
Translating PDDL2.2. into a Constraint-based Variable/Value Language

Sara Bernardini David E. Smith
University of Trento NASA Ames Research Center

Via Sommarive 14, 38055 Trento, Italy Moffet Field, CA 94035–1000
sara.bernardini@unitn.it david.smith@nasa.gov

Abstract
We develop a translation from PDDL2.2 into NDDL, the lan-
guage used by NASA’s EUROPA2 planning system. Starting
from a PDDL2.2 description of the world based on propo-
sitions and operators, we generate an NDDL model that
features timelines, activities and compatibilities. The rel-
evance of the translation is twofold. From a theoretical
point of view, the translation is interesting since it transforms
an action-centered propositional representation into a multi-
valued variable representation based on temporal constraints.
From a practical point of view, the translation allows testing
of application-oriented planning systems on standard bench-
marks developed for the Internal Planning Competition (IPC).

Introduction
We present a technique for performing an automatic trans-
lation from the PDDL2.2 language (Edelkamp & Hoff-
mann 2004) into a variable/value constraint-based language
called NDDL (New Domain Definition Language). NDDL
is the modelling language of the EUROPA2 planning sys-
tem (Frank & Jónsson 2003), currently being employed for
several NASA mission applications including the Mars Ex-
ploration Rover mission (MER) (Bresina et al. 2005). Be-
ing designed and used for representing complex real-world
problems, NDDL is a powerful language that allows one to
describe large domains with complex temporal constraints,
resources, exogenous events and relative ordering contraints
between activities. However, because the language and as-
sumptions are so different, EUROPA2 has not been tested
on the many benchmark domains developed for the IPC.
PDDL2.2 and NDDL are expressions of two alternative
planning paradigms. EUROPA2, as well as a num-
ber of planners used for real-world applications like AS-
PEN (Chien et al. 2000), IxTeT (Ghallab & Laruelle
1994) and OMPT (Fratini, Pecora, & Cesta 2008), imple-
ments constraint-based temporal planning (Smith, Frank, &
Jónsson 2000; Frank & Jónsson 2003), while most planners
that use PDDL2.2 are basically classical planners extended
to treat time and numeric functions. EUROPA2 departs from
traditional planning in many respects. For a given domain,
the system under consideration is decomposed into a set of
primitive components that perform mutually exclusive activ-
ities over time intervals. The transition of a component from
an activity to another activity and its synchronization with

the behaviour of other components are regulated by a set
of temporal constraints called compatibilities. Thus, while
PDDL represents the world in terms of propositions and op-
erators, NDDL uses multi-valued state variables whose evo-
lution over time and reciprocal relationships are expressed
through interval-based and point-based temporal relations.
Most of the translation we develop is not specific to EU-
ROPA2 – it is a general approach to transforming an action-
centered propositional representation into a variable/value
constraint-based representation. More precisely, the invari-
ant synthesis and the timeline generation are general tech-
niques that can be used to obtain temporal multi-valued state
variables from a PDDL instance, while the compatibility
generation is a method to extract temporal constraints be-
tween state variables from the PDDL specification of dura-
tive operators. The translation can be applied, with slight
modifications, to a number of constraint-based temporal
planners, such as IxTeT (Ghallab & Laruelle 1994) and
OMPS (Fratini, Pecora, & Cesta 2008). It will allow us to
test these application-oriented planners on standard bench-
marks developed for the IPC. Besides, the translation pro-
motes the recognition of the core differences between clas-
sical and constraint-based temporal planning and helps to
identify how to map successful techniques and features of
one paradigm into the other. That is important since the
cross-fertilization of ideas between these two planning com-
munities has been limited so far.
Our translation builds on the translation presented in
(Helmert 2006b) that transforms a sub-set of the PDDL2.2
language into the multi-valued planning task formalism
(Helmert 2006a). This translation is limited to non-temporal
and non-numeric PDDL domains. In contrast, our trans-
lation tackles temporal and numeric domains. Translating
such tasks is more complex than handling tasks with instan-
taneous discrete actions, because interference between con-
current operators complicates the identification of state vari-
ables and the synthesis of compatibilities.
In order to explain the translation, it is necessary to have
some understanding of the NDDL language. We present the
essentials in the next section. We then give an overview of
the entire translation process and a detailed description of
the main steps. We conclude by discussing current status
and future work.



NDDL: EUROPA2’s Modelling Language
In NDDL, a planning instance I is a pair: I = (D,P), where
D is the planning domain and P is the planning problem.
A planning domain D is represented by:
• A set of timelines: T = {T1, T2, . . . , Tn}, which are es-

sentially multi-valued state-variables capturing the evolu-
tion of a component or quantity over time.

• A set of mutually exclusive activities associated with each
timeline Ti: Act[Ti] = {a1(~x1, δ1), . . . , an(~xn, δn)},
where ~xj is the vector of the parameters of the activity
aj and δj = [δmin

j , δmax
j ] is a mathematical interval in

N representing the duration of aj . The parameters start
and end in ~xj access the start and end time of aj .

• An evolution rule R[a] for each activity a ∈ D. The rule
R[a] is a conjunction of compatibilities: R[a] = K1[a] ∧
. . . ∧ Kn[a]. A compatibility K[a] describes the relation-
ship between the master activity a(~x, δ) and a number of
slave activities Sl[a,K] = {a1(~y1, δ1), . . . , ak(~yk, δk)}.
The slaves can be associated with the same timeline of
a or with different timelines. Formally, a compatibility
assumes the following form:

K[a] :
n∧

i=0

gi ⇒
∧

i:ai∈Sl[a,K]

(ti ∧
k∧

j=0

pij)

which is composed of:
– Guard constraints: a set of constraints gi specifying

when the compatibility applies. A guard constraint g
is an atomic formula γ = t, where γ is a variable called
guard and t is a constant. We assume that g0 = >.

– Temporal constraints: a set of constraints ti specifying
the temporal relationships between the master activity
and its slaves. Given the master a and a slave ai, a tem-
poral constraint ti assumes one of two possible forms:
∗ a temporal relation ai,

where temporal relation is an interval-based
temporal predicate (meets, met by, contains,
contained by, . . .).

∗ tp[a] temporal relation tp[ai],
where tp[a] is the start time or end time of a and
temporal relation is a point-based temporal
predicate (precedes and concurrent).

– Codesignation constraints: a set of constraints pij

specifying restrictions over the possible instantiations
of the parameters of the activities participating in a
temporal constraint. Given the master a(~x, δ) and a
slave ai(~yi, δi), a codesignation constraint pij is of
the form xk rel yil, where xk ∈ ~x, yil ∈ ~yi and
rel ∈ {=, 6=}. We assume that pi0 = >.

A rich set of temporal relationships is permitted in com-
patibilities, including: meets, contains, before,
starts, equals, parallels, start_before_end,
starts_during,starts_before, starts_after,
contains_start, and all their inverse relations. These
relations are derived from the thirteen temporal relations de-
fined by Allen (1983)1.

1It is worth noting that, although the temporal relationships

A planning problemP is represented by a pairP = {H, I}:
• H ∈ N is the end of the planning horizon, meaning that

we only care about the behavior of the system with respect
to the temporal window [0,H].

• I is the initial configuration represented by a set of activ-
ities placed on their corresponding timelines. If we anno-
tate an activity a by a time interval τ(a) = [st(a), et(a)]
(indicating the temporal extent over which a holds), then,
for each activity ai in I, it is possible either to specify the
specific position of ai on the timeline, which means fixing
the start and end time of τ(ai), or to leave ai floating on
the timeline between the origin and the horizon.

Example: the Rover domain As an illustration of a sim-
ple domain model, consider a rover equipped with a set of
instruments to sample a geological site. We model the sub-
systems of the rover as timelines: Battery , MobilitySystem,
Controller , IDD, Spectrometer , Imager and so on. Each
subsystem can only perform certain activities. For exam-
ple, the IDD (Instrument Deployment Device), which is a
robotic arm that brings the rover’s instruments into con-
tact with rocks, can perform one of the following opera-
tions: Use(inst, rock, 1), Place(rock, 3), Stow(2), Unstow(2)
and Stowed([1, +inf]). The first activity consists in using the
instrument inst against the rock rock and lasts 1 time unit.
The other specifications are similar. The constraints that reg-
ulate the behavior of the IDD follow: in order to use an in-
strument on a rock, the IDD must be first unstowed and then
properly positioned in the vicinity of the rock. After ana-
lyzing a rock, the IDD can be placed in another position for
performing another experiment or can be stowed. With re-
gard to the interactions between the IDD and the other com-
ponents, the IDD can be placed on a rock only if the rover
is positioned at that rock and is not changing position. All
these constraints are expressed by means of the evolution
rules of the activities performed by the IDD. We show just a
few of them:
R[Unstow()] = {

meets Place(rock) ∧
met by Stowed()}

R[Place(rockb)] = {
meets Use(inst, rocku) ∧ (rocku = rockb) ∧
met by Unstow() ∧
contained by MobilitySystem.At(rocka)∧
(rocka = rockb)}

An initial configuration I for the rover domain can, for ex-
ample, specify the level of the battery, the position of the
mobility system and the status of the instruments at the start
of the horizon and, furthermore, can establish that a particu-
lar rock should be analyzed within a certain time interval.

defined by Allen are non-directional and can be inverted, com-
patibilities cannot be inverted. For example, the compatibility
ai meets ak implies that if ai exists on a timeline, ak must also
exist, while ak met by ai implies that if ak exists on a timeline,
ai must exist.



Normalization

Invariant 
Synthesis

Grounding

Timeline and Activity
Generation

PDDL 
Instance

NDDL 
InstanceCompatibility

Generation

Figure 1: An overview of the translation process

Translation Overview

Given a PDDL2.2 planning instance Ip = {Dp,Pp}, the
translation function Θ applied to Ip produces an equivalent
instance In = {Dn,Pn} in NDDL. An overview of the
translation process from PDDL2.2 into NDDL is given in
Figure 1. The translation works in five steps. First, the
PDDL2.2 instance is normalized, i.e. types are removed and
conditions and effects are simplified. The next two tasks,
which can be performed in any order, are: invariant syn-
thesis, which aims at extracting mutual exclusion contraints
from an analysis of the domain, and grounding, which pro-
duces an instance where all the literals are ground. Starting
from the invariants provided by the invariant synthesis and
the grounded domain, a set of NDDL timelines and their as-
sociated sets of NDDL activities are generated. Finally, the
compatibilities that describe the behavior of each activity are
created on the basis of the PDDL operator specifications and
the explanatory frame axioms.
Our translation from PDDL2.2 to NDDL builds on the trans-
lation presented in (Helmert 2006b), which transforms a re-
stricted version of PDDL2.2 into the Multi-valued Planning
Task (MPT) formalism (Helmert 2006a). More specifically,
this translation takes as input planning domains specified
in PDDL2.2–Level 1, the non-temporal and non-numerical
portion of the PDDL language that allows the use of univer-
sal and conditional effects, arbitrary first-order formulas in
action conditions and goals, and axioms, but does not sup-
port durative actions and numeric functions. This transla-
tion returns fully instantiated planning tasks written in MPT.
The MPT formalism is based on multi-valued state variables
whose transitions are determined by the application of in-
stantaneous operators.
We extend and modify the translation in order to deal with
temporal and numeric PDDL domains. While the normal-
ization and the grounding steps shown in Figure 1 are sim-
ple generalizations of the corresponding steps described in
(Helmert 2006b), the remaining steps are different and more
complicated. For example, when temporal domains are con-
sidered, the discovery of invariants requires proving mutex
conditions between those durative operators that, when over-
lapping, could possibly invalidate the invariant conditions.
Moreover, the causal evolution of a domain, which in PDDL
and MPT is conveyed through the distinction between con-
ditions and effects, must be captured by means of purely
temporal constraints in NDDL, since there is no explicit no-
tion of action in NDDL.
In the next sections, we describe the normalization, ground-
ing, invariant synthesis, the timeline and activity generation,
and the compatibility creation. For each step, we highlight
the similarities and differences with the translation described

in (Helmert 2006b).
Due to space limitations, we do not describe the transla-
tion of numeric functions. However, that task is straight-
forward since numeric functions in PDDL are already in a
variable/value representation. NDDL provides a notion of
resource timeline that can be used for translating numeric
functions and offers specialized predicates for managing re-
sources (change, produce, consume and use) that are similar
to update assignment operators in PDDL2.2.

Normalization and Grounding
We briefly describe the normalization and the grounding
steps, which essentially work as indicated in (Helmert
2006b), with slight modifications for managing time and nu-
meric functions. Normalization performs three tasks: 1) it
compiles away types; 2) it transforms goal formula, axiom
bodies, operator conditions and conditions of conditional ef-
fects into conjunctions of literals; and 3) it transforms each
effect into a conjunction of normalized effects, where a nor-
malized effect is a conjunction of literals with an associated
set of universal quantifiers and an associated condition. For
simplicity, in what follows, we ignore axioms and consider
only effects without conditions and quantifiers. However,
the techniques presented can be easily extended to manage
the general case.
A grounded PDDL domain is a domain where all the liter-
als occurring in the goal formula and operators are ground
literals. Grounding a PDDL domain relies on computing
an over-approximation of the atoms that can ever be true
and then instantiating the goal formula and the operators on
them. The over-approximation is calculated by using a re-
laxed version of the orignal domain where delete effects of
operators are ignored and negative literals in conditions are
assumed to be true. We refer the reader to (Helmert 2006b)
for a detailed description of the procedure for efficiently cal-
culating the reachable atoms of the relaxed domain.

Invariant synthesis
An invariant is a property of world states such that when it is
satisfied by a state s, it is satisfied by all states that are reach-
able from s. Usually, we are interested in invariants that are
satisfied in the initial state. In fact, if an invariant holds in the
initial state, it holds in all the reachable states. We look for
mutual exclusion invariants, which state that certain atoms
can never be true at the same time, as a preliminary step to
synthesizing timelines. To find invariants we identify a set
of invariant candidates by inspecting the domain. We then
check these candidates against a set of properties that assure
invariance in order to see whether they are actual invariants



or not. If a candidate is not an invariant, in some cases it is
possible to refine it so as to make it a real invariant.
Let I = (D,P) be a PDDL instance. An invariant can-
didate is a tuple C = 〈Φ,F,V〉, where Φ is a subset of
the atoms in D, and F and V are two disjoint sets of vari-
ables, respectively called fixed and counted variables. Both
F and V are subsets of Var[Φ], which collects the variables
in Φ. For example, let us consider a PDDL description
of the Rover domain and the predicate at(rover,loc).
The following is a candidate: Cat = 〈{at(rover,loc)},
{rover}, {loc}〉, where rover is the fixed variable and
loc the counted variable. An instance γ of the candidate
C is a function that maps the fixed variables in F to objects
of P . Assuming we have an instance with two rovers rov1
and rov2, a possible instance of Cat is γrov1 : rover →
rov1. The weight of γ in a state s is the number of ground
instantiations of the variables in V that make some φ ∈ Φ
true under γ in s2. Thus, considering the Rover domain
and the instance γrov1, if we have a state s where the atom
at(rov1,loc1) holds, then the weight of Cat is 1. Given
a cardinality set S = {x | x ∈ N}, the semantics of a
candidate C is: for all the possible instances γ of C, if the
weight of γ is within S in a state s, then it is within S in
any successor state s′ of s. Thus, if the candidate C is an
actual invariant and holds in the initial state, we have that
at most k = max(S) atoms in Φ are true in any reachable
state. Since we are interested in mutually exclusive sets of
propositions, we restrict our analysis to the cardinality set
S = {0, 1}. However, the technique for finding invariants
that we will present can be generalized to any cardinality
set. Considering the Rover domain again, the candidate Cat

means that, for all rovers rover in the domain, the number
of locations loc where at(rover,loc) is true remains
less than or equal to 1 when a transition from one state to
another is performed. If we prove that what is stated by the
candidate is true and each rover is at maximum 1 location
in the initial state, then each rover cannot be at multiple lo-
cations at the same time in any reachable state. Hence, for
each rover, we can create a timeline that corresponds to the
predicate at and represents the position of the rover. The
activities on this timeline represent the presence of the rover
in the various locations that it can occupy.
In order to show that a candidate C is an actual invariant, we
need to guarantee that it holds in the initial state and all the
operators inD keep the weight of any instance γ of C within
the cardinality set S = {0, 1}. When an operator satisfies
this condition, it does not threaten the candidate C. A suffi-
cient condition for a candidate C to be an actual invariant is
that it is not threatened by any operator.
Given an instance γ of a candidate C, an operator op does not
threaten the candidate C if and only if one of the following
conditions holds:

1. The operator op does not affect the weight of γ.
2. The operator op is balanced, i.e. it preserves the weight

of γ by checking that the weight is 1 at some timepoint

2The weight of γ is also equal to the cardinality of the set of all
ground atoms that unify with some φ ∈ Φ under γ in s.

(start/end), decreasing that weight by 1 at that timepoint
and increasing the weight by 1 at that same timepoint.

3. The operator op increases the weight of γ by 1 at some
timepoint (start/end) and its pre-conditions require that
the weight of γ is 0 at the same timepoint (start/end).

4. The operator op decreases the weight of γ by 1 at some
timepoint (start/end).

5. The operator op decreases the weight of γ at start or re-
quires that the weight of γ be 0 at start, increases the
weight of γ at end, and all operators of type 3 and 5 are
mutex with op.

In all other cases, the operator op threatens the candidate C.
Cases 1 and 2 correspond to the criteria for identifying non-
threatening operators used in the translation from PDDL2.2–
Level 1 into MPT (Helmert 2006b). Cases 3 and 4 are a
generalization of case 2. They can be used not only in the
temporal setting, but also in non-temporal planning in or-
der to capture a broader set of invariants. In contrast, Case
5 is specific to temporal planning and accounts for the fact
that we accept as non-threatening an operator op that is tem-
porarily unbalanced as long as no other operator disrupts
the candidate during the execution of op. More specifically,
we must guarantee that, when a temporarily unbalanced op-
erator is in execution, no operator can alter the weight of the
instances of the candidate. Operators that may disrupt the
balance are those of type 3 and type 5. In fact, operators of
type 3 only increase the weight of the instances of the candi-
date and operators of type 5 increase and decrease the weight
at two different time points. For example, given the can-
didate Cat = 〈{at(rover,loc)}, {rover}, {loc}〉,
there is only one operator in the domain Rover that affects
the weight of the instances of C and so may threaten it:
navigate. Suppose that its PDDL specification is:
(:durative-action navigate
:parameters (?x - rover ?y - loc ?z - loc)
:duration (= ?duration 5)
:condition (and (over all (can_go ?x ?y ?z))

(at start (at ?x ?y))
(over all (visible ?y ?z)))

:effect (and (at start (not (at ?x ?y)))
(at end (at ?x ?z))))

The operator navigate is temporarily unbalanced (case
5). In fact, given an instance γ of Cat, it decreases the weight
of γ at start and increases the weight of γ at end. In order to
guarantee that Cat is an invariant, we need to show that all
the operators of type 3 and 5 that affect Cat are mutex with
navigate. This mutex would have been trivially satisfied
if navigate had the condition that the weight of γ must
be 0 over the entire interval at which op is applied (over all
condition). However, this is not our case.
In general, how can we establish whether two durative
PDDL operators are mutex or not? Since in PDDL2.2, ef-
fects can only happen at the start and end of the operators,
and conditions can only be specified at the start, end, and
over all, there are nine types of mutex. We refer the reader to
(Smith & Jónsson 2002) for a discussion of mutex between
actions with general conditions and effects.
Given two durative operators op1 and op2, there are nine



types of mutex operators:
1. Start-Start: op1 and op2 cannot start at the same time if:
∃p ∈ (Condstart(op1)∪Condall(op1)∪Effstart(op1)) :
¬p ∈ (Condstart(op2) ∪ Condall(op2) ∪ Effstart(op2))

2. End-End: op1 and op2 cannot end at the same time if:
∃p ∈ (Condend(op1) ∪ Condall(op1) ∪ Effend(op1)) :
¬p ∈ (Condend(op2) ∪ Condall(op2) ∪ Effend(op2))

3. Start-End: op1 cannot start at the time that op2 ends if:
∃p ∈ (Condstart(op1)∪Condall(op1)∪Effstart(op1)) :
¬p ∈ (Condend(op2) ∪ Effend(op2))

4. Invariant-Start: op2 cannot start during op1 if:
∃p ∈ Condall(op1) :
¬p ∈ (Condstart(op2) ∪ Condall(op2) ∪ Effstart(op2))

5. Invariant-End: op2 cannot end during op1 if:
∃p ∈ Condall(op1) :
¬p ∈ (Condend(op2) ∪ Condall(op2) ∪ Effend(op2))

6. Invariant-Invariant: op1 and op2 cannot overlap if:
∃p ∈ Condall(op1) : ¬p ∈ Condall(op2)

In addition, we have: mutex End-Start (dual to case 3), mu-
tex Start-Invariant (dual to case 4) and mutex End-Invariant
(dual to case 5). For brevity, we refer to the above mentioned
mutex operators as mutex-SS, mutex-EE, and so on.
Let us now clarify what checks are needed to establish if
a temporarily unbalanced operator op of type 5 threatens a
candidate. Given an instance γ of a candidate C, op is a
non-threatening unbalanced operator for C if:
• For each operator op′ of type 3:

– if op′ increases the weight of γ at start, op is mutex-IS
or mutex-II with op′.

– if op′ increases the weight of γ at end, op is mutex-IE
or mutex-II with op′.

• For each operator op′ of type 5, op is mutex-IE or mutex-
II with op′.

The mutex check is redundant and can therefore be avoided
if both the following conditions hold:
1. there are no operators of type 3 (which is relatively rare);
2. all the operators of type 5 require that the weight of γ is

1 at start, decreases the weight of γ at start and increases
the weight of γ at end (this is a typical resource usage).

In this case, the procedure to identify invariants is much sim-
pler than in the general case. The domain Rover and the op-
erator navigate respect the conditions 1 and 2. Hence,
navigate does not threaten the candidate Cat.
As with other related techniques (Gerevini & Schubert 2000;
Helmert 2006b), the algorithm for finding invariants imple-
ments a guess, check and repair approach. We start from a
simple initial set of candidates that have the following char-
acteristics: the set Φ contains only one atom φ and the set
V contains only one counted variable. The candidate Cat =
〈{at(rover,loc)}, {rover}, {loc}〉 is an example.
Given a candidate C = 〈Φ,F,V〉 that has been rejected be-
cause it is threatened by the unbalanced operator op, we pick
an atom φ that unifies with a delete effect of op and involves
the variables in F and at most one other variable. We then

check the new candidate: C′ = 〈{Φ ∪ φ},F′,V′〉. If the
new atom φ balances the unbalanced add effect of the op-
erator op and there are not other operators that threaten C′,
then C′ is an invariant. Notice that atoms obtained from con-
stant predicates (Edelkamp & Helmert 1999), i.e. predicates
whose atoms have the same truth value in all the states (for
example, type predicates), are never added to candidates.

Timeline Generation
Given a PDDL planning instance Ip = {Dp,Pp}, we use
the invariants found during the invariant synthesis for creat-
ing the timelines of the corresponding NDDL instance In =
Θ[Ip]. More specifically, for each invariant I = 〈Φ,F,V〉
and each instance γ of I, we create a timeline T [I, γ] cor-
responding to I and γ. The activities associated with the
timeline T [I, γ] are ground atoms obtained from the atoms
in Φ by binding the fixed variables F under γ and by in-
stantiating the counted variables V over the objects in Pp

in all the possible ways. We add an activity ⊥ to Act[T ],
which indicates that none of the other activities in the set
are executing. The time interval associated with any created
activity is [1,+∞), meaning that the activity can persist for
any period of time.
For example, given the domain Rover with
two rovers and three locations and the invariant
I = 〈{at(rover,loc)}, {rover}, {loc}〉, we
create two timelines Tpos r1 and Tpos r2, each represent-
ing the position of one rover. The activities associated
with the timeline Tpos r1[I,rov1] are Act[Tpos r1] =
{at_r1_loc1, at_r1_loc2, at_r1_loc3,⊥}.
The activities associated with Tpos r2[I,rov2] are similar.
Formally, each reachable ground atom needs to be encoded
at least once. However, usually the same atom ends up being
in more than one set of activities, each set associated with
one timeline. This happens because different invariants can
share the same atom. We ignore this redundancy, encode
as many timelines as instances of the invariants found and
allow a ground atom to appear on multiple timelines3. Given
a ground atom p that occurs in Dp, we indicate with T[p]
the set of timelines with which the activity p is associated:
T[p] = {T ∈ T | p ∈ Act[T ]}.
Beside the timelines generated from invariants, we also cre-
ate timelines corresponding to the operators in Dp. More
specifically, we introduce a timeline Top for each operator
op and include two activities intoAct[Top]: exe and not exe,
which indicate whether the operator op is in execution or not.
These activities do not have parameters, but have duration
constraints. The duration constraint [1,+∞) is attributed to
the predicate not exe, since it can have any duration. The
duration constraints for the PDDL operator op are trivially
translated into duration constraints for the predicate exe. For
example, given the domain Rover with one rover and two
locations, we create a timeline Tnavigate r1 loc1 loc2 and a

3In practice, we attach the name of the timeline to the ground
atom in order to be able to distinguish between the occurrences of
it on different timelines



timeline Tnavigate r1 loc2 loc1, both characterized by two ac-
tivities exe and not exe.

Compatibility Generation

We generate the compatibilities for the activities that corre-
spond to operators by translating the PDDL specifications
of such operators. In particular, given an operator op =
〈Cond,Eff〉 ∈ Dp and the corresponding timeline Top, the
activity not exe has only two compatibilities: meets(exe)
and met_by(exe). The activity exe has two similar compat-
ibilities among others. These meets and met by compat-
ibilities simply indicate that the timeline Top alternates exe
and not exe activities over the entire horizon. However, the
activity exe has additional compatibilities that describe its
interactions with activities on other timelines. These com-
patibilities are synthesized on the basis of the conditions
Cond and the effects Eff of Top. Let us start from condi-
tions and then analyze effects.
Each condition c ∈ Cond(op) belongs to one of the sets
Condstart, Condall, and Condend. We translate conditions
on the basis of the sets to which they belong. We consider
positive conditions first.
• Positive condition at start: c ∈ Condstart

Since c is a condition at start, any timeline T ∈ T[c] must
ensure the activity c at the start of the interval over which
the activity exe is applied on Top. Given the activities
Top.exe and T .c, there are two possible configurations for
them to satisfy the above constraint: either T .c starts be-
fore and ends after the start of Top.exe or T .c starts before
the start of Top.exe and ends at the start of Top.exe, i.e.

T .c.start < exe.start ≤ T .c.end
These constraints are added to the NDDL rule for exe:
R[exe()] = {starts_before_end T .c ∧

precedes(T .c.start, exe.start)}
• Positive condition over all: c ∈ Condall

Since c is a condition over all, any timeline T ∈ T[c] must
ensure the activity c over the entire interval over which the
activity exe is applied on Top. Given the activities Top.exe
and T .c, the start time of Top.exe must be greater than or
equal to the start time of T .c and the end time of Top.exe
must be less than or equal to the end time of T .c,

T .c.start ≤ exe.start ∧ exe.end ≤ T .c.end
These constraints are added to the NDDL rule for exe:
R[exe()] = {contained_by T .c}

• Positive condition at end: c ∈ Condend.
Since c is a condition at end, any timeline T ∈ T[c] must
ensure the activity c at the end of the interval over which
the activity exe is applied on Top. Given the activities
Top.exe and T .c, there are two possible configurations for
them to satisfy the above constraint: either T .c starts be-
fore and ends after the end of Top.exe or T .c starts before
the end of Top.exe and ends at the end of Top.exe, i.e.

T .c.start < exe.end ≤ T .c.end
These constraints are added to the NDDL rule for exe:
R[exe()] = {ends_before T .c ∧

precedes(T .c.start, exe.end)}

Given a negative condition c ∈ Condstart and any timeline
T ∈ T[e], we have two cases:
• Protected negative condition at start

If the operator op has another condition c′ such that c′ ∈
Act[T ] and c′ ∈ Condstart, then we do not directly trans-
late c. In fact, this negative condition will be automati-
cally translated when the condition c′ is translated.

• Unprotected negative condition at start
If a condition c′ of such type does not exist, then any ac-
tivity in Act[T ] different from c can possibly hold after
the start time of op. We translate this case by creating
a disjunction between different compatibilities controlled
by a guard variable. More specifically, we create a set of
temporal constraints like those illustrated above for posi-
tive conditions for each activity in Act[T ] different from
c. Then, we create a guard constraint for each one of these
sets of temporal constraints using the same guard vari-
able. In the end, we obtain a set of mutually exclusive
compatibilities involving exe and the activities in Act[T ]
excluding c.

The same holds for negative condition over all and at end.
Let us now turn our attention to effects. Each effect e ∈
Eff(op) belongs to one of the following sets: Addstart,
Addend, Delstart and Delend. We translate effects on the
basis of the sets to which they belong.
• Add effect at start: e ∈ Addstart

Since e is an add effect at start, any timeline T ∈ T[e]
must ensure the activity e at the start of the interval over
which the activity exe is applied on Top. Given the activ-
ities Top.exe and T .e, there are two possible configura-
tions for them to satisfy the above constraint: either T .e
starts before and ends after the start of Top.exe or T .e
starts at the start of Top.exe, i.e.

T .e.start ≤ Top.exe.start < T .e.end .
These constraints are added to the NDDL rule for exe:
R[exe()] = {starts_after T .e ∧

precedes(exe.start , T .e.end)}
• Add effect at end: e ∈ Addend

Since e is an add effect at end, any timeline T ∈ T[e]
must ensure the activity e at the end of the interval over
which the activity exe is applied on Top. Given the ac-
tivities Top.exe and T .e, there are two possible config-
urations for them to satisfy the above constraint: either
T .e starts before and ends after the end of Top.exe or T .e
starts at the end of Top.exe, i.e.

T .e.start ≤ Top.exe.end < T .e.end .
These constraints are added to the NDDL rule for exe:
R[exe()] = {ends_after_start T .e ∧

precedes(exe.end , T .e.end)}
Let us now consider the delete effects Del. Given an atom
e ∈ Delstart and any timeline T ∈ T[e], we have two cases:
• Protected delete effect at start

If the operator op has another effect e′ such that e′ ∈
Act[T ] and e′ ∈ Addstart, then we do not directly trans-
late e. In fact, this delete effect will be automatically
translated when the add effect e′ is translated.

• Unprotected delete effect at start



If an effect of such type does not exist, then the
timeline T assumes an undefined value during the
execution of the operator exe. Therefore, we add
the following constraint to the NDDL rule for exe:
R[exe()] = {contained_by T .⊥}

The same holds for delete effects at end.
We consider again the Rover domain with one rover and two
locations and in particular the timeline Tnavigate r1 loc1 loc2

and the activity exe. The PDDL specification of the operator
navigate_loc1_loc2 is translated as follows:
R[exe()] = {

starts_before_end Tpos r1.at r1 loc1 ∧
precedes(Tpos r1.at r1 loc1.start, exe.start) ∧
contained_by Tpos r1.⊥ ∧
ends_after_start Tpos r1.at r1 loc2 ∧
precedes(exe.end , Tpos r1.at r1 loc2.end)}

Figure 2 illustrates the configuration of the timelines Tpos r1

and Tnavigate r1 loc1 loc2.

exe

at_r1_loc1 undef

T

at_r1_loc2

navigate_r1_loc1_loc2

Tpos_r1

Figure 2: Translation of the operator navigate

From Figure 2 it appears that we can use more
restrictive constraints for translating the operator
navigate_r1_loc1_loc2, and in particular:
R[exe()] = {

met_by Tpos r1.at r1 loc1 ∧
equals Tpos r1.⊥ ∧
meets Tpos r1.at r1 loc2}

We can deduce these more restrictive constraints if we look
at all the conditions and effects that affect the timeline
Tpos r1 at once. Writing more restrictive constraints for
translating an operator op is more costly than translating
each condition and effect in isolation, as we did above, since
it requires analyzing all the possible combinations between
conditions and effects. However, we identify some frequent
cases for which more specific constraints can be used and
pre-compile them. The case in Figure 2 is one of these com-
mon cases: there are a condition and a delete effect at start,
an add effect at end and all involving the same timeline.

Translating Frame Axioms
Let p be an activity that translates a positive PDDL proposi-
tion p. The evolution rule for p is composed of two disjunc-
tions: the first disjunction describes which activities cause
the start of p, whereas the second disjunction accounts for
the activities that cause the end of p. Basically, if the activity
p holds on a timeline T , one of the activities in the first dis-
junction must occur and trigger the start of p and one of the
activities in the second disjunction must occur and cause the
end of p. The activities that can start and end p correspond
to the translation of those PDDL operators that contain the

proposition p or its negation in their effects. Thus, when we
write the compatibilities for a proposition p, we are basically
implementing the explanatory frame axioms for p and ¬p
(Haas 1987), similarly to what is done in SAT-encodings of
planning domains (Ernst, Millstein, & Weld 1997).
We start by synthesizing compatibilities that enumerate the
operators that can cause the start of p. We collect all the
operators op1, . . . , opk in Dp whose effects at start contain
p. For each one of these operators, we create a disjunct of
the form: starts(Topi .exe). In this case, p starts holding
on its timeline T when exe is applied over Topi . Then, we
collect all the operators opk+1, . . . , opn whose effects at end
contain p. For each one of these operators, we create a dis-
junct of the form: met_by(Topi

.exe). In this case, p starts
holding at the end of the interval over which exe is applied
on Topi

. Finally, we create one guard constraint for each dis-
junct. All the disjuncts share the same guard variable. In the
end, we obtain a disjunctive rule with n disjuncts controlled
by a single guard variable:
R[p()] = {

guard = 0 ⇒ starts Top1 .exe
. . .
guard = k ⇒ starts Topk .exe
guard = k + 1 ⇒ met by Topk+1 .exe
. . .
guard = n⇒ met by Topn .exe}

The disjunction says that, if the activity p starts holding
on its associated timeline T , one of the activities among
Top1 .exe, . . ., Topn

.exe must have triggered it. Thus, these
compatibilities for p account for the operators that cause the
start of p.
We then introduce additional compatibilities that account for
the operators that cause the end of p. We collect all the op-
erators op1, . . . , opn whose effects at start contain ¬p. For
each one if these operators, we create a disjunct of the form:
meets(Topi .exe). In this case, p ceases to hold on its time-
line T when exe is applied over Topi

. Then, we collect all
the operators opk+1, . . . , opn whose effects at end contain
¬p. For each one of these operators, we create a disjunct of
the form: ends(Topi

.exe). In this case, p ceases to hold at
the end of the interval over which exe is applied on Topi

. Fi-
nally, we create one guard constraint for each disjunct. All
the disjuncts share the same guard variable. Thus, we ob-
tain a disjunctive rule with n disjuncts controlled by a single
guard variable:
R[p()] = {

guard = 0 ⇒ meets Top1 .exe
. . .
guard = k ⇒ meets Topk .exe
guard = k + 1 ⇒ ends Topk+1 .exe
. . .
guard = n⇒ ends Topn .exe}

The disjunction says that, if the activity p ends, one of the
activities among Top1 .exe, . . ., Topn

.exe must have ended it.
Thus, these compatibilities for p account for the operators
that cause the end of p.
For example, consider the Rover domain with one rover and



three locations. Below, we show the compatibilities for the
activity at_r1_loc1.
R[at r1 loc1()] = {

guard1 = 0 ⇒ met by Tnavigate r1 loc2 loc1.exe
guard1 = 1 ⇒ met by Tnavigate r1 loc3 loc1.exe
guard2 = 0 ⇒ meets Tnavigate r1 loc1 loc2.exe
guard2 = 1 ⇒ meets Tnavigate r1 loc1 loc3.exe}

Basically, the first disjunction says that, in order for
the activity at_r1_loc1 to start holding on Tpos r1,
one of the following activities must hold and end at the
start time of at_r1_loc1: Tnavigate r1 loc2 loc1.exe or
Tnavigate r1 loc3 loc1.exe. The rover is at location loc1
if it has navigated to that location from loc2 or from
loc3. The second disjunction says that, in order for
the activity at_r1_loc1 to cease to hold on Tpos r1,
one of the following activities must hold and start at the
end time of at_r1_loc1: Tnavigate r1 loc1 loc2.exe or
Tnavigate r1 loc1 loc3.exe. The rover leaves location loc1
when it starts navigating toward another location, i.e. loc2
or loc3.
Figure 3 illustrates the configuration of the timelines Tpos r1

and Tnavigate r1 loc1 loc2.

exe

at_r1_loc1

Tnavigate_r1_loc2_loc1

Tpos_r1

exeTnavigate_r1_loc3_loc1

exeTnavigate_r1_loc1_loc2

exeTnavigate_r1_loc1_loc3

OR_1

OR_2

Figure 3: Compatibilities for the activity at r1 loc1

Conclusions and Future Work
We have presented a translation from PDDL2.2 into NDDL.
These two languages are significantly different and are used
within two alternative planning paradigms: the classical
framework and the constraint-based temporal framework.
The translation can be easily adapted to be used for sev-
eral constraint-based temporal planners, which can then be
tested on the standard IPC domains and compared with state-
of-the-art planners based on different paradigms. Thus, the
method presented is a general approach for extracting a tem-
poral multi-valued representation based on temporal con-
straints from an action-centered propositional representa-
tion.
Previous work on translating a propositional representa-
tion into a variable/value representation was limited to non-
temporal and non-numeric domains (Helmert 2006b). In
contrast, our translation tackles temporal and numeric do-
mains. Translating such tasks is more complex than han-
dling tasks with instantaneous actions. Particular care is re-
quired to identify invariants since in some cases durative op-
erators can interact so as to invalidate the invariant condi-
tions. We identify mutex conditions on operators that, when

satisfied, protect the invariant conditions.
We have implemented two versions of the translation. The
first tackles exclusively non-numeric and non-temporal do-
mains and uses the MPT formalism as an intermediate step
between PDDL and NDDL. This translation is a direct adap-
tation of the technique presented in (Helmert 2006b). We
have then developed a new version of the translation that
tackles metric and temporal domains, which is the one pre-
sented here.
In future work, we intend to explore the possibility of devel-
oping a translation from NDDL into PDDL. We will identify
increasingly complex subsets of the NDDL language and
translate such subsets into suitable versions of the PDDL
language. It is still unclear whether PDDL can capture the
full expressive power of NDDL. The availability of a transla-
tion from NDDL into PDDL would be valuable since it will
allow us to use and test state-of-the-art planners developed
by the academic community on real-world problem specifi-
cations, and so promote a full sharing of domains and ideas
between the two communities.

Acknowledgements
We thank Malte Helmert for making his code available for
translating PDDL instances into MPT tasks. We thank Pe-
ter Jarvis, Amedeo Cesta and Gabriele Röger for discussion
on translating PDDL2.2 into a constraint-based multi-valued
variable representation. This work was supported in part by
the Automation for Operations (A4O) project of the NASA
Exploration Technology Development Program.

References
Allen, J. 1983. Maintaining knowledge about temporal intervals. Communications of the ACM
26(11):832–843.

Bresina, J.; Jónsson, A.; Morris, P.; and Rajan, K. 2005. Activity planning for the Mars Exploration
Rovers. In Proc. of the Fifteenth International Conference on Automated Planning and Scheduling
(ICAPS-05), 40–49.

Chien, S.; Rabideau, G.; Knight, R.; Sherwood, R.; Engelhardt, B.; Mutz, D.; Estlin, T.; B.Smith;
Fisher, F.; Barret, T.; Stebbins, G.; and Tran, D. 2000. ASPEN - Automated planning and
scheduling for space missions operations. In 6th International Conference on Space Operations
(SpaceOps 2000).

Edelkamp, S., and Helmert, M. 1999. Exhibiting knowledge in planning problems to minimize
state encoding length. In Proc. of the Fifth European Conference on Planning (ECP’99), 135–147.

Edelkamp, S., and Hoffmann, J. 2004. PDDL2.2: The language for the classical part of the 4th
international planning competition. Technical Report 195, Albert-Ludwigs-Universität Freiburg.

Ernst, M.; Millstein, T. D.; and Weld, D. S. 1997. Automatic SAT-compilation of planning
problems. In Proc. of the Fifteen International Joint Conference on Artificial Intelligence (IJCAI-
97), 1169–1177.

Frank, J., and Jónsson, A. 2003. Constraint based attribute and interval planning. Journal of
Constraints 8(4):339–364. Special Issue on Planning.

Fratini, S.; Pecora, F.; and Cesta, A. 2008. Unifying Planning and Scheduling as Timelines in a
Component-Based Perspective. Archives of Control Sciences 18(2):5–45.

Gerevini, A., and Schubert, L. 2000. Discovering state constraints in discoplan: Some new results.
In In Proc. of the 17th National Conference on Artificial Intelligence (AAAI-2000), 761–767.

Ghallab, M., and Laruelle, H. 1994. Representation and control in IxTeT, a temporal planner. In
Proc. of the Second International Conference on Artificial Intelligence Planning Systems (AIPS-
94), 61–67. AAAI Press.

Haas, A. 1987. The case for domain specific frame axioms. In The Frame Problem in Artificial
Intelligence: Proc. of the 1987 Workshop, 343–348. Morgan Kaufmann Publishers, Inc.

Helmert, M. 2006a. The Fast Downward planning system. Journal of Artificial Intelligence
Research 26:191–246.

Helmert, M. 2006b. Solving Planning Tasks in Theory and Practice. Ph.D. Dissertation, University
of Freiburg.

Smith, D., and Jónsson, A. 2002. The logic of reachability. In Proc. of the Sixth International
Conference on AI Planning and Scheduling (AIPS-02), 379–387.

Smith, D.; Frank, J.; and Jónsson, A. 2000. Bridging the Gap Between Planning and Scheduling.
Knowledge Engineering Review 15(1):61–94.


