
Extracting State Constraints from UML Planning Models

Marcel Lira Gomes1 and Tiago Stegun Vaquero2 and José Reinaldo Silva2 and Flavio Tonidandel1
1Centro Universitário da FEI

IAAA - Artificial Intelligence Applied in Automation Lab - São Bernardo do Campo, Brazil
2Escola Politécnica - Universidade de São Paulo

Design Lab, Mechatronic and Mechanical Systems Department - São Paulo, Brazil
mmgomes@fei.edu.br, tiago.vaquero@poli.usp.br, reinaldo@usp.br, flaviot@fei.edu.br

Abstract

The knowledge Engineering for Planning and Schedul-
ing requires techniques and tools that can assist a de-
signer to better understand, specify, verify and validate
a domain model. There are some tools, like itSIMPLE
and GIPO, that can meet the modeling process require-
ments but none of them can reason about the domain in
order to validate model descriptions automatically. This
paper, therefore, aims to enhance itSIMPLE tool with a
formal interpretation of UML models in F-Logic and
a consequent formal and valid extraction of State Con-
straints which can help designers to verify their models.
This extraction is the first step towards a robust system
that can provide a consistency validation of Planning
UML models.

Introduction
From the first International Competition on Knowledge En-
gineering for Planning and Scheduling - ICKEPS 2005 -
much attention has been given to the tools that help the mod-
eling process for planning engines. The modeling process
requires functionalities that assist designers to better under-
stand, specify, visualize, verify and validate their planning
domain models (Vaquero et al. 2007). Knowledge Engi-
neering (KE) tools, such as itSIMPLE (Vaquero, Tonidan-
del, & Silva 2005), ModPlan (Edelkamp & Mehler 2005),
GIPO (Simpson 2005) and others, have been developed to
meet the modeling process requirements.

The itSIMPLE tool was designed to assist the user dur-
ing the life cycle of a planning domain modeling. It is an
enhanced integrated environment based on languages such
as UML (OMG 2001), XML (Bray et al. 2004), Petri Nets
(Murata 1989) and PDDL (Fox & Long 2003), which leads
designers from the informality of real world requirements to
formal domain models (Vaquero et al. 2007). The knowl-
edge acquisition process is performed based on the UML.P
(Unified Modeling Language in a Planning Approach), a
special use of UML (Unified Modeling Language). The
modeling process done in itSIMPLE is mainly based on four
diagrams: Use Case, State Machine, Class and Object. The
Use Case and State Machine diagrams are behavioral dia-
grams, depicting the dynamic aspects and the interactions
of domain’s objects. The State Machine diagram models
the object’s actions, permitting their main characteristics de-

scription, such as pre and post conditions. Opposed to be-
havioral diagrams, the structural Class and Object diagrams
show the object’s static characteristics. The Class diagram
describes domain’s classes and their relationships. A class
represents a set of objects that have same characteristics,
constraints and semantics. The Object diagrams represent
facts or examples of domain resources, being used to depict
the initial and final state of a planning problem.

Despite of the facilities provided by the UML in itSIM-
PLE, it still does not have a method to validate the internal
consistency of a domain. The internal consistency is the pro-
cess that gathers internal information and state constraints,
by inference or information explicitly inserted in a model,
from the diverse set of diagrams, by crossing them in order
to check if conflicting information is obtained. When the
system is capable to perform what we call cross validation
among diagrams, it becomes a powerful Knowledge Engi-
neering tool that make possible the consistency verification
of the entire domain model.

However, the UML semantics is defined in informal writ-
ten English turning the application of automatic inference
methods directly in the diagrams inappropriate. So, in or-
der to overcome this issue, the UML.P models must be in-
terpreted to a formal logic that allows the reasoning on the
diagrams. For this purpose the F-Logic (Kifer, Lausen &
Wu 1995), a frame based language that meet with UML ob-
ject oriented structure, was chosen to interpret the Class and
Object diagrams in this paper.

Tools such DISCOPLAN (Gerevini 1998) and TIM (Fox
& Long 1998) are already able to infer state constraints from
actions and initial state of a domain problem modeled in
PDDL. The same structure is also available in the UML.P
State Machine diagram, so an adaptation of these tools could
be applied to infer the same state constraints from this dia-
gram. However, the UML.P, available in itSIMPLE, also
has the Class diagram with several information available for
analysis; however there is no method available to infer state
constraints from it. Therefore, the focus in this paper is to
present a formal inference of state constraints from the Class
and Object diagrams in order to let, as a future work, the pos-
sibility to perform internal consistency checking of a domain
model described in UML.P.

F-Logic
The F-Logic is a first order logic based on frames. The lan-
guage is composed of constructors, variables, auxiliary sym-
bols and usual first order connectives and quantifiers.

A simple term, that is a term without connectives, is called
F-Molecules. As an example, the term block[onBlock =>
block] is a single scalar signature F-Molecule from the clas-
sic Block World domain, it asserts that an object typed as
block has a method onBlock that can hold an object typed as
block.

Beyond scalar signatures molecules, the language has
IS-A assertions that associate objects to class sets (e.g.:
blckA:block, affirms that blckA is an object of class block)
and build subclass structures (e.g.: car::vehicle, affirms
that car is a subclass of the class vehicle); scalar data ex-
pressions that give values to methods (e.g. blckA[onBlock
-> blckB], asserts that blckA has the value blckB in the
method onBlock); set valued signatures assert that meth-
ods can hold more than one object (e.g.: table[blocksOver
=>> block], affirms that the objects typed as table has a
method blocksOver that can hold a set of objects typed
as block). The language also sets valued data expressions
(e.g. tbl1[blockOver ->> {blckA, blckB}], affirms that the
objects blckA and blckB is hold by the method blockOver
of the object tbl1]); and inheritable data expressions (e.g.:
block[onBlock *-> blckB], asserts that all objects typed as
block will have the method onBlock with initial value of
blckB) that allow inheritance of data expressions for the ob-
jects attached to a class.

The data expressions and signatures may also have pa-
rameters attached to methods, e.g.:

signA[methd@param1,...,paramn => signC],
objA[methd@val1,...,valn -> objC]
signB[methd@param1,...,paramn =>> signC],
objB[methd@val1,...,valn ->> objC].
As seen, the terms signX and objX denote the class name

and object name respectively and methd denotes any method
of a class. The param parameters define a typed object that
is passed as a parameter and val is the object that respects
the type of the parameter.

Connecting the F-Molecules with the usual first order
connectives will result in F-Formulas, e.g.: block[onBlock
=> block] ∧ block[onTable => table]. However, when the
same identifier for a signature or object is used for terms
connected via ∧ it will be abbreviated as block[onBlock =>
block; onTable => table].

A model described in F-Logic keeps the characteristic
and methods concentrated around the objects, presenting
a different structural organization compared to the tradi-
tional first order logic, which arrange information around
attributes. This structure is well adjusted to UML.P that is
also based in object structure, what let easier an interpreta-
tion from one to another.

The F-Logic Language has twelve inference rules and one
axiom. The axiom, called reflectivity axiom, asserts that
a class is a subclass of itself, i.e. X::X, this axiom assists
some inference rules showed below. The inference rules are
grouped as: main, IS-A, type and others.

The main inference rules is composed by the following
rules:
• Resolution (¬L∨C,L′∨C′,θ=mgu(L,L′)

θ(C∨C′))

• Factoring (L∨L′∨C,θ=mgu(L,L′)
θ(L∨C) , ¬L∨¬L′∨C,θ=mgu(L,L′)

θ(¬L′∨C))

• Paramodulation (L[T]∨C,(T ′ .=T”)∨C′,θ=mgu(L,L′)
θ(L[T\T”]∨C∨C′))

The symbols L and L’ are positive literals, C and C’ are
clauses and the others are id-terms, i.e. identity term. The
mgu function is the most general unifier of the terms.

IS-A inference rules is composed by:
• IS-A acyclicity

((P ::Q)∨C,(Q′::P ′)∨C′,θ=mgu(〈P,Q〉,〈P ′,Q′〉)
θ((P

.
=Q)∨C∨C′)

)

• IS-A transitivity
((P ::Q)∨C,(Q′::R′)∨C′,θ=mgu(Q,Q′)

θ((P ::R′)∨C∨C′))

• Subclass Inclusion
((P :Q)∨C,(Q′::R′)∨C′,θ=mgu(Q,Q′)

θ((P :R′)∨C∨C′))

These rules capture the subclass relationship and its inter-
action with class membership.

Type inference rules capture:
• the properties of Inheritance

(P [Mthd@Q1,...,Qk=>T]∨C,(S′::P ′)∨C′,θ=mgu(P,P ′)
θ(S′[Mthd@Q1,...,Qk=>T]∨C∨C′))

• Input Restriction
(P [Mthd@Q1,...,Qi,...,Qk=>T]∨C,(Q”i::Q

′
i)∨C′,θ=mgu(Qi,Q

′
i)

θ(P [Mthd@Q1,...,Q”i,...,Qk=>T]∨C∨C′))

• Output Relaxation
(P [Mthd@Q1,...,Qk=>R]∨C,(R′::R”)∨C′,θ=mgu(R,R′)

θ(P [Mthd@Q1,...,Qk=>R”]∨C∨C′)).

These rules are similar to set-valued methods.
From the others rules inference, the requirement that a

scalar method must return at most one value is given by the
Scalarity inference rule
(P [Mthd@Q1,...,Qk−>R]∨C,P ′[Mthd′@Q′

1,...,Q′
k−>R′]∨C′

θ(R
.
=R′∨C∨C′)

,

θ = mgu(〈P,Mthd,Q1, ..., Qk〉, 〈P ′,Mthd′, Q′
1, ..., Q

′
k〉)),

this inference rule is similar for inheritable scalar expres-
sion. The merging property is captured by the Merging
inference rule
(P [...]∨C,P ′[...]∨C′,θ=mgu(P,P ′),L”=merge(θ(P [...]),θ(P ′[...]))

L”∨θ(C∨C′)).

The Elimination inference rule state that ¬P []∨C
C , but if C

is an empty clause then the elimination rule will derive an
empty clause as well.

Interpretation
The interpretation must maintain all the information found
in the Class and Object diagrams in order to enable the rea-
soning in the model. Not all available information in these
diagrams are interpreted directly to F-Logic, so it is neces-
sary to state a method for this process.

Since the F-Logic is a general purpose logic, it is nec-
essary a definition of some patterns to make the interpreta-
tion simpler. So, for the aim of the interpretation the fol-
lowing signatures are defined: typePrimData (defines all the
primary data, i.e. boolean, integer, and others); limSet (al-
lows to get and maintain the multiplicity information of each

Figure 1: UML Class Diagram of a Blocks World Domain

extremity of an association); mutability (permits to get and
maintain the mutability information of an association); as-
sociationTypeEx (means to get and maintain the type of an
association extremity, i.e. simple, aggregation and compo-
sition associations); typeStereotype (gets and maintain the
stereotype of a class); characteristic (allows to get a diverse
set of the associations); and classFund (defines a fundamen-
tal class for all classes used in the interpretation).

These signatures define classes that will be used in all in-
terpretation, but it is also necessary the definition of some
fixed objects, connected to the signatures, that will assist
the interpretation. As known from UML.P, the multiplic-
ity of an association extremity have lower and upper limits,
so the objects limLower and limUpper typed as limSet is de-
fined to be used as parameter and maintain the limits of the
multiplicity for each extremity. The characteristic of the ex-
tremity type is also interpreted as objects, i.e. assoc Simple,
assoc Aggregation and assoc Composition.

There are three types of mutability used in the UML.P:
Changeable, Static and Add Only. They are also objects
typed as mutability, but interpreted as mut Changeable,
mut Static and mut AddOnly. The mutability information
state how an association is affected during its life.

From now on, to exemplify the interpretation process the
Figure 1 will be used. The figure shows a simple Class dia-
gram of the classic Blocks World. It represents the charac-
teristics of three types of objects, called classes, which this
domain has: table, block and hand. The group of objects be-
longing to the table class have no attributes and may have re-
lationship to block objects. The relationship is limited by the
multiplicity, in the example the block objects may connect to
none or one table, while table may connect to none or lots of
blocks. The block objects have the clear attribute typed as
boolean, beyond the relationship with table objects, it also
may have relationship with others block objects and hand

objects. They are also limited by the multiplicity, which lim-
its the relationship with only none or one block and the same
for the hand. The hand objects have the attribute handempty
typed as boolean and also the actions that these objects may
perform in a domain. The actions are: pickUp, putDown,
stack and unStack. These actions declarations do not in-
tend to define what the action will cause in a domain, but
just show which objects may perform actions in a domain
problem. Details about the construction of this and others
diagrams can be found in (Vaquero et al. 2007).

From the UML.P Class diagram, the interpretation of a
simple UML.P class to F-Logic is quite direct, since each
class defines a class in F-Logic. All classes interpreted from
UML.P to F-Logic will be descendent of the classFund, as
stated for the interpretation. Interpreting the three classes
from Figure 1 in UML.P to F-Logic: table :: classFund,
block :: classFund and table :: classFund. The stereo-
type of the classes is captured through the typeStereotype
signature, so all classes signature will be added with the
method stereotype that enables this information mainte-
nance. From the Figure 1, results:

table[stereotype => typeStereotype;
stereotype ∗ − > ster null],

block[stereotype => typeStereotype;
stereotype ∗ − > ster null] and

table[stereotype => typeStereotype; stereotype ∗ − >
ster agent].

As the stereotype does not have a pattern, its interpretation
will be done adding the suffix ster to the stereotype name,
as can be seen in the interpretation above.

Attributes defined in classes are interpreted as methods to
F-Logic, in the form:

class[attribute => class] or
class[attribute =>> class].

Some attributes also have multiplicity characteristics, so it
will be captured adding up the signature:

class[attribute@limSet => integer].
It is important to recall that there exist two object typed as
limSet: limLower and limUpper, getting the bounds of the
attributes. It is also limited with mutability characteristic,
captured by:

class[attribute@characteristic => mutability].
The following signatures are an example part of the inter-
pretation from the Figure 1:

block[clear => boolean;
clear@limSet => integer;
clear@limUpper ∗ − > 1;
clear@limLower ∗ − > 1;

clear@characteristic => mutability;
clear@atrib charac− > mut changeable]

hand[handempty => boolean;
handempty@limSet => integer;
handempty@limUpper ∗ − > 1;
handempty@limLower ∗ − > 1;

handempty@characteristic => mutability;
handempty@atrib charac− > mut changeable].

The actions interpretation will not be considered in this
paper because it will not be used to get state constraints (pro-
cess described in the next section), however there already ex-
ist a process for their interpretation and its description will
be left for future works.

The most complex interpretation follows from the associ-
ation. In fact, concerning the UML.P representation, there
are lots of information that are not directly interpreted to F-
Logic. An association just has its name and mutability as
general characteristic, the extremity is particular to a spe-
cific connection. For the general characteristics, the inter-
pretation will follow the form:

class[associationName oppositeExtremity className
=> mutability;].

Association is limited of two extremities in the UML.P, each
extremity have a name, multiplicity, type and extremity type.
Except by the extremity type, the extremity of an association
has most of the characteristics that an attribute have, so for
convenience the interpretation will follows the same process
used for the attributes except by the mutability. From the
example showed in Figure 1 the following interpretation of
the associations if formed:

table[ontable block => mutability;
ontable block ∗ − > mut changeable;

ontable block over@characteristic =>
associationTypeEx;

ontable block over@assoc TypeEx ∗ − >
assoc Simple;

ontable block over@limSet => integer;
ontable block over@limUpper ∗ − > ∗;
ontable block over@limLower ∗ − > 0]

block[ontable table => mutability;
ontable table ∗ − > mut changeable;

ontable table onTable@characteristic =>
associationTypeEx;

ontable table onTable@assoc TypeEx ∗ − >
assoc Simple;

ontable table onTable => table;
ontable table onTable@limSet => integer;
ontable table onTable@limUpper ∗ − > 1;
ontable table onTable@limLower ∗ − > 0;

on block => mutability;
on block ∗ − > mut changeable;

Figure 2: UML Object Diagram of a Block World Domain

Figure 3: UML Object Diagram Hierarchy Sample

on block on@characteristic => associationTypeEx;
on block on@assoc TypeEx ∗ − > assoc Simple;

on block on => block;
on block on@limSet => integer;
on block on@limUpper ∗ − > 1;
on block on@limLower ∗ − > 0;

on block under@characteristic =>
associationTypeEx;

on block under@assoc TypeEx ∗ − > assoc Simple;
on block under@limSet => integer;
on block under@limUpper ∗ − > 1;
on block under@limLower ∗ − > 0;

holding hand => mutability;
holding hand ∗ − > mut changeable;

holding hand isHold@characteristic =>
associationTypeEx;

holding hand isHold@assoc TypeEx ∗ − >
assoc Simple;

holding hand isHold@limSet => integer;
holding hand isHold@limUpper ∗ − > 1;
holding hand isHold@limLower ∗ − > 0];

hand[holding block => mutability;
holding block ∗ − > mut changeable;

holding block holding@characteristic =>
associationTypeEx;

holding block holding@assoc TypeEx ∗ − >
assoc Simple;

holding block holding => block;
holding block holding@limSet => integer;
holding block holding@limUpper ∗ − > 1;
holding block holding@limLower ∗ − > 0].

Beyond the association, the class hierarchy is got by the
generalization relationship. The interpretation is get directly
from the Class diagrams and follows the form: classA ::
classB. From Figure 3, which states that class4 is subclass
of class2, class2 is subclass of class1 and class3 is subclass
of class1, the following interpretation is got:

class1 :: classFund, class2 :: class1 , class3 :: class1
and , class4 :: class2.

The F-Logic signatures get from the Class diagram assist
the interpretation of the objects from Object diagram. All
objects interpretation will inherit their characteristics from
the F-Logic signatures, i.e. obj : class. The attributes de-
fined in the Object diagrams will be interpreted following a
signature method in F-Logic got from the Class diagram in-

terpretation. The following interpretation was get from the
example showed in Figure 2, which is an initial state of a
simple problem of Block World Domain:

a : block, b : block, h1 : hand, table1 : table,
a[clear− > true; on block on− > b],

b[clear− > false; ontable table onTable− > table1]
and h1[handempty− > true]

Due to the characteristic of the class properties given by
the F-Logic and compatible with the UML.P, the objects a,
b, h1 and table1 will have all the methods that have been de-
fined as inheritable (*->), as also only the methods that have
signatures can be used in the domain. The property that lim-
its the use of methods defined in the signatures is called well
typed programs(Kifer, Lausen & Wu 1995). This property
is an important characteristic that guarantee that all data ex-
pressions respect a signature defined in F-Logic and since
all signatures is obtained from the Class diagram there must
have signatures defined for all objects in a domain problem.
This concept is important because it will support the rea-
soning definitions to get state constraints from the Class and
Object diagrams.

State Constraints
Until this point we only have the translation of the Class
and Object diagrams to F-Logic. This translation brings the
advantage of a formal representation to the UML.P allowing
the process of reasoning about the model. In this section
it will be shown the extraction of state constraints from the
types, associations, multiplicities and attribute mutability.

Type State Constraint
The types are obtained directly from the UML.P Class dia-
gram interpreted to F-Logic, and also from the types fixed
for the interpretation. The classes’ hierarchy are depicted
explicitly from the Class diagram and let clear the types and
subtypes of each member of them. However, to validate this
assertion, the definition of two functions that will assist the
constraints extraction is necessary.

Definition 1: The set of all superclasses of a class will be
given by the function� (class).

This function will return the set of all superclasses that a
class descends, whereas the function given in the definition
below will return the set of all subclasses that a class defines.

Definition 2: The set of all subclasses of a given class
will be obtained by the function � (class).

To make clear the role of these definitions, consider the
Figure 3. The result of the function � (Class1) will be
Class2∧Class3∧Class4, whereas the result for the func-
tion� (Class2) will be Class1.

In addition, it is necessary the definition of the minimum
requirement for a model in UML.P to be interpretable to F-
Logic. It must be clear that this interpretation is restricted
to get state constraints from the Class and Object diagrams,
so these diagrams set is the minimum requirement to get an
UML.P model interpretable to F-Logic.

Definition 3: A UML.P model is liable to be interpreted
into F-Logic if it is composed by a Class diagram C and one
or more Object diagrams −→O . All the resources used in −→O
must be defined in C, i.e. −→O ∈c C. All models that respect
this condition will be called of M̂ .

Although the Definition 3 restricts the interpretation of
UML.P models for any model that has a Class diagram and
Object diagrams, it is not sufficient to permit a correct anal-
ysis. It is also necessary that the domain model has the class
models of all the objects modeled in the Object diagram.

Definition 4: A domain model M̂ will belong to the set of
models possible to interpret to F-Logic, M̂ ∈ F, if and only
if its interpretation results in a well typed F-Logic program.

So, the Definition 4 guarantee that only domain models
that have all the static characteristics well defined in the
Class diagram will be interpretable to F-Logic in the con-
text of state constraint analysis.

Since the interpretation requires that all objects have their
classes defined, we can assert that a UML.P domain that re-
spect the Definition 4 is strongly typed and this assertion is
straightly obtained from the F-Logic interpretation.

It is easy to get the classes hierarchy and others charac-
teristics directly from the Class diagram, however its semi-
formal semantic may let margin for great number of inter-
pretations. From the example of the figure 3 it is possible to
get that Class1 is superclass of Class2, Class3, and Class4
as also the Class2 is superclass of Class4. To denote this as-
sertion symbolically the symbol l will be used, i.e. from
the example of the figure 3 follows Class1 l Class2 ∧
Class3 ∧ Class4 and Class2 l Class4. The following
theorem proofs that the hierarchy structure is also possible
to get from the F-Logic interpretation.

Theorem 1: For a model M̂ ∈ F, that C is the class
set defined in the Class diagram in UML.P, so the assertion
∀Cl ∈ C,Cll � (Cl) is true. The l symbol denotes that a
class is superclass of the class returned by the function�.
Proof: The proof follows from the F-Logic’s semantics def-
initions and the application of the Transitivity inference rule,
the details of this proof will be left for a future publication.

The following theorem allow us know all the classes that
an object belongs to. It makes use of the symbol / denoting
that an object belongs to a class, i.e. A / block from figures
1 and 2 denotes that the object A belongs to the class block.
It is also used the symbol → denotes a simple implication.

Theorem 2: For a model M̂ ∈ F, that C is the class set
defined in the Class diagram in UML.P and O the object set
defined in the Object diagram, so the assertion ∀Obj ∈ O
and Cl ∈ C,Obj / Cl → Obj/ � (Cl) is true.
Proof: From the Transitivity and Subclass Inclusion infer-
ence rules and F-Logic semantics it is possible to proof the
validity of this theorem, that will not be shown completely
due to the reduced space available.

The concept presented in the theorem 2 is not defined
clearly in the UML definitions, so the interpretation to F-
Logic gives a strict concept to generalization so we can as-

sure what classes an object belongs, stating type constraints
for all objects. From the Blocks World example, in figures 1
and 2, it is possible to get that objects a and b are typed just
as block, h1 is typed just as hand and table1 is typed just as
table. For a more complex Class diagram structure it will be
possible to get the complete set of classes that an object be-
longs to, generating state constraints as ∀X.Class4(X) →
Class2(X) and ∀Y.Class2(X) → Class(1) from the ex-
ample of figure 3.

The Theorems 3 and 4 shows the propagation of super-
class attributes and associations, allowing to get state con-
straints from the types of the F-Logic signatures.

Theorem 3: For a model M̂ ∈ F, that C is the class
set defined in the Class diagram in UML.P, so the assertion
∀Cl ∈ C,Atr(Cl) ⊃ Atr(� (Cl)) is true. The Atr is a
function that gets the attributes and actions of a class and ⊃
denotes ”contain”. So the assertion can be read as ”For all
classes in a Class diagram, a class will contain all attributes
and actions of yours superclasses”.
Proof: Since the inference rule of Inheritance state that any
sub class inherits all properties from its superclass, the proof
runs directly from the inference rule.

Since the interpretation makes the attributes and associa-
tions work in a similar mode, the theorem can be expanded
to the associations of the classes.

Theorem 4: For a model M̂ ∈ F, that C is the class
set defined in the Class diagram in UML.P, so the assertion
∀Cl ∈ C,Assoc(Cl) ⊃ Assoc(� (Cl)) is true. The Assoc
is a function that gets the associations of a class.
Proof: The proof runs directly from the Inheritance infer-
ence rule of the F-Logic.

Since the theorems 3 and 4 show that the simple inher-
itance is applicable to a UML.P domain interpreted to F-
logic, it is possible to get state constraints based on the types
of F-Logic signatures. From the figure 1 it is possible to
get state constraint as ∀X, Y.holding(X, Y)∧hand(X) →
block(X) given in first order logic. In a more general con-
straint form given in F-Logic:
∀X, Y.X[Meth Y] ∧ Y : Class′ → X : Class”
and ∀X, Y.X : Class′[Meth Y] → X : Class”, which
means that for all X and Y, considering that X has an at-
tribute Meth with a value Y, and Y is a member of Class’,
implies that X is a member of Class”, i.e., X and Y must
belong to different classes. The symbol denotes − > and
− >>. These are possible since a signature is defined for
each class of a domain and the attributes and associations is
propagated to all sub classes. The theorem 5 below, gets this
concept.

Theorem 5: For a model M̂ ∈ F, that C is the class set
defined in the Class diagram in UML.P and O is the ob-
ject set defined in the Object diagram in UML.P. The set
of classes and objects interpreted to F-Logic will be called
C’ and O’, so the assertion ∀XandY ∈ O′, ClandCl′ ∈
C ′, X : Cl ∧ Cl[atr ⇒ Cl′] ∧ X[atr Y] → Y : Cl′

is true. The symbols ⇒ denotes => and =>>, denotes
− > and − >>, and atr denotes an attribute or association
interpreted to F-Logic. Proof: Its proof follows from the

definition of signatures given in the F-Logic.

Applying the above theorem in the example of the fig-
ures 1 and 2, state constraint of the type a[on block on− >
b] ∧ b : block → a : block and b :
block[ontable table onTable− > table1] → table1 :
table are obtained.

Multiplicity State Constraint
It is clearly noticeable that the association multiplicity is a
state constraint modeled explicitly in a domain. The sim-
plest one can be got from the F-Logic data scalar expressions
generated when the multiplicity of an association is has its
higher value equal to one, e.g. from the figure 1 a block can
be at maximum in one table, so the higher multiplicity for
the onTable association is 1.

Theorem 6: For a model M̂ ∈ F, that C is the class set de-
fined in the Class diagram in UML.P and O is the object set
defined in the Object diagram of UML.P. The set of classes
and objects interpreted to F-Logic will be called C’ and O’,
lets X, Y and Z be variables and M and Pk be attributes
components of an object. So the assertion ∀X, Y andZ ∈
O′, X[M@P1, ..., Pk− > Y]∧X[M@P1, ..., Pk− > Z] →
Y = Z is true.
Proof: The proof runs directly from the F-Logic Scalarity
Inference rule.

Since the scalar expression state that only one object can
be hold by a method, it is quite simple to get this constraint.
From the example of Blocks World domain given by fig-
ures 1 and 2, it is possible to get state constraint of the
form:∀X ∈ O′, a[on block on− > b]∧ a[on block on− >
X] → X = b. However, the Class diagram also states mul-
tiplicity constraints that result in data expression with upper
and under limit different of 1, resulting in set valued data
expressions. Different of the scalar data expressions, the
set valued data expressions do not allow constraints like the
Theorem 6. But the multiplicity limit allows the checking of
the model as defined below.

Definition 5: For a model M̂ ∈ F, that O is the object
set defined in the Object diagram interpreted to F-Logic.
For all objects Obj that have under and upper limits for
an attribute Atr, Obj[Atr@limLower− > LowerV alue]
and Obj[Atr@limUpper− > UpperV alue], we will
call a model well limited the models that the restric-
tion LowerV alue ≤ AssociationNo(Obj[Atr
Obj′) ≤ UpperV alue. And ∀Obj′LowerV alue ≤
AssociationSum(Obj′[complementaryAssoc(Atr)
Obj]) ≤ UpperV alue,, for the cases where Obj[Atr
Obj′] is not defined. The function AssociationNo gives the
number of active elements of an attribute in an object, Asso-
ciationSum is a function that gives the total amount of active
attributes complementary and have its value equal to Obj and
the symbol denotes − > and − >>.

This definition allows the internal checking for the limits
imposed by the Class diagram models in the Object diagram
and also in all steps in a plan generation process, since this
limits cannot be disrespected.

Mutability Constraint
The association mutability is an indirect constraint. Its
meaning does not cause a direct state constraint but limits
how an action will affect a relationship.

Definition 6: For a model M̂ ∈ F, that O is the object
set defined in the Object diagram in UML.P interpreted to
F-Logic. For all Objects Obj ∈ O that have the static muta-
bility restriction for an attribute Atr, i.e.
Obj[Atr@mutability− > mutStatic] implies that
Obj[Atr V al]
must not be changed during the life cycle of an object.

The static mutability characteristic can be used to check
all the actions modeled in a domain if they are affecting a
association restricted by a mutability constraint. As its re-
striction limits the association change, no action may have it
as a parameter in the post condition of an action. The same
concept can be applied to the add only mutability.

Definition 7: For a model M̂ ∈ F, that O is the ob-
ject set defined in the Object diagram in UML.P inter-
preted to F-Logic. For all Objects Obj ∈ O that have
the add only mutability restriction for an attribute Atr,
i.e. Obj[Atr@mutability− > mutAddOnly] implies that
Obj[Atr V al] must not be reduced during the life cycle
of an object.

Since it is limited to be add only, it is also possible to
make a simple check in all action for this restriction.

Discussion & Conclusion
The UML.P Class and Object diagrams, available in itSIM-
PLE tool, are source of a diverse set of information that en-
riches a planning model description. The proximity of con-
cepts allow a UML.P model to be interpreted in F-Logic.
The interpretation has kept all the information of these di-
agrams in order to exploit the information available in a
model.

It is clear that the DISCOPLAN and TIM still get more
state constraints from the actions and the initial state than
the process used in this paper to get state constraint from
the Class and Object diagrams. But the main objective of
getting state constraint from the UML.P diagrams is to al-
low the cross validation of the information. This first step
opens a new horizon directed to the static validation of a
model by using TIM and DISCOPLAN similar tools to ex-
tract constraints from State machine Diagram and the pro-
cess described in this paper to extract constraint from Class
and Object Diagrams. The constraints extracted from differ-
ent diagrams can be used to detect conflicts in a model.

It is also possible to use the state constraints obtained
from the UML.P Class diagram to improve the planner per-
formance, this approach had already been applied to the state
constraints get from the TIM and DISCOPLAN tools show-
ing important improvements to planners.

Another important result from this paper is the possibility
to state formal correspondence between UML.P models and
PDDL. It will let a soundness method to translate PDDL to
UML.P and vice-versa.

In fact, it is still needed an interpretation of the State Ma-
chine diagram for a formal logic, since it has weak and in-
formal semantics. For this reason the Transaction F-Logic
(Kifer 1995) is being studied for this purpose, as it allows
the capture of the domain dynamics and a possible transla-
tion to PDDL.

From now on, the results of this paper can be consid-
ered in the ItSIMPLE tool to assist the development of mod-
els in AI planning. The main goal of itSIMPLE project is
to provide a bridge over the gap between real applications
and planning systems by letting available a plethora of tech-
niques and tools to support the entire model design life cy-
cle. However much effort still have to be done to make it
possible and this paper is just a little step toward this goal.

References
Bray, T.; Paoli, J.; Sperberg-McQueen, C. M.; Maler, E.;
and Yergeau, F. 2004. Extensible Markup Language
(XML) 1.0 (Third Edition). Technical report.
D’Souza, D. F., and Wills, A. C. 1995. Logical Foun-
dations of Object Oriented and Frame Based Languages.
Journal of the ACM 42(4):741–843.
Edelkamp, S., and Mehler, T. 2005. Knowledge acqui-
sition and knowledge engineering in the modplan work-
bench. In Proceedings of the First International Competi-
tion on Knowledge Engineering for AI Planning, Monterey,
Califormia, USA.
Fox, M., and Long, D. 1998. The automatic inference of
state invariants in TIM. Journal of Artificial Intelligence
9:367–421.
Fox, M., and Long, D. 2003. Pddl2.1: An extension of
pddl for expressing temporal planning domains. Journal of
Artificial Intelligence Research (JAIR) 20:61–124.
Gerevini, A. 1998. Inferring State Constraints as Con-
trol Knowledge for Domain-Independent Planning. In Pro-
ceedings of the Workshop on Planning as Combinatorial
Search, AIPS-1998.
Kifer, M. 1995. Deductive and Object Data Languages: A
quest for Integration. Lecture Notes in Computer Science
1013:187–212.
Murata, T. 1989. Petri nets: Properties, analysis and appli-
cations. In Proceedings of the IEEE, volume 77, 541–580.
OMG. 2001. OMG Unified Modeling Language Specifica-
tion, m Version 1.4.
Simpson, R.M. 2005. Gipo graphical interface for plan-
ning with objects. In Proceedings of the First International
Competition on Knowledge Engineering for AI Planning,
Monterey, Califormia, USA.
Vaquero, T. S.; Romero, V.; Tonidandel, F.; and Silva, J.
R. 2007. itSIMPLE2:0: An Integrated Tool for Designing
Planning Domains In Proceedings of the 17th International
Conference on Planning and Scheduling, AAAI Press.
Vaquero, T. S.; Tonidandel, F.; and Silva, J. R. 2005. The
itsimple tool for modelling planning domains. In Proceed-
ings of the First International Competition on Knowledge
Engineering for AI Planning, Monterey, Califormia, USA.

