Velocity Tuning in Currents Using Constraint Logic Programming

Michaél Soulignac-**

* THALES Aerospace
2 Avenue Gay Lussac
78852 Elancourt, FRANCE
{firstnane.l astnane}@r .t hal esgroup. com

Abstract

Because of its NP-hardness, motion planning among
moving obstacles is commonly divided into two tasks:
path planning and velocity tuning. The corresponding
algorithms are very efficient but ignore weather condi-
tions, in particular the presence of currents. However,
when vehicles are small or slow, the impact of currents
becomes significant and cannot be neglected. Path plan-
ning techniques have been adapted to handle currents,
but it is not the case of velocity tuning. That is why
we propose here a new approach, based on Constraint
Logic Programming (CLP). We show that the use of
CLP is both computationally efficient and flexible. It
allows to easily integrate additional constraints, espe-
cially time-varying currents.

Introduction

Mobile robots are more and more used to collect data in
hostile or hardly accessible areas. For physical or strate-

Patrick Taillibert *

Michel Rueher*

** Nice Sophia Antipolis University
I3S/CNRS, BP 145

06903 Sophia Antipolis, FRANCE
rueher @ssi . fr

ignoring currents can lead to incorrect or incomplete plan-
ners. Such planners may return a physically infeasible, path
or no path at all, even if a valid path exists.

Some extensions have been developed in the field of path
planning, but currents remain neglected during velocity tu
ing.

That is why we propose here a new velocity tuning ap-
proach, based on Constraint Logic Programming (CLP). Our
experimental results show that this approach is compuiatio
ally efficient. Moreover, it offers a flexible framework, al-
lowing to easily integrate other constraints, such as time-
varying currents or temporal constraints.

This paper is organized as follows. Section | recalls the
existing planning methods. Section Il formalizes the prob-
lem of velocity tuning in presence of currents. Section Ill
introduces our modeling of this problem in terms of a Con-
straint Satisfaction Problem (CSP) on finite domains. Sec-
tion IV proposes examples of additional constraints. Fynal
section V provides some experimental results, obtained on
real wind charts.

gic reasons, these robots may not be able to receive directly
orders from a headquarter in real-time. Thus, they have to
embed their own motion planner. Because the environment
is often changing or unknown, this planner has to be very

[. Motion planning in currents

reactive.

Motion planning is yet a complex task, answering to two

The decomposition of motion planning into path planning
and velocity tuning tasks was first introduced in (Kant &
Zucker 1986). This decomposition is widely used in robotics

questions simultaneously: where should the robot be, and because both tasks can be done in a polynomial time.

when? It is known to be a NP-hard problem (Canny 1988).
That is to say, the computation time grows exponentially
with the number of obstacles.

However, it has to be noticed that it is source of incom-
pleteness: the path planning phase may generate a path
which is unsolvable in the velocity tuning phase.

To guarantee a reasonable response time, motion planning1. Path planning

is commonly divided into two simpler tasks: (1path plan-
ningtask, dealing with the questiavhere and (2) avelocity
tuningtask, dealing witlhwhen

Path planning methods consist in finding a curve between
a start pointA and a goal point3, avoiding static obsta-
clesO" (generally polygonal-shaped). They can be divided

Algorithms associated to these two tasks are generally into four categories: (1) decomposition methods, (2) poten
based on simple assumptions. For instance, obstacles aretial fields methods, (3) probabilistic methods, and (4) meta
often modeled as polygonal-shaped entities, moving at con- heuristics.

stant velocity. Data about weather, in particular aboutdqgi
water) currents, are usually ignored.

However, in the case of Unmanned Air Vehicles (UAVS)
or Autonomous Underwater Vehicles (AUVs), which may
be small or slow, the impact of currents is significant. So,

Graph decomposition methods (fig. 1a) are based on a
discretization of the environment into elementary ertitie
(generally cells or line segments). These entities (plus
and B) are then modeled as nodes of a graphThe initial
-i.e. concrete- path planning problem is thus reformulated

into an abstract one: find the shortest path from ndde
nodeB in G. To do this, classical search techniques are ap-
plied, such as the well-knowA* algorithm (Nilsson 1969)

or one of its numerous variants.

Potential field methods (fig. 1b) (Khatib 1986) consider
the robot as a particle under the influence of a potential field
U, obtained by adding two types of elementary fields: (a) an
attractive fieldU,;, associated t@ and (b) repulsive fields
U¢.,, associated to obstaclé¥. The pointB corresponds
to the global minimum of the functiobi. The path between
A andB can thus be computed by applying gradient descent
techniques irU values, starting fronA.

Probabilistic methods (fig. 1c) (LaValle 1998) are based
on a random sampling of the environment. These meth-
ods are a particular case of decomposition methods: random
samples are used as elementary entities, linked to theie clo
neighbors, and modeled by a graph. Probabilistic RoadMap
(PRM) and Rapid Random Trees (RRT) are the most famous
methods in this category.

Metaheuristics refer to a class of algorithms which sim-
ulate natural processes (fig. 1d) (Zhao & Yan 2005). The
three main metaheuristics applied to path planning are: (a)
genetic algorithms, inspired by the theory of evolution-pro
posed by Darwin; (b) particle swarm optimization, inspired
by social relationships of bird flocking or fish schooling) (c
ant colony optimization, inspired by the behavior of ants in
finding paths from the colony to food.

(©)

Figure 1: Paths (in light grey) obtained by the following
methods: (a)A* algorithm on regular cells; (b) potential
fields; (¢) RRT; (d) particle swarm optimization.

All these methods have two common characteristics: (1)
the costr (M, N) between two pointd/ and N represents
the Euclidean distanc& M, N) and (2) the computed path
is made up of successive line segments. This last property is
the base of our modeling, described in section Il

However, in presence of currents, the fastest path is not
necessary the shortest. To illustrate, let us consider & swi
the fastest way to linkd and B is more circle-shaped than
linear.

In this context, new cost functions have been proposed,
to make a compromise between following the currents and
minimizing the traveled distance (Garau, Alvarez, & Oliver
2005)(Petrest al. 2007).

2. Velocity tuning

The existing velocity tuning approaches generally work in
a 2-D space-time. The first dimensidre [0, L] (whereL
is the length of the path) represents the curvilinear abacis
on the path. The second onec [0,7] (whereT is the
maximal arrival time), the elapsed time since departure. In
this space-time:

e Each point of the path is represented by a column. In
particular, start and goal points are represented by the ex-
treme left and right columns.

e Each moving obstacl@’ generates a set @drbidden sur-
facesS’ (often only one). These surfaces contains all cou-
ples(l,t) leading to a collision between the robot a@dl
For instance, in figure 2b, the abscigsa 10 is forbidden
between: = 10 andt = 15.

B
o
A -
* 02

A

@)

A

|
o>/

o1

Figure 2: (a) path of fig. 1d, adding two moving obstacles;
(b) the corresponding 2-D space-time.

Once the space-time is built, the initial velocity tuning
problem can be reformulated into a path planning problem in
this space-time. However, this space-time has specific con-
straints, notably due to time monotony or velocity bounds.
Therefore, specific methods have been applied, like: (1)
adapted decomposition methods, (2) B-spline optimization
and (3) the broken lines algorithm.

As explained before, decomposition methods (figure 3a)
divide the space-time into elementary entities and apply
graph search techniques. Since a lot of paths are temporally
equivalent (they arrive at the same time), an appropriage co
is necessary. For instance, (Ju, Liu, & Hwang 2002) used
a composite cost function balancing the arrival time and the
velocity variations.

B-spline optimization techniques (figure 3b) consist in
representing the optimal trajectory in the space-time by a B
spline function (Borrow 1988), parameterized by some con-
trol points K. Graphically, the pointg<? locally attracts
the curve of the B-spline. Their position is computed in or-
der to minimize the mean travel time, using interior point
techniques.

The broken lines algorithm (figure 3c) (Soulignac & Tail-
libert 2006) tries to linkA and B using a unique velocity,
i.e. a unique line segment in the space-time. At each inter-
section of the line with a surfacg’, a velocity variation is
introduced, by "breaking" this line into two parts. To sum
up, this algorithm tries first to arrive as earlier as possibl

and then to minimize velocity variations.

i

©

O
t
T—»I Kl@L

@

Figure 3: Paths (in light grey) obtained in the space-time of
fig. 2 by the following methods: (a) visibility graph; (b) B-
spline optimization with 4 control points; (c) broken lines
algorithm.

All these methods neglect the influence of currents. This
is acceptable in presence of weak currents, since trajector
tracking techniques such as (Park, Deyst, & How 2004) re-
main applicable to dynamically adjust the robot’s velacity

However, when currents become strong, the robot is nei-
ther guaranteed to stay on its path, nor to respect the time
line computed by the velocity tuning algorithm. That is why
we propose a new approach, based on CLP techniques.

Il. Problem Statement
1. Informal description

A punctual robot is moving on a pre-computed patfrom

a start sited to a goal siteB, in a planar environment con-
taining moving obstacles and currents, with a bounded ve-
locity.

It has to minimize its arrival time aB, with respect to the
following constraints: (1) obstacle avoidance and (2) cur-
rents handling. Data about obstacles and currents are known
in advance.

1.

y

Otbx

Figure 4: A velocity tuning problem with currents.

Each moving obstacl@’ is a disk of radius-. This disk
corresponds to a punctual mobile surrounded by a circular
safety zone. The position of the mobile -i.e. the center of
the disk- is given at every timgby p’. Note that contrary to
most approaches, there is no restriction on the fungtion

Finally, the current can be seen as a 2-D vector field
known either by measurement or forecasting. Thus, the
data aboufc are, by nature, discontinuous, i.e. defined on
the nodes of a mesh (not necessary regular), calleant
nodes The mean distance between current nodes may cor-
respond to the resolution of measures or the precision of the
forecast model.

The robot’s velocity vector relative to the frami
(ground speed) is denoted, and its velocity vector rela-
tive to the currentc’ (current speed) is denotéd.

It is important to understand that only depends on the
engine command, whereas is impacted by the current .
Indeed applylng the velocity composition law, the quéaedit

¢ andw are linked by the following relation:

—

v=w+7C (1)
Our problem consists in finding a timing functien
o:MePw—tel0,T] 2

minimizing the arrival timelz = o(B), with respect to
the following constraints:

maximal velocity: the modulus of the robot'’s velocity-rel
ative to the current, denoted, is smaller thanw,,, ..
Note that the boundv,,.,, only depends on the robot’s
engine capabilities;

o 2. obstacles avoidance: the robot has to avoid a set of
2. Form_allzatlon. | moving obstacles;
The environment is modeled by a 2-D Euclidean spce 3 cyrents handling: the robot has to take into account dis-

with a frame of referencé&® = (0,z,y). In R, the coor-
dinates of a vectot/ are denotedu,, u,) and its modulus
u.

The pathP is defined by a lis¥' of n viapoints, denoted
Vi, Each viapoin?/‘ is situated orP at curvilinear abscissa
I*. Two successive viapointd’¢ andV**1) are linked by a
line segment. In other term®,is made up of successive line
segments, which is the result of all path planning methods
presented before.

Note thatP is obtained by using adapted cost functions,
incorporating the influence of currents (otherwise the #elo
ity tuning would be meaningless).

turbances due to the fietd

The quantityT” is calledtime horizon It materializes the

maximal arrival date t@. This upper bound may be due to

the embedded energy or visibility conditions.

1. Velocity tuning using CLP

Velocity tuning using CLP consists in two steps: (1) defin-
ing the constraints describing the velocity tuning problem

and (2) solving the corresponding CSP, with the adequate
search strategies.

1. Data representation

The constraints above are defined on finite domains.
Therefore, the initial data about the environment are refor
mulated using an appropriate representation.

Time representation

The interval|0, T is discretized using a constant step
The values depends on the context. In our applications,
[0,T] contains less than 1000 time steps. For instance,
T = 2 hours and = 10 seconds leads to 720 time steps.

Currents representation

As we explained before, the current is known in a finite
number of points, called current nodes, obtained by mea-
surement or forecasting. Since current nodes alreadydaclu
an error, we think that it is meaningless to finely interpelat
the value of the current between these nodes.

Therefore, we propose the concepEtémentary Current
Area (ECA). An ECA is an polygonal region of the envi-
ronment, in which the current is homogeneous. Each ECA
contains a unigue current node. The value of this node is
extended to the whole area.

ECAs are computed by building the Voronoi diagram
(Fortune 1986) around the current nodes. This diagram is

made up of line segments which are equidistant to the nodes.

Itis illustrated in figure 5, for uniform and non-uniform eis
tributions.

L,

(@ (b)
Figure 5: lllustration of ECAs for two distributions of cur-
rent nodes (grey arrows): (a) uniform and (b) non-uniform.

Artificial viapoints

Artificial viapointsare additional viapoints guaranteeing
that the current is constant between two successive via-
points. They are obtained by intersecting the pAtfand
the borders of ECAs. Since bothand borders are made up
of line segments, these intersections can be computed.easil

The initial list V' of viapoints is thus enlarged intg’,
containingn’ > n elements. The current between two suc-
—

cessive viapoint¥? andVi*+! is denoted:’ .
2. Constraints definition

In this part, we show how the velocity tuning problem
can be described thanks to two types of constraints: (a) con-
straints related to currents and (b) constraints relatetbio
ing obstacles avoidance.

9>
|
\

Figure 6: Atrtificial viapoints (white dots) obtained for the
Voronoi diagram of fig. 5a. These viapoints are added to the
initial viapoints (black dots).

Note that the currents are constant in time here (time-
varying currents are considered in section V).

a. Constraints related to currents

—

Let us consider the straight line mov&, between the
viapointsV? = (z%,y*) andVit! = ('t 41, For this
move, we define:

-
e ¢’ the velocity of the current
-
e 0" the robot’s velocity relative to the frame

— . . —
e w' the robot’s velocity relative te’

As explamed in equation]ul andw are linked byv
w4 ¢t Moreover since we want to impose the m@&?eto
the robot,v and dl are collinear.

Thus, if we denote&? the result of translatingy™® by vec-
— —
tor ¢’, we can build the vectos® by intersecting:

. —
e The line£?, of direction vectord*
e The circleC?, of centerC’ and radiusy’

If I andI} are the intersections obtairfeghossibly con-
— — — —

founded),v’ can be either the vectar, = V'I; or v}
"
V4. This is illustrated in figure 7.

— .
Figure 7: Different possibilities fov®, for w* < w,,qz.

INote that we are sure that at least one intersection exists, be-
cause the pati® is supposed to be entirely feasible.

The radiusw® = w4, allows to compute the minimal
—

and maximal modulus for’, denoted? ;,, andv? .
7 T 0
vmin Hlln(’Ul, UZ) (3)
U;nagc - HlaX(’Ui, U%)

— -

If v andd’ are not in the same direction, the robot is not
moving toward the next viapoirit‘+!, but at the opposite
(backward move). In this case, to force a forward move, the
modulusv; is replaced by 0 in equation 3.

These results allow us to describe the robot’s cinematic in
presence of currents:

Vie[l,n']: tie0,T] (Dy;)
Ui € [Ufnm’ Uiﬁnaa:] (D’U’L)
ti — ti—l + dl/vl (Ctiﬂ)i)

andv? are known and

max

Note that the quantitie&, v
constant:

i
min

e The distancel is deduced from position of viapoints’
andVitt

e The velocity bounds?

_ ! in @ndo?
equation 3.

max

are computed using

~Therefore, the only variables in the above equations are
t" andv’ (both scalar).

b. Constraints related to moving obstacles avoidance

As explained in section 1.2, moving obstacles can be rep-
resented in a 2-D space-tint& ¢), which [represents the
curvilinear abscissa on the pafh andt the elapsed time
since departure.

In this space-time, each moving obsta€lé generates a
set offorbidden surfacess’, containing all forbidden cou-
ples(l,t), leading to a collision between the robot ané.

Mi+1
/P
7 R Vi
1 (l
10F=--"-"=--"

a ~ _

Vi Vj MIT [~
) S Vi+l
3f---

t 2""12’
0 li j L 0 li li+1 L

Figure 8: (a) forbidden times for two viapoint&’ andV7:
F' =[0,3] andF7 = [2,4] U [10, 14]; (b) impossible move
between two successive viapoidts' and M1 M ¢ Fi
and M+ ¢ Fitl but[M?, M+ intersects the forbidden

surfacesS?2.

Therefore, for each viapoiit?, we can define the interval
of forbidden timesdenotedr. This interval has the follow-
ing meaning: ift* € F*, then the robot collides a moving
obstacle at viapoint?. F is computed by intersecting all
surfacesS7 with the linel = I°.

As shown in figure 8aF" is an union of subintervals
F{ U F; U ..U F., wheres' denotes the number of
intersected surfaces.

A first idea to model obstacle avoidance would consist in
using the simple constraint:

Vit ¢ F 4)
However, this constraint is too weak to avoid collisions in
all cases.

To illustrate this point, let us consider two successive
viapoints V* and V!, In the space-time, the visit of
these viapoints is symbolized by two poinf&‘ and
M. Even if both points respect equation 4, it is not
necessary the case for all intermediate points lying on
the line segmenfM®, M*1]. Indeed, this line segment
can intersect some forbidden surfaces, as shown in figure 8b.

This problem appears when a forbidden surface is by-
passed by one side at poihf’ and by the other side at point
M1, In the example of figure 8k\/* is above the surface
Ss, whereas\/+! is below, which leads to an intersection.

A simple way to avoid this situation is to force all the
points of the space-time to be on the same side of each
forbidden surfaces. This is modeled by the following con-
straints:

Vie[l,n]: F'=[t;,t]U...Ultg, b

Vj e [1,Si] : bj ELO, 1} (Dbj)
t* 2tj _T'(l_bj) (Ctli,bj
t'<tj+T-b b

The binary variables; allow to represent how the forbid-
den surfaces; is by-passed. Indeedl; = 1 if the point M*
is aboveS, elseb; = 0.

Since these variablds are shared by all points/‘, they
are forced to by-pass forbidden surfaces in the same way.
Combining the variables; and7" allows to avoid the use of
reification techniques: if one constraint is true, the oiser
naturally disabled (sincei : ¢* < T).
2. CSP solving
a. CSP formulation

A CSP is commonly described as a tripleX, D, C),
where:

e X = U{x'} is a set of variables,

e D =1I D'is a set of domains associatedXo(D’ repre-
sents the domain af"),

e C = U{C"} is a set of constraints on elementsXf

Using these notations, our velocity tuning problem can be
modeled by the following CSP:
o X = U{v',t',b;}, i € [L,n'], j € [1,s'] wheren' is
the number of viapoints (including artificial ones) asid
the number of intersected forbidden surfaces by the line
1 = 1" in the space-time,

[D:Dt7 XDvi XDhj,

o C=Cl iU Ctli,bj U Ctgi.,bj'

This CSP has the following properties:

e Itcontains2n’ + max;{s’} variables and’ +2 max; {s'}
constraints. In our applications;, < 50 andmax;{s'} <
10.

o All constraints are linedr
e Variables are defined on finite domains, with the follow-
ing sizes:
— |Dy;| =~ 1000 (number of time steps)
— | Dyi| & 100 (number of different velocities)
— |Dy;| = 2 (binary variables)

b. Enumeration strategy

Since many solutions are temporally equivalent, we chose
the following enumeration strategy:

e Variables orderingb;, thent?, thenv® (in the decreasing
order ofi).

e Values ordering:

— increasing values fo; (to by-pass the forbidden sur-
face by the bottom first)

— increasing values faf (to determine the first valid time
steps)

— decreasing values fef’ (because’ ~ O(1/t%))

With this strategy, we try to visit the viapoints as earlier
as possible, from the last viapoint to the first viapoint.

The variables; allow to roughly identify a first solution,
by determining by which side the forbidden surfaces are by-
passed. Then, the variablésand v’ refine this solution.
Note that the enumeration mainly concern the variables
because a value of imposes a value for.

IV. Extension to other constraints

Modeling the velocity tuning problem as a CSP allows
to easily integrate other constraints. This section gives t
examples: (1) time-varying currents and (2) temporal con-
straints.

1. Time-varying currents

In a forecast context, values of currents are valid during
a time intervalAT, depending on the application. For in-
stance, in maritime applicationd,T" represents a few hours.

As for ECAs, we find that it is useless to interpolate these
data between two intervals. We thus consider that a time-
varying current is defined by successive levels, as shown in
figure 9.

@

t=10

t=5

(b)

t,

Figure 9: A time-varying current. (a) graph ef andc,
functions, defined by levels; (b) the corresponding vejocit
vector.

-
Let us consider a current', between viapointd’* and
Vit1 changingk times in the interval0, 7). This interval is
thus splitintok+1 subintervalsio, 1], [t1, ta], ..., [tk—1, tk],
[tx, T]. In each subintervat;, t; 1], the value of the current
—

is constant, denoteqi .

The influence of this time-varying current can be mod-
eled in our CSP by using some binary variables. Indeed, the
equation(D,;) is replaced by the following constraints:

Vjiellk—1]: b €{0,1}
t' >t -b ()
tt < (1 — bj) . T+tj+1
SiTib =1 (6)
. kil .

vt > bj : ’U:nin,j (7)

j=1

k—1
Ui S Z bj ’ /U;;n,am,j (8)

j=1

The binary variable$; allow to identify the subinterval
[t;,t;+1] in which lies the variable’. In other termsb; = 1
if and only if ¢’ € [t;,t;11]. This is modeled by equations 5
and 6.

Then, equations 7 and 8 allows to impose velocity bounds
onv’ according to this subinterval. Thatiszife [¢;,¢;44],
thenv’ € (v}, v . The values of!

min,j

andv?

max,j
—

are computed as explained in part lll.1a, substitutihdpy
—

maz.]
1n,j? Ymax,j

c;-.
This model is simple but rough. More precisely, it ignores
current changes between two successive viapoints. There-
fore, an error is potentially made on velocity bounds. This

error remain negligible if the distaneé between viapoints
is small.

2pfter the change of variable’’ = 1/v".

robot oiterin

y fwind
L.,

00003030 - - - -EF - - - - X

fwind

obstacle

g - - - - X g----%

\ wind

Q@@

\ wind \ wind

(a) t=[0:00,2:40] (b) t=[2:40,6:00]

(c) t=[6:00,9:00]

(d) t=[9:00,12:00] (e) t=[12:00,20:00]

Figure 10: Complete example: (a)(b) moving obstacle avaida(c) effect of a current changetat 6min, (d) loitering during
D = 3min (in black square) and (e) effect of a time window, impgdine arrival at = 20min.

If it is not the cased’ can be reduced by artificially sub-
dividing ECAs. By this way, the size of ECAs is decreased
and the number of artificial viapoints increased. Therefore
viapoints will be globally closer from each other.

2. Temporal constraints

In this section, we explain how to temporally constrain a
viapoint V. Especially, we study two temporal constraints
particularly mentioned in literature: (a) time windows and
(b) loitering.

a. Time windows

A time window W' is a couple(w’, w?), specifying the
minimum datew? and the maximum date’ for the robot to
visit the viapointl*.

In a military context, by example, time windows may cor-
respond to strategic data, such as: "the target will bié‘at
betweerw® andw?".

Modeling of W is quite natural in our CSP, leading to the
single constraint:

the [w', w]
b. Loitering

The concept of loitering consists in forcing the robot to
wait at viapointV? for a given durationD?. From a practi-
cal point of view,D? may correspond to the minimum time
required to perform a task &t’.

Here, our goal does not consist in choosing the best value

of D?, but choosing the best beginning tirtidor the loiter-
ing task.

T
time window —,
wind change
loitering
obstacle
avpidance
t
o
T—»l L

Figure 11: The space-time corresponding to fig. 10

1. lllustrative example

We illustrate here all the constraints presented before
through a complete example containing: a moving obsta-
cle, a current change, a loitering task and a time window on
arrival.

In this example, simple instances of the constraints have
been chosen: (1) the current is uniform on the map and (2)
the moving obstacle performs a straight-line move at con-
stant velocity.

The result obtained by our approach is depicted in figures
10 and 11. Figure 10 shows the different phases of velocity
tuning in the initial environment, and figure 11 in the space-
time.

2. Performance evaluation

In this part, we evaluate experimentally the impact of cur-

This choice seems to be hard, because it depends both onrent changes and moving obstacles on the computation time,
the moving obstacles and the current changes. However, it in the following conditions:

can be simply modeled in our CSP, replacing the constraint

(Ctivi) by :

t' =t dfv’ + D' 9)

V. Experimental results

This section has two objectives: (1) illustrating our ap-

proach and (2) evaluating its performance.

e Hardware: Our approach has been run on.@Ghz PC
with 512M o of RAM, using thec! pf d library (Carlsson,
Ottosson, & Carlson 1997), provided by Sicstus.

e Current data: All data are issued from real wind charts,
collected daily during three months on Meteo France
websité (leading to about 90 different charts). The wind
changes are simulated as follows: to simulatevind

Shttp://www.meteofrance.com/FR/mer/carteVents.jsp

changes, the intervdl, T is divided intok + 1 equal
subintervals. A different wind chart is used for each
subinterval.

e Moving obstacles As in figure 10, each moving obstacle
goes across the environment by performing a straight-line
move P, — P, at constant velocity. This move is com-
puted in the following way:

1. Two pointsP; and P, are randomly chosen on two bor-
ders of the environment, until an intersectibbetween
the path? and the line segmeiP;, P,] is detected.

2. The velocity of the obstacle is chosen such that the ob-
stacle and the robot are at the same time at pbint

The resulting computation times are provided in table 1.
Each cell is the mean time obtained on 100 different envi-
ronments.

Table 1: Average computation time (in ms), far moving
obstacles and current changes .

. o] 1 2| 3| 4| 5|66
0 51 9 | 11 | 14 | 17 | 21 | 26
1 7 (12 [13 [16 | 20 | 24 | 27
2 10 14 | 15 | 18 | 23 | 28 | 29
3 16| 21 | 23 | 25 | 34 | 35 | 38
4 51| 55 | 56 | 68 | 66 | 67 | 71
5 80 | 97 | 104 | 106 | 111 | 112 | 114
6 98 | 127 | 147 | 152 | 159 | 162 | 166

From a strictly qualitative point of view, we can observe
that the global computation time remains reasonable (a few
milliseconds) even in complex environments. Therefore, we
think that our approach is potentially usable in on-boards
planners.

A theoretical study of the time complexity could confirm
these results. In particular, it could be interesting todify
ferent enumeration strategies and evaluate their impact on
computational performances.

Conclusion

In this paper, we proposed a velocity tuning approach,
based on Constraint Logic Programming (CLP). At our
knowledge, this approach is the first able to handle cur-
rents. Moreover, this approach is computationally efficien
and flexible.

Indeed, we explained that modeling the velocity tuning
problem into a Constraint Satisfaction Problem (CSP) al-
lows to easily incorporate more complex constraints, iR par
ticular time-varying currents. Moreover, our experiments
showed the velocity tuning task could be performed in a
polynomial time. It means that our approach is potentially
usable in on-board planners.

Further works will investigate the coordination of multi-
ple robots sharing the same environment. In particular, we
will study how additional constraints could allow the coor-
dination of fleets of UAVs (Unmanned Air Vehicles).

Acknowledgments

The authors would like to thank Paul-Edouard Marson,
Maxime Chivet, Nicolas Vidal and Katia Potiron for their
careful reading of this paper.

References

Borrow, J. E. 1988. Optimal robot path planning using the
minimum-time criterion.Journal of Robotics and Automa-
tion 4:443-450.

Canny, J. 1988The Complexity of Robot Motion Planning
MIT Press.

Carlsson, M.; Ottosson, G.; and Carlson, B. 1997. An
open-ended finite domain constraint solverPhoceedings

of Programming Languages: Implementations, Logics, and
Programs

Fortune, S. 1986. A sweepline algorithm for voronoi dia-
grams. InProceedings of the second annual symposium on
Computational geomet13—-322.

Garau, B.; Alvarez, A.; and Oliver, G. 2005. Path plan-
ning of autonomous underwater vehicles in current fields
with complex spatial variability: an* approach. IrPro-
ceedings of the International Conference on Robotics and
Automation 194-198.

Ju, M.-Y.; Liu, J.-H.; and Hwang, K.-S. 2002. Real-
time velocity alteration strategy for collision-free &afory
planning of two articulated robotsJournal of Intelligent
and Robotic Systen33:167-186.

Kant, K., and Zucker, S. W. 1986. Toward efficient trajec-
tory planning: the path-velocity decompositioFhe Inter-
national Journal of Robotics Researbtv2—89.

Khatib, O. 1986. Real-time obstacle avoidance for manip-
ulators and mobile robots. IRroceedings of the Interna-
tional Conference on Robotics and Automatigolume 2,
500-5005.

LaValle, S. M. 1998. Rapidly-exploring random trees: A
new tool for path planningTR 98-11, Computer Science
Dept., lowa State Univ

Nilsson, N. J. 1969. A mobile automation: An applica-
tion of artificial intelligence techniquesProceedings of
the International Joint Conference on Artifical Intelligan
509-520.

Park, S.; Deyst, J.; and How, J. 2004. A new nonlinear
guidance logic for trajectory tracking?roceedings of the
AIAA Guidance, Navigation and Control Conference

Petres, C.; Pailhas, Y.; Patron, P.; Petillot, Y.; Evangnrd
Lane, D. 2007. Path planning for autonomous underwater
vehicles.Transactions on Roboti&3:331-341.

Soulignac, M., and Taillibert, P. 2006. Fast trajectorynpla
ning for multiple site surveillance through moving obsta-
cles and wind. IrProceedings of the Workshop of the UK
Planning and Scheduling Special Interest GrpRp—33.

Zhao, Q., and Yan, S. 2005. Collision-free path planning
for mobile robots using chaotic particle swarm optimiza-
tion. In Proceedings of the International Conference on
Advances in Natural Computatipf32—635.

