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Abstract

The Action Notation Modeling Language (ANML) provides
a high-level, convenient, and succinct alternative to existing
planning languages such as PDDL, the IxTeT language, and
languages developed at NASA, such as the EUROPA mod-
eling language (NDDL), and the ASPEN modeling language
(AML). ANML is based on strong notions of action and state
(like PDDL, IxTeT, and AML), uses a variable/value model
(like IxTeT, NDDL and AML), supports rich temporal con-
straints (like IxTeT, NDDL and AML), and provides simple,
convenient idioms for expressing the most common forms of
action conditions, effects, and resource usage. The language
supports both generative and HTN planning models in a uni-
form framework and has a clear, well-defined semantics. De-
spite the richness of the language, it is possible to translate it
into PDDL, with some increase in the number and complex-
ity of operators and conditions. In this paper, we describe
the central and unique features of the ANML language and
sketch key parts of the translation to PDDL.

Introduction
The PDDL family of languages have become the stan-
dard for the academic planning community and continue
to be developed and used for the semi-annual International
Planning Competitions. Many example domains are avail-
able in PDDL, and many effective planners and techniques
have been developed for different versions of the language.
PDDL2.1 (Fox & Long 2003), and subsequent versions
allow durative actions, and continuous numeric variables.
This permits simple modeling of time, concurrency, and re-
sources. However, the languages are still primarily proposi-
tion based, and do not directly support more complex tempo-
ral conditions, effects, or constraints. It is also cumbersome
to express common patterns of change and resource usage,
and it is easy to make errors in doing so as noted in (Cush-
ing & Smith 2007). PDDL3.0 (Gerevini & Long 2005) has
introduced the ability to model more complex temporal con-
straints and preferences on goals, but the capabilities do not
extend to actions or conditions.

There are a number of different languages that have been
developed and used at NASA for modeling planning do-
mains and problems. Chief among these are the NDDL lan-
guage (Bedrax-Weiss et al. 2005) developed for the EU-
ROPA2 planner at Ames Research Center, and the ASPEN

action Navigate (location from, to) {
duration := 5 ;
[all] { arm == stowed ;

position == from :-> to ;
batterycharge :consumes 2.0 } }

Figure 1: A simple ANML action.

Modeling Language (AML) (Sherwood et al. 2005) devel-
oped at JPL. While both of these languages have their strong
points, they are quite different in their basic concepts and
assumptions, and both have significant weaknesses. The
NDDL language facilitates the description of constraints
among intervals. It characterizes every state or activity as
an interval and specifies the possible temporal relationships
between those intervals. However, NDDL has no notion of
action, state, fact, or goal. A planning problem in NDDL
simply involves filling out the set of timelines with intervals
so that there are no gaps and all the constraints are obeyed.
NDDL models are often quite verbose, unintuitive, and con-
tain redundant constraints. It is also easy to make modeling
mistakes in the language, and debugging models is difficult.
In contrast, AML is based on fairly intuitive notions of ac-
tion and state, and contains many convenient constructs for
describing resource usage and temporal constraints. How-
ever, the language is fundamentally geared towards HTN
planning, and does not fully support generative planning.

The Action Notation Modeling Language (ANML) is be-
ing developed in an effort to: 1) provide a high level, conve-
nient, and succinct alternative to existing languages, 2) sup-
port both generative and HTN planning models in a uniform
framework, 3) provide a language with clear, well-defined
semantics, and 4) allow greater compatibility with the evolv-
ing PDDL family of languages. ANML is based on strong
notions of action and state (like AML and PDDL), uses a
variable/value representation (like NDDL and AML), sup-
ports rich temporal constraints (like NDDL and AML), and
provides simple, convenient idioms for expressing the most
common forms of action conditions and effects. As an ex-
ample action description in ANML, we can express a simple
high-level navigate action for a rover as shown in Figure 1.

Navigate has two location parameters from and to, and (for
simplicity) a fixed duration of 5. The temporal qualifier [all]
states that the three following statements apply to the entire
duration of the action. The first is a condition stating that



(:durative-action navigate
:parameters (?from - location ?to - location)
:duration (= ?duration 5)
:condition (and (at start (position ?from))

(at start (stowed))
(over all (stowed))
(at start (>= (batterycharge) 2.0)))

:effect (and (at start (decrease (batterycharge) 2.0))
(at start (not (position ?from)))
(at end (position ?to))))

Figure 2: The equivalent PDDL2.1 action.

the arm must remain stowed over the entire action. The sec-
ond is a combination of a condition and two effects stating
that the location must initially be the location from, is un-
defined in the interim, and will be the location to at the end
of the action. The third is an effect stating that the action
consumes two units of energy. Among other things, more
complex temporal qualifiers are possible and more complex
functional expressions are possible for duration and energy
consumption.

For comparison purposes, Figure 2 shows an equivalent
model in PDDL2.1. There are a number of syntactic differ-
ences between the two descriptions, but these are relatively
unimportant. The more significant differences in both size
and simplicity are due partly to ANML’s variable/value rep-
resentation, but also to ANML’s more powerful constructs
for describing change. In the ANML description, we have
not partitioned the statements into conditions and effects.
Instead, we have described what happens to each relevant
variable in turn.

In the sections that follow, we explain these capabilities in
greater detail, and highlight the novel features of the ANML
language. We focus on the powerful and concise constructs
in ANML for temporal qualification, for describing change
over the course of an action, for describing resource usage,
and for integrating task decomposition with traditional ac-
tion models. To do this, we must first introduce the basic
entities of the ANML language, time varying variables and
functions.

Basic Declarations
Variables, and functions in ANML are typed. There are a
number of built-in types, including: int, float, bool, string,
object, and vector. It is also possible to declare new types in
ANML. For example:

type positiveFloat := float [0.0, inff] ;
type rover := {spirit, opportunity, pathfinder} ;
type color := {blue, green, red, yellow, purple} ;

defines the type positiveFloat as a specialization of the type
float, and defines the types rover and color by enumerating all
members of the type. It is also possible to define specialized
vector types, e.g:

type location < vector( positiveInt x, y ) ;
type path < vector( location from, to ) ;

which defines locations to be a subset (<) of vectors of two
integer elements, x and y, and paths to be a subset of vec-
tors of two locations, from and to. ANML also allows the

definition of more complex structured types, but we will not
discuss this here.

Variables
When declaring a variable in ANML, one must specify the
domain of the variable. The declaration therefore consists
of the keyword variable followed by a type, followed by the
variable name. Any predefined or user-defined type can be
used for this purpose. For example:

variable string sampleName, pictureName ;
variable float [0.0, inff] batterycharge, wheelCurrent ;
variable color {blue, red, green} filterColor ;
variable location position ;

are all legitimate variable declarations.
For convenience, variables can be initialized in a declara-

tion. For example:
variable float roverSpeed := 30.0 ;

is equivalent to stating:
variable float roverSpeed ;
[start] roverSpeed := 30 ;

Vectors can also be initialized in this way. For example:
variable vector( int x, y ) position := (5, 20) ;

is equivalent to stating:
variable vector( int x, y ) position ;
[start] { position.x := 5 ;

position.y := 20 } ;

Functions
Functions in ANML are essentially parameterized variables.
So when declaring a function symbol, in addition to specify-
ing the range of the function, one must also specify the do-
mains of the parameters or arguments. The declaration for a
function symbol therefore consists of the keyword function
followed by a type, followed by a function symbol and its
typed argument list. For example:

function float [0, inff] batterycharge(rover r) ;

indicates that the function batterycharge of a rover is a posi-
tive float. As with variables, functions in ANML are implicit
functions of time. In fact, variables in ANML can be con-
sidered as functions having zero arguments.

Actions
An ANML action description consists of: the action name, a
typed parameter list, a duration assignment (optional), local
variable or function declarations (optional), and one or more
temporally qualified conditions, effects, or change state-
ments. Consider the example ANML action shown in Fig-
ure 1. The action name and typed parameter list are shown
in the first line, and the duration assignment is shown in the
second line. The action does not contain any local variable
definitions, but we could have done something like define a
local variable for energy use in terms of duration, and then
express the consumption using this local variable:

variable float energy := duration * use-rate ;
[all] { batterycharge :consumes energy } ;



The main body of our example action consists of the three
lines:

[all] { arm == stowed ;
position == from :-> to ;
batterycharge :consumes 2.0 } ;

In general, the body can express simple conditions (like the
first line above), simple effects, or more complex combina-
tions of conditions and effects (lines 2 and 3). To be more
precise, these statements take the form:

Temporal Qualifier {φ1; . . . ;φn}
where Temporal Qualifier is something like [start] or [all],
and each of the φi is a condition, effect, or change expres-
sion. A simple condition expression is of the form:

variable relation expression
where relation is typically ==, in, or a numeric comparator
(<, ≤, >, ≥). The expression is frequently a constant, or
another variable, but can be a set, interval or an algebraic
expression of numeric variables and constants.

A simple effect expression is of the form:
variable assignment expression

where assignment is one of := or :in. The expression is the
same as for conditions, but can also be undefined (one is
not allowed to condition on a variable being undefined). For
convenience, we allow assignment to undefined to be abbre-
viated with with : e.g:

position : ;
Conditions and effects can be distinguished because the re-
lations in conditions are distinct from the assignment op-
erators used in effects. Because of this, there is no need to
separate them or delineate them with a keyword as in PDDL.

Combinations of conditions and effects only make sense
over intervals. Typically, for closed intervals, they are of the
form:

variable relation expression1
assignment expression2
assignment expression3 ;

The relation and expression in the first line expresses a con-
dition that must hold at the beginning of the interval. For
example, in the expression:

[all] { position == from : := to } ;
the condition is position == from, which must hold at the be-
ginning of the interval. The assignment : is an effect indicat-
ing the value of the variable over the interior of the interval,
in this case undefined. The last assignment and expression
is also an effect indicating the final value of the variable at
the end of the interval, in this case the value to. Thus the
above expression could be expressed as a simple condition
and two simple effects:

[start] position == from ;
(all) position : ;
[end] position := to ;

This particular form, with assignment to undefined over the
interim and assignment to a final value at the end, is so com-
mon that we allow the further shorthand :-> (goes to) for the
combination : :=. Thus the above composite statement with
condition and two effects can be written as:

[all] { position == from :-> to } ;

Temporal Qualifiers
A temporal qualification indicates the time or time period
over which a variable has a particular value or changes its
value. The simplest temporal qualifier [t] φ specifies a single
time point t at which a condition or effect φ holds. Time
points are specified relative to start and end, meaning the
start and end of the action respectively, e.g:

[start] position == from ;
[end-5] heater := on ;

Intervals are also permitted as temporal qualifiers, indicating
that the condition holds, or the assignment is enforced over
the entire interval, e.g:

[start+5, end-2) heater == on ;

Intervals can be open or closed on either end. In addition, all
is a shorthand for the common interval from start to end (but
one must still specify whether it is closed or open at either
end).

A third useful temporal qualifier is of the form:
i contains d φ

meaning that the condition phi holds for at least duration d
within interval i. For example:

[all] contains [3] heater == on ;

specifies that the the heater must be on for at least a closed
interval of duration 3 within the interval all. This quantifier
is existential in nature (there exists an interval such that . . . )
and can therefore only be used with conditions.

If the duration is omitted for contains the entire interval
for the condition must be contained. For example:

[all] contains heater == on ;

specifies that there must be a (maximal) interval with the
heater on, contained entirely within the interval [all]. This
will turn out to be particularly useful for referring to actions.

Relative Change
For numeric variables, it is often useful to specify effects rel-
ative to the existing value, rather than in absolute terms. For
example we might want to specify that a particular drilling
operation advances the drill a certain amount beyond its cur-
rent depth. We could state this as:

[end] depth := depth + increment ;

Some languages make this a bit easier by allowing additional
operators like += and –=. In ANML we do this by specifying
change on the “delta” of the depth variable rather than on the
depth variable itself. For the above example we would say:

[end] 4depth := increment ;

The meaning of this is that the depth variable changes by the
amount increment.1 The reason we take this approach is that
it allows us to conveniently say other more difficult things
like:

1The delta symbol (4) is a bit hard to type on most keyboards,
so we use the carat symbol (∧) as a substitute.



(all] 4depth :-> increment ;
(all] 4depth :in [0, increment] := increment ;

The first of these implies that the change in depth is unde-
fined over the course of the interval, before taking on the
final value increment. The second implies that the change
in depth is bounded by the interval [0, increment] over the
course of the interval, before taking on the final value incre-
ment. These statements are considerably more cumbersome
using only the basic primitives, because they require defin-
ing a temporary variable to hold the initial value of the depth
variable, e.g:

variable float start-depth := depth ;
(all) depth : ;
[end] depth := start-depth + increment ;

As we will see in the next section, composite incremental
change statements will prove extremely convenient for de-
scribing resource consumption and production.

Resources
Resources are common and convenient abstractions in many
planning and scheduling applications. There are many dif-
ferent kinds of resources – they can be discrete or contin-
uous, and consumable or reusable.2 Discrete resources can
also be unit-capacity, or multi-capacity.

As far as ANML is concerned, resources are just numeric
variables. They are therefore declared in the same way:

variable float [10.0, 100.0] batterycharge := 50.0 ;
variable integer [0, 12] sample-bags := 12 ;

It is the usage of these resources where ANML provides ad-
ditional facilities beyond the notation described so far. We
start with reusable resources.

Usage
A reusable resource is one that is consumed at the beginning
of an action, but given back (or produced) at the end. Us-
ing the mechanisms for relative change that we introduced
above, we could express this as:

[start] 4resource := –quantity ;
[end] 4resource := quantity ;

However, because resource use is so common, we have in-
troduced a more convenient way of expressing this pair of
effects:

[all] resource :uses quantity ;
It is important to note that for a resource effect like this, the
condition:

[start] resource >= quantity ;
is implicit because of the definition of the resource variable.
For example, a declaration of batterycharge as:

variable float [10.0, 100.0] batterycharge ;
implicitly requires that the quantity remain within the in-
terval [10.0, 100.0]. Any action that would violate these
bounds would not be legal.

2The first of these dimensions, discrete or continuous, is a prop-
erty of the resource variable itself. The second, consumable or
reusable is a property of how the resource is used. In fact, it is
entirely possible for a quantity to be a reusable resource for one
action and a consumable resource for another.

Consumption and Production
As we hinted above, resource usage can be thought of as
a pair of consumption and production effects. Using the
mechanisms for modeling relative change, we can model in-
stantaneous resource consumption and production as:

[t] 4resource := –quantity ;
[t] 4resource := quantity ;

For convenience and clarity we allow these to be stated as:
[t] resource :consumes quantity ;
[t] resource :produces quantity ;

When dealing with consumption and production of re-
sources, it is common to make a conservative modeling as-
sumption that consumption occurs at the beginning of an ac-
tion and production occurs at the end. In reality, consump-
tion and production usually occur gradually over the course
of actions, although the actual function may be complex or
even unknown. The conservative discretization ensures that
there is enough of a resource at the beginning of a consump-
tion action, and that we do not rely on any production actions
until their end. In effect, this approach tracks a lower bound
for the resource, and guarantees that plans will never violate
the lower bound limit for the resource variable. While this
works well in many situations, it can run into trouble if the
resource variable also has an upper bound, or capacity, such
as for a battery, fuel tank, or storage container (Cushing &
Smith 2007). Figure 3 illustrates the problem. A navigate

final charge

Navigate Action

Recharge Action

Recharge production

Navigate consumption

combined

lower limit

lower bound

capacity

battery charge

Figure 3: Illustration of simultaneous consumption and pro-
duction activities. Although the lower bound remains within
the allowed range for the resource, the actual value exceeds
resource capacity unless the consumption activity is started
earlier.

action is performed while the battery is being recharged (by
solar panels). The conservative lower bound envelope for
the two actions remains within the allowed range for the bat-
tery. However, since production actually occurs before the
end of the recharge action, the actual charge envelope will
exceed battery capacity. This kind of problem can occur any
time there is the possibility of simultaneous consumption
and production, and the resource has a capacity limit. Cush-
ing and Smith (Cushing & Smith 2007) discuss this problem
in detail, and discuss some alternative approaches to dealing
with it. The most obvious way of dealing with this problem
(without resorting to detailed modeling and reasoning about
continuous consumption and production) is to keep track of
both a lower bound and an upper bound for a resource. For



example, we could model the behavior of a consumption ac-
tion as:

[start] 4resource lb := –quantity ;
[end] 4resource ub := –quantity ;

and a production action as:
[start] 4resource ub := quantity ;
[end] 4resource lb := quantity ;

While sound, this requires that we define and keep track of
two explicit variables for each resource, and get the timing
and polarity of the conditions and effects right. We regard
this as both complex and cumbersome, and likely to result in
many modeling errors. Instead, we think that the user should
be able to simply state that consumption or production oc-
curs over the course of an action (or interval). The planner
should manage the details of keeping track of lower and up-
per bounds for variables in order to assure soundness. Using
the notation for relative change, and for compound change
statements, we would express a typical resource consump-
tion as:

(all] 4resource :in [–quantity,0] := –quantity ;
This states that over the course of the action, the resource
change is guaranteed to be between zero (upper bound) and
–quantity (lower bound) and will be at the lower bound at
the end of the interval. We define the shorthand:

[all] resource :consumes quantity ;
to mean precisely this for an interval; the quantity change
is bounded over the course of the interval, and ends with
the specified change. Similarly, resource production over an
interval:

[all] resource :produces quantity ;
is defined as:

(all] 4resource :in [0,quantity] := quantity ;
The :consumes and :produces statements are extraordi-

narily convenient and powerful, because they allow the user
to specify complex production and consumption activities
without requiring details of the actual consumption and pro-
duction functions, and without requiring that the user explic-
itly provide upper and lower bound discrete approximations.

HTN Decomposition
Hierarchical Task Networks (HTNs) and task decomposition
planning techniques are used for many practical planning
systems and applications (Wilkins 1988; Chien et al. 2000;
Nau et al. 2003; Castillo et al. 2006). For HTN systems,
goals are stated in terms of high level tasks to be performed,
and methods allow for the decomposition of these tasks into
lower level tasks and primitive actions. Many within the
planning community have argued against the HTN repre-
sentation and task decomposition on the grounds that they
describe what actions should be used for (their purpose),
rather than what actions do (their conditions and effects). As
such, this representation can lead to systems that are highly
tailored to a certain class of problems, but can be brittle if
they are asked to solve problems that require using actions
in unanticipated ways. All of this is true. Nevertheless, there
are some good arguments for allowing task decomposition in
a modeling language:

1. Some planning domains seem to be more naturally ex-
pressed in terms of task decomposition.

2. There are situations where the modeler may be able to
characterize ways of achieving tasks without having a
clear understanding of the effects and conditions of the
underlying actions.

In developing ANML, we did not wish to unduly constrain
the modeler, or force the modeler to describe actions at an
unnecessarily fine level of detail. As a result, ANML al-
lows the specification and use of action decomposition by
allowing decomposition expressions within action descrip-
tions. We have done this in a novel way that allows action
decomposition to be fully integrated with ordinary action de-
scriptions containing conditions and effects. There are three
things necessary to make this work:

1. Each action (instance) A is regarded as having an implicit
effect proposition of the same name (A) over its execu-
tion. In other words:

[all] A == false := true := false ;

2. We allow these “action” propositions to be used as ordi-
nary conditions within action descriptions.

3. We allow relative ordering constraints on conditions.

Allowing relative ordering constraints among conditions re-
quires some additional machinery which we now describe.

Relative Ordering Constraints
Suppose that we have two action conditions p and q, that
must be true at some point during an action, e.g:

[all] contains { p ; q } ;

Now imagine that we also require that p become true before
q. Using the machinery presented so far, we could specify
explicit intervals for p and q that guaranteed this, but we
could not simply specify a relative ordering constraint be-
tween the two conditions. To do this, we generalize the key-
words start and end to allow them to refer to the start and
end of specific actions, e.g: start(p).3 We can then specify
the desired relative ordering constraint as:

start(p) < start(q) ;

The entire action condition would therefore be:
[all] contains { p ; q } ;
start(p) < start(q) ;

This ordering capability is quite general and allows us to
specify complex temporal constraints among arbitrary sets
of conditions. For convenience, we introduce the shorthand
ordered(p1, . . . , pk) to refer to an ordered set of conditions.
In other words:

[all] contains ordered(p1, . . . , pk) ;

is equivalent to naming each of the conditions, and specify-
ing temporal constraints between each successive pair:

3More generally, we need to be able to name specific instances
of actions and conditions to be able to distinguish between multiple
instances. This can be done using the construct n : p.



[all] contains { n1 : p1 ; . . . ; nk : pk } ;
end(n1) ≤ start(n2) ;
. . .
end(nk−1) ≤ start(nk) ;

A similar shorthand unordered(p1, . . . , pk) can be used to
refer to an unordered set of conditions. Together, ordered
and unordered can be used to describe a partial ordering of
conditions. For example:

ordered( p, unordered( q, ordered( r, s )), t ) ;

corresponds to the partial order shown in Figure 4.

p
q

r s
t

Figure 4: A partially ordered set of conditions.

Decompositions
With the ability to express relative ordering constraints on
conditions, we now have the tools necessary to express de-
composition in an action description. As an example, sup-
pose we want to specify a method for the high level task of
CollectSample, which can be decomposed into four primi-
tive actions of unstowing the instrument, placing the instru-
ment, taking the sample, and stowing the instrument. We
can express this in ANML as:

action CollectSample(location l) {
[all] position == l ;
[all] contains ordered( Unstow, Place(l),

TakeSample(l), Stow ) ;
. . . } ;

In effect, this says that in order to successfully perform the
CollectSample action, we must successfully perform the Un-
stow, Place( ), TakeSample( ), and Stow actions, in order.

Translation to PDDL
Surprisingly enough, in most cases, ANML can be translated
into PDDL 2.2, with only a modest increase in the number of
actions, although the resulting translation is not particularly
clear or easy to work with.

Theorem 1 If all actions in an ANML model are self-mutex
(no two identical instances can execute simultaneously)4

then the model can be translated into PDDL2.2. The PDDL
2.2 translation will generally require additional actions, but
the number of additional actions can be bounded as follows:

• each condition with a contains temporal qualification and
a duration requires one additional action

• each condition with a contains temporal qualification but
no duration requires at most three additional actions

4Actually this is much stronger than necessary – only certain
complex actions (actions with intermediate conditions or effects,
decompositions, relative ordering, etc.) need to be self-mutex for
the construction to work. Even this restriction can be relaxed if the
number of copies of a complex action that can be executed simul-
taneously is bounded.

• if the conditions and effects of an action refer to k interme-
diate timepoints (between start and end) k+1 additional
actions are required.

• each relative ordering constraint may require upto three
additional actions, but in most cases no additional actions
are required.

• one additional action is required for each subtask in a
decomposition, and additional actions may be required
for the relative ordering constraints as specified above.

Showing the translation for every ANML construct re-
quires considerably more space than is available here. We
therefore only sketch the argument by showing the transla-
tion for some of the more interesting cases.

Proof sketch: Translating the variable/value representa-
tion in ANML to a propositional representation is straight-
forward – for each discrete variable v we introduce a pred-
icate V (y) of one argument such that V (a) is true just in
case v = a. Similarly for functions in ANML. For each
assignment effect in ANML there will be a corresponding
delete effect for the old value and an add effect for the new
value in PDDL. Composite statements in ANML are broken
down into the condition and effects according to the defini-
tion given previously.

Numeric variables in ANML are translated directly to nu-
meric variables in PDDL. Resource effects in ANML can
be broken down into their component effects as described
previously. The only tricky part is that consumption and
production over an interval (e.g. [all] {v :consumes a}) re-
quires that we define explicit upper and lower bound vari-
ables in PDDL. Additional conditions must also be added
to the PDDL actions to ensure that variable values remain
within their defined ranges.

The more interesting and difficult parts of the translation
involve dealing with the ANML temporal qualifier contains,
with intermediate conditions and effects, and with relative
ordering constraints among conditions.

Figure 5 shows how to construct a PDDL translation of an
ANML action A having a condition of the form:

[all] contains dur [d] {p} ;

Following the notation of (Halsey, Long, & Fox 2004;
Cushing et al. 2007) actions are shown in boxes with du-
rations in square brackets. Propositions above an action are
start, over all, and end conditions respectively, and proposi-
tions below an action are start and end effects respectively.
The construction in Figure 5 works by introducing an auxil-
iary action P of duration d that is: 1) forced to occur within
A, and 2) requires that the proposition p be true over its entire
duration.

A

P [d]
p a,p p

s

~a

~a, ~sa

s

Figure 5: Establishing [all] contains dur [d] {p} in PDDL.



Figure 6 shows a similar construction for establishing
conditions of the form

[all] contains B ;

where B is an action. In this case the auxiliary action B* is
forced to occur within A, and forces B to be concurrent.

A

B [d]

B*[d]
a,b

s

~a

~a,~sa

s

~b

~bb
Figure 6: Establishing [all] contains B in PDDL.

Translating actions with intermediate conditions and ef-
fects requires introducing auxiliary actions that break up the
action A into a sequence of ordered pieces. Figure 7 shows
how this can be done for an action with two intermediate
effects:

[start+t1] e1 ;
[start+t2] e2 ;

A [d]

A1 [t1]
a

~a

~a,~f1,~f2,~s3a

A2 [t2]
a,f1

e1,f1
A3 [d-t2]

a,f2

s3e2,f2

f1,f2,s3

Figure 7: Establishing two intermediate effects e1 and e2.

This can be easily generalized to handle any sequence of
intermediate point conditions and effects, as well as interval
conditions.5

Finally, we consider action decompositions such as that
shown in Figure 4. We have shown previously (Figure 6)
how to force the subtasks in a decomposition to occur within
the parent task. The only thing remaining is to enforce par-
tial ordering constraints among the tasks. Given two sub-
tasks A and B this is generally quite easy. Figure 8 shows
how this can be done for two of the common cases. The only
difficult case, where an auxiliary action is required, is shown
in Figure 9.

A1 A2 
p

p
end(A1)< start(A2) 

~p

A1 A2 
p

p
end(A1)≤ start(A2) 

~p
Figure 8: Enforcing ordering between two actions.

Orderings with numeric constants, eg: end(A1) + 5 ≤
start(A2) can be handled by introducing auxiliary actions in

5For all practical purposes, effects over an interval can be trans-
lated into a point effect at the beginning of the interval and a condi-
tion over the remainder of the interval guaranteeing that the effect
still holds.

A1[d1] A2[d2] 
pq

start(A1)≤ end(A2) 
~p

A+ [d1+d2]
p ~q

q
q

Figure 9: The most difficult ordering constraint.

a manner similar to the construction shown in Figure 9. Or-
derings between propositional conditions can also be han-
dled with similar constructions.

Related Work
The ANML language has taken inspiration from several ex-
isting languages. Among these, the NDDL language has
the most powerful capability for expressing temporal con-
straints. However, these capabilities are not necessarily easy
to understand or use, and we find many aspects of the lan-
guage to be both cumbersome and difficult to use effectively.
The AML language has very convenient and natural syntax
for expressing resource usage, but the HTN nature of the lan-
guage is limiting. The PDDL family of languages has been
carefully developed, and is widely adopted in the research
community. However, the propositional nature of the lan-
guage, the limited constructs for describing change and re-
source usage, and the limited ability to model time and tem-
poral constraints make it difficult or impossible to use for
serious applications. The change notation in ANML most
closely resembles constructs developed in the SAS family
of languages (Jonsson & Bäckström 1994). However, in
overall capability and style, the IxTeT language (Ghallab &
Laruelle 1994) is perhaps the closest.

There have been a few previous attempts to merge HTN
decomposition into more traditional action languages like
PDDL (McDermott 1998; Castillo et al. 2006). However,
these attempts have not been widely used or adopted be-
cause the two paradigms have had separate semantics and
have not really been integrated. The semantics we ascribe to
decompositions in ANML is quite different. Essentially, we
regard a decomposition as simply being another set of con-
ditions necessary for performing the action. In other words,
if the subtasks can be performed in the order indicated, then
the high-level task can be performed. This makes sense for
several reasons:

1. If the decompositions for an action prove to be impossible
(cannot be performed), then the action itself is not possi-
ble (or we do not know its outcome).

2. Multiple decompositions correspond to a disjunction of
sets of conditions, and any one of these sets would be suf-
ficient to accomplish the action.

3. Logical conditions can be mixed with decompositions.

4. It is consistent with, and can be seen as a generalization of
allowing general temporal constraints among conditions.

Finally, some of the constructions developed for translat-
ing ANML into PDDL were inspired by those found in (Fox,
Long, & Halsey 2004) and (Hoffmann et al. 2006).



Conclusions and Future Work
In this paper, we have only sketched some of the key features
of the evolving ANML language. In particular, we have
described the powerful and concise constructs in ANML
for temporal qualification, for describing change over the
course of an action, for describing resource usage, and for
integrating task decomposition with traditional action con-
ditions and effects. There are additional features and details
of the language that we have not mentioned, or have only
glossed over. Among other things, there is the ability to ex-
press quantification, disjunctive conditions, conditional ef-
fects, and complex goals.

The language has evolved considerably since it was first
conceived in 2006, largely due to efforts to model some In-
ternational Space Station problems involving crew schedul-
ing and procedures. Many of the differences may appear to
be minor syntactic changes, but were actually motivated by
a need to generalize a construct, or clarify semantics in ways
we had not previously considered. A manual describing the
language is available, along with an ANTLR grammar. We
are in the process of building a translator from ANML into
PDDL using the constructions outlined in this paper. We are
also working on a translator from PDDL into ANML using
techniques outlined in (Bernardini & Smith 2008). A trans-
lator from ANML into NDDL was developed previously, but
currently only handles a subset of the language.

There is an additional effort underway to extend the syn-
tax of ANML to allow description of continuous change,
processes and exogenous events. We would like to be able
to express resource usage as a function of time where known
and convenient. However, our view here is not that a planner
must necessarily be able to reason about continuous change.
Instead, our view is that we should allow the user to naturally
express the domain, at whatever level of detail is appropri-
ate. It is then perfectly reasonable for a planner to make
sound but incomplete approximations to effectively reason
about the domain. As a case in point, reasoning about lower
and upper bound envelopes is a useful approximation that
is both computationally tractable, and perfectly adequate for
many domains. However, we want the planner to be able
to choose the approximation, rather than forcing the user to
encode it explicitly. Thus in the case of continuous change,
we would like to see the planner choose an appropriate dis-
cretization or linearization in order to enable sound, but ef-
fective, reasoning about the domain.
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