i, j) contains a pair < N, V > such that:
• N is a number of such actions ai, aj that are instances of

i-th and j-th planning operator (in order), ai → aj and
both actions ai and aj can be assembled in some example
plan.

• V is a set of variables shared by i-th and j-th planning
operators.

In other words, matrix M contains candidates for as-
sembling (or becoming macro-actions). The following
algorithm constructs matrix M from a set of training plans
(all plans must solve planning problems over the same
domain):

Procedure CREATE-MATRIX(IN set of plans P ,
OUT matrix M)

Set M as empty square matrix

ForEach π in P do
Compute D as a relation of straight dependency on ac-

tions from π

Compute S as a relation of independency on actions
from π

ForEach (i, j) ∈ D do
If DETECT-IF-CAN-ASSEMBLE(i, j, S, L, R) then

Set k as the id of the operator whose ai is an instance
Set l as the id of the operator whose aj is an instance
Compute V as a set of variables that ai and aj share
IfMk,l is empty then
Mk,l :=< 1, V >

Else
< N, OV >:= Ml,k

Ml,k :=< N + 1, OV ∩ V >
EndIf

EndIf
EndForeach

EndForeach
EndProcedure

Computation of the sets of variables that operators
share needs to be clarified. For example, in a vari-
ant of well known BlockWorld we can have operators
PICK(box,hoist,surface) and DROP(box,hoist,surface). If
we decide to make a macro-operator MOVE (consisting of
PICK and DROP operators) we can also see that box and
hoist are always the same (we are picking and dropping the
same box with the same hoist in time), only surface may dif-
fer. Generally, we observe which parameters (objects) are
shared by actions and select such parameters that are shared
by all pairs of actions that can be assembled and that are
instances of the particular operators.

Now, we explain the purpose of lists L and R that are gen-
erated in function DETECT-IF-CAN-ASSEMBLE. When
we need to update plans by replacing selected actions by
macro-actions (instances of generated macro-operators) we
must also reorder other actions to keep the plans valid. The
following approach shows how to reorder actions in plan
< a1, . . . , an > if a pair of selected actions ai, aj is as-
sembled into macro-action ai,j :

• actions a1, . . . ai−1 remains in its positions

• actions listed in L are moved (in order) to positions
i, . . . , i + |L| − 1

• macro-action ai,j is moved to i + |L|-th position

• actions listed in R are moved (in order) to positions i +
|L|+ 1, . . . , j − 1

• actions aj+1, . . . , an are moved one position back (to po-
sitions j, . . . , n− 1)
To generate macro-operators from training plans (over a

given domain) we can use the following approach. We create
repeatedly macro-operators until no other macro-operator
can be created. At, first we have to compute a matrix of
candidates for assembling from all training plans (CREATE-
MATRIX). Then we select a proper candidate for creat-
ing macro-operators (SELECT-CANDIDATE) which means
that such a candidate must follow pre-defined conditions (it
will be explained later). After a creation of macro-operator
from the selected candidate we must update all training plans
(UPDATE-PLANS) which means that we replace particular
pairs of actions by a particular instance of the new macro-
operator. UPDATE-PLANS procedure can be easily imple-
mented by application of the previously described approach
(reordering actions after assembling) on every pair of actions
(instances of the selected operators) in every plan.

Procedure GENERATE-MACRO(IN set of plans P ,
OUT set of macro-operators O)
O := ∅
Repeat

picked := false
CREATE-MATRIX(P,M)
If SELECT-CANDIDATE(M,C) then
picked := true
O := O ∪ {C}
UPDATE-PLANS(P,C)

EndIf
Until not picked

EndProcedure
Last but not least the remaining unexplained issue is the

function for selecting a proper candidate for assemblage
(SELECT-CANDIDATE). We suggested to select such a
candidate that satisfies the following conditions (let f(O)
represent frequency of operator O (how many instances of
operator O occur in all training plans) and Ni,j represents
number N in field Mi,j):

• let q = max({ Ni,j

f(Oi)
|Mi,j is not empty } ∪ { Ni,j

f(Oj)
|Mi,j

is not empty })
• q ≥ b

These conditions say that we are looking for such opera-
tors whose instances usually appear (or can appear) consec-
utively. Constant b ∈ 〈0; 1〉 represents a pre-defined bound
which prevents selecting such operators whose instances do
not appear consecutively so often. It is clear that if the
bound is too small, many operators will be assembled. It
may lead to very large domains with many operators which
may cause many difficulties for planners. In the other hand,
if the bound is too large, almost no actions will be assembled
which means that domains may remain unchanged.

At last, we must decide which macro-operators can be
added to the domain and which primitive operators can be

removed from the domain. Here, we decided to add every
macro-operator whose frequency in updated plans is non-
zero. On the other hand, we decided to remove every prim-
itive operator whose frequency in updated plans become
zero. It is clear that it may cause possible failure in genera-
tion of further plans, but usually in IPC (International Plan-
ning Competition) domains it does not happen. In case that
some generation fails we can bring the primitive operators
back to the domain and execute the generation again.

These conditions say that we are looking for such opera-
tors whose instances usually appear (or can appear) consec-
utively. Constant b ∈ 〈0; 1〉 represents a pre-defined bound
which prevents selecting such operators whose instances do
not appear consecutively so often. It is clear that if the
bound is too small, many operators will be assembled. It
usually causes that generated macro-operators are represent-
ing whole training plans that do not bring any contribution
to planners. On the other hand, if the bound is too large,
almost no actions may be assembled which means that do-
mains may remain unchanged. However, in some cases we
are not able to prevent generation of such macro-operators
representing a huge part of some training plan even though
b is quite large. The reason for this rests in the fact that
sometimes only one (or very few) instance of some opera-
tor occurs in all training plans. Almost always we can find
some other action that can be assembled with this instance,
because the ratio between the number of candidates (stored
in the matrix) and frequency of the operator becomes 1. It
implies that the operator will be certainly selected for assem-
blage. To prevent this unwanted selection we should add the
following condition:

• Ni,j∑
i f(Oi)

≥ c

This conditions allows only to select such operators
whose number of instances being able to be assembled
(stored in Ni,j) divided by the number of all actions from
the all training plans reaches predefined constant c. Another
problem we are faced lies in the fact that many planners use
grounding. It means that the planners generate all possible
instances of operators that are used during planning. How-
ever, macro-operators usually have more parameters than
primitive operators which means that the macro-operators
may have much more instances than the primitive opera-
tors. To avoid troubles with planners regarding grounding
we should limit a maximum number of parameters for each
macro-operator (by pre-defined constant d).

We must also decide which macro-operators can be added
to the domain and which primitive operators can be removed
from the domain. Here, we decided to add every macro-
operator whose frequency in updated plans is non-zero. On
the other hand, we decided to remove every primitive op-
erator whose frequency in updated plans become zero. It
is clear that it may cause possible failure in generation of
further plans. Luckily in IPC (International Planning Com-
petition) benchmarks it almost does not happen. In case
that some generation fails it is possible to bring the removed
primitive operators back to the domain and execute the plan-
ner again.

Complexity discussion
The presented algorithms are designed to be performed in
a polynomial time. It is almost clear that the presented al-
gorithms run in polynomial times, but two issues need to
be clarified. First, we take a look on the repeat cycle in
function DETECT-IF-CAN-ASSEMBLE. This cycle can be
performed at most as many times as the number of inter-
mediate actions, because in every loop we remove at least
one of the intermediate actions. Second, we take a look
on the repeat cycle in procedure GENERATE-MACRO. We
know that in every loop we generate some macro-operator
and replace at least one pair of actions by the instance of the
macro-operator. It means that the sum of plans lengths is
decreased in every loop and therefore the repeat cycle can
be performed at most as many times as the sum of the plans
length.

Evaluation
Planning domains and planning problems used in the follow-
ing evaluation are well known from IPC. We do the evalua-
tion in the following steps:

• Generate several simpler plans as an input for our method.

• Generate macro-operators by our method and add them to
the domain, remove such primitive operators that appear
no longer in the updated plans.

• Compare the running time for more complex problems
between the original domain and the updated domain.

We used SATPLAN 2006 (Kautz, Selman, & Hoffmann
2006) and SGPLAN 5.22 (Hsu et al. 2007) for generation
of the training plans and SGPLAN 5.22 for comparison of
the running time. The time comparison is made for such
problems having their running time in the original domain
greater than 2 seconds.

Tested domains
Blocks domain is well known from the second IPC. The
domain consists of a table, a gripper and cubical blocks.
Blocks are distributed in columns placed on the table. We
can move only the topmost blocks to the table or to the other
topmost blocks. The domain consists of 4 primitive opera-
tors (PICKUP, PUTDOWN, STACK, UNSTACK).

Depots domain is a well known planning domain from
the third IPC. This domain was devised in order to see what
would happen if two previously well-researched domains
logistics and blocks were joined together. They are com-
bined to form a domain in which trucks can transport crates
around and then the crates must be stacked onto pallets at
their destinations. The stacking is achieved using hoists, so
the stacking problem is like a blocks-world problem with
hands. Trucks can behave like ‘tables‘, since the pallets on
which crates are stacked are limited. The domain consists
of 5 primitive operators (LIFT, LOAD, DRIVE, UNLOAD,
DROP).

Zenotravel domain is a well known planning domain
from the third IPC. The domain involves transporting peo-
ple around in planes, using different modes of movement:

Domain Planner #p b c d #a #r
Blocks SGPLAN 3 0.3 0.05 4 5 4
Blocks SGPLAN 3 0.8 0.1 4 2 2
Blocks SGPLAN 3 0.8 0.05 4 3 4
Blocks SATPLAN 3 0.8 0.05 4 3 4
Blocks SGPLAN 5 0.8 0.05 4 3 4
Blocks SATPLAN 5 0.8 0.05 4 3 4
Depots SGPLAN 3 0.3 0.05 6 4 5
Depots SGPLAN 3 0.8 0.1 6 2 4
Depots SATPLAN 3 0.8 0.1 6 2 2
Depots SGPLAN 5 0.3 0.05 6 4 2
Depots SGPLAN 5 0.8 0.1 6 2 2
Depots SATPLAN 5 0.8 0.1 6 2 2
Zenotr SGPLAN 3 0.3 0.05 7 3 4
Zenotr SGPLAN 3 0.8 0.1 7 1 1
Zenotr SATPLAN 3 0.8 0.1 7 0 0
Zenotr SGPLAN 6 0.3 0.05 7 4 2
Zenotr SGPLAN 6 0.8 0.1 7 1 1
Zenotr SATPLAN 6 0.8 0.1 7 2 0

Table 1: Results of the presented method for generating
macro-operators using different settings and different plan-
ners for the generation of the training plans. #p represents
the number of training plans. #a represents the number of
added macro-operators. #r represents the number of re-
moved primitive operators. Highlighted rows are represent-
ing such results that have the best performance in the further
running times comparison test.

fast and slow. The domain consists of 5 primitive operators
(BOARD, DEBARK, FLY, ZOOM, REFUEL).

Generating macro-operators and updating the
domains
From the previous text we know that we can handle with
macro-operators generation by pre-defined bounds b, c and
d. Table 1 shows results of our method for generating macro-
operators. We used different settings of bounds b,c and d,
two different planners (SATPLAN 2006, SGPLAN 5.22) for
generation of training plans and we also took into account a
different number of training plans. The highlighted results
in table 1 further used in the comparison (see the next sub-
section) are following. In Blocks domain we suggested:

• to add 3 new macro-operators (PICKUP-STACK,
UNSTACK-STACK, UNSTACK-PUTDOWN)

• to remove all 4 primitive operators (PICKUP, PUT-
DOWN, STACK, UNSTACK)

In Depots domain we suggested:

• to add 2 new macro-operators (LIFT-LOAD, UNLOAD-
DROP)

• to remove 4 primitive operators (LIFT, LOAD, UN-
LOAD, DROP)

In Zenotravel domain we suggested:

• to add 1 new macro-operator (REFUEL-FLY)

• to remove 1 primitive operator (REFUEL)

problem original domain updated domain
probBLOCKS-14-0 > 300s 0.38s
probBLOCKS-14-1 > 300s 0.36s
probBLOCKS-15-0 > 300s 1.27s
probBLOCKS-15-1 168.84s 0.44s
depotprob5656 > 300s 2.01s
depotprob4534 > 300s 0.51s
depotprob7615 8.81s 1.93s
depotprob1817 24.28s 15.65s
ZTRAVEL-5-20a 7.31s 5.00s
ZTRAVEL-5-20b 8.29s 6.69s
ZTRAVEL-5-25a 12.72s 8.31s
ZTRAVEL-5-25b 3.91s 3.21s

Table 2: Comparison of running times in tested domains.

It is no surprise that setting b = 0.3 caused generation of
more macro-operators, but some of them were too compli-
cated and almost useless for future usage. Bound d was set
in conformity with the domains, because we did not want to
generate much more complicated macro-operators (regard-
ing the number of parameters). The most interesting bound
was c, because in Block domain it can be lower than in the
other domains. The reason of this rests in replacing of all
primitive operators with macro-operators in Blocks domain.
The choice of the planner and the number of training plans
did not work upon the results in Block domain. The results
in Depots domain was quite unexpected, because the best re-
sult was taken by SGPLAN with the less number of the train-
ing plans. The reason for this rests in the fact that SGPLAN
and SATPLAN (even though it should be optimal) generates
non-optimal plans which means that in more complex plans
these planners generate flaws like inverse actions that are
unnecessary etc. In Zenotravel domain the number of train-
ing plans did not affects the results, but SGPLAN produces
better results than SATPLAN. The reason of this rests in the
fact that Zenotravel domain contains two primitive operators
that are very similar (ZOOM and FLY), ZOOM can be re-
placed by FLY, but it does not work backwards. SGPLAN
prefers operator FLY more frequently than SATPLAN.

Comparison of running times
In this evaluation we used SGPLAN, an absolute winner
of the last IPC. The results in table 2 are very interesting.
We chose such problems from each domain that were solved
(in the original domains) at least in 3 seconds, because our
method for updating domains is designed for more complex
problems. Despite this the less complex problems are solved
in the updated domains almost as fast as in the original ones.

The best results was reached in Blocks domain. In the
original Blocks domain SGPLAN failed three times to find
a solution in 300 seconds and one problem was solved in
more than 150 seconds but in the updated Blocks domain
SGPLAN solved all problems in approximately 1 second.

In Depots domain we also reached very good results. In
the original Depots domain SGPLAN failed two times to
find a solution in 300 seconds but in the updated Depots do-

main SGPLAN solved these problems at most in 2 seconds.
In the rest problems we can see also a good improvement,
comparing the running time in the original and updated do-
mains.

The results gained in Zenotravel domain also showed an
improvement. Despite the improvement seems to be quite
small in comparison with the other ones it showed that the
running time was smaller in the updated domain in all prob-
lems by more than 20%.

Additional remarks
Presented results showed the improvement in solving more
complex problems when domains are updated by using our
method. Even though we used only at most 6 training plans
for each domain, we gathered enough knowledge for updat-
ing the domains. Despite the removing of primitive opera-
tors from the domains every problem was solved in the up-
dated domains. The reason may be that IPC planning prob-
lems usually differ by the number of objects and not by dif-
ferent types of initial states or goals.

Generated macro-operators used in the comparison were
in all cases they were combined only from two primitive op-
erators. Despite the construction of more complex macro-
operators should reduce a depth of search, such macro-
operators can have many more instances causing troubles
to planners when using grounding, because in more com-
plex problems grounding can consume much more time and
memory.

As mentioned before we decide to evaluate only such
problems whose running time in the original domain exceed
2s, because the method is designed for more complex prob-
lems. Anyway, the results of less complex problems (run-
ning time in the original domains less than 2s) were almost
the same both in the original domains and the updated do-
mains.

Conclusion
In this paper, we presented a method for generating macro-
operators from training plans to be helpful on more complex
plans. The method is looking for such actions that can be as-
sembled which results in detection of such operators that can
be assembled into a macro-operator. The actions that can be
assembled are detected via investigation of plans structures
based on the relations of action dependencies or independen-
cies. The advantage of this approach rests in the fact that we
are able to detect such actions that are not adjacent in plans,
but actions lying between them can be moved before or after
them. The method is designed to be used as a supporting tool
for planners. The presented evaluation showed that using of
our method in reasonable and can transparently improve the
planning process on more complex plans. Nevertheless the
results were obtained by evaluation of IPC benchmarks only.
The main disadvantage of IPC benchmarks rests in a similar-
ity of the problems (the problems differ only in the number
of objects) which makes easier analyzing of plans structures
for obtaining useful information (like macro-operators). In
real world applications it may be more difficult to use the
method properly (for example, we need a set of good train-

ing plans etc.). Another problem rests in the fact that ex-
isting planners do not support prioritizing of actions which
should prefer macro-operators more easily. Furthermore,
more complex macro-operators may contain many param-
eters which can cause a big difficulties to planners that use
grounding (computing of all possible instances of all opera-
tors). The planners cannot handle well with a huge number
of actions and their performance can be extremely low.

In future, we should focus on extension of our method
to be able to generate Hierarchical Task Networks (HTN).
Then we can use some HTN planner, for example SHOP2
(Nau et al. 2003). This idea partially follows the idea of
(Nejati, Langley, & Konik 2006). In addition, we should in-
vestigate more deeply how stochastic data gathered during
the execution of our method (like the number of operators in
training plans etc.) can be efficiently used. We believe that
the stochastic investigation can be very helpful in avoiding
of obtaining many unnecessary instances of macro-operators
during grounding. We should also study action dependen-
cies more from the side of predicates, because it may reveal
knowledge which can be used as heuristics for planners.

Acknowledgements
The research is supported by the Czech Science Foundation
under the contracts no. 201/08/0509 and 201/05/H014 and
by the Grant Agency of Charles University (GAUK) under
the contract no. 326/2006/A-INF/MFF.

References
Blum, A., and Furst, M. 1997. Fast planning through plan-
ning graph analysis. Artificial Intelligence 90(1-2):281–
300.
Bonet, B., and Geffner, H. 1999. Planning as heuristic
search: New results. In Proceedings of ECP, 360–372.
Botea, A.; Enzenberger, M.; Muller, M.; and Schaeffer, J.
2005. Macro-ff: Improving ai planning with automatically
learned macro-operators. Journal of Artificial Intelligence
Research 24:581–621.
Chrpa, L., and Bartak, R. 2008a. Looking for planning
problems solvable in polynomial time via investigation of
structures of action dependencies. In Proceedings of SCAI,
175–180.
Chrpa, L., and Bartak, R. 2008b. Towards getting domain
knowledge: Plans analysis through investigation of actions
dependencies. In Proceedings of FLAIRS, 531–536.
Chrpa, L.; Surynek, P.; and Vyskocil, J. 2007. Encoding of
planning problems and their optimizations in linear logic.
In Proceedings of INAP/WLP, 47–58.
Coles, A.; Fox, M.; and Smith, A. 2007. Online identifica-
tion of useful macro-actions for planning. In Proceedings
of ICAPS, 97–104.
Geffner, H. 1990. Causal theories of nonmonotonic rea-
soning. In Proceedings of AAAI, 524–530.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
planning, theory and practice. Morgan Kaufmann Publish-
ers.

Gimenez, O., and Jonsson, A. 2007. On the hardeness of
planning problems with simple causal graphs. In Proceed-
ings of ICAPS, 152–159.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
landmarks in planning. Journal of Artificial Intelligence
Research 22:215–278.
Hsu, C.-W.; Wah, B. W.; Huang,
R.; and Chen, Y. 2007. SGPlan.
http://manip.crhc.uiuc.edu/programs/SGPlan/index.html.
Katz, M., and Domshlak, C. 2007. Structural patterns of
tracable sequentialy-optimal planning. In Proceedings of
ICAPS, 200–207.
Kautz, H.; Selman, B.; and Hoffmann, J. 2006. Satplan:
Planning as satisfiability. In Proceedings of IPC.
Knoblock, C. 1994. Automatically generated abstractions
for planning. Artificial Intelligence 68(2):243–302.
Korf, R. 1985. Macro-operators: A weak method for learn-
ing. Artificial Intelligence 26(1):35–77.
Lin, F. 1995. Embracing causality in specifiing the indirect
effects of actions. In Proceedings of IJCAI, 1985–1991.
McCain, N., and Turner, H. 1997. Causal theories of action
and change. In Proceedings of AAAI, 460–465.
Mehlhorn, K. 1984. Data Structures and Algorithms 2:
Graph Algorithms and NP-Completeness. Springer-Verlag.
Nau, D.; Au, T.; Ilghami, O.; Kuter, U.; Mudrock, J.; Wu,
D.; and Yaman, F. 2003. Shop2: An htn planning system.
Journal of Artificial Intelligence Research 20:379–404.
Nejati, N.; Langley, P.; and Konik, T. 2006. Learning
hierarchical task networks by observation. In Proceedings
of ICML, 665–672.
Newton, M. H.; Levine, J.; and Fox, M. 2005. Genetically
evolved macro-actions in ai planning. In Proceedings of
PLANSIG, 47–54.
Vidal, V., and Geffner, H. 2006. Branching and pruning:
An optimal temporal pocl planner based on constraint pro-
gramming. Artificial Intelligence 170(3):298–335.
Wu, K.; Yang, Q.; and Jiang, Y. 2005. Arms: Action-
relation modelling system for learning action models. In
Proceedings of ICKEPS.

