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Abstract 
We introduce an enhanced weighted graph model whose 
vertices and edges have several attributes that make it 
adaptable to a variety of examination and course time-
tabling scenarios. In addition, some new vertex- and col-
our-selection heuristics arise naturally from this model, 
and our implementation allows for the use and manipula-
tion of various combinations of them along with or sepa-
rate from the classical heuristics that have been used for 
decades. We include a brief description of some prelimi-
nary results for our current implementation and discuss 
the further development and testing of the ideas intro-
duced here. 

Introduction 

Background  
Using graph colouring to model timetabling problems 
has a long history (e.g., Broder 1964, Welsh and Powell 
1967, Wood 1968, Neufeld and Tartar 1974, Brelaz 
1979, Mehta 1981, and Krarup and de Werra 1982). Sev-
eral survey papers have been written on this topic (e.g., 
Schmidt and Strohlein 1980, de Werra 1985, Carter 
1986, Schaerf 1999, Burke, Kingston, and deWerra 
2004, and Qu et al. 2006). 
 
In a standard graph representation for a timetabling prob-
lem, the events to be scheduled are represented by verti-
ces. A constraint (conflict) between two events indicat-
ing that they should be assigned different time slots is 
represented by an edge between the two corresponding 
vertices. In our case, the events are exams (or courses) 
and the constraints might be that some students are en-
rolled in both exams or the same professor is giving both 
courses. Ideally, then, such exams (courses) would be 
assigned different time slots. If we associate each possi-
ble time slot with a different colour, then creating a con-
flict-free timetable is equivalent to constructing a feasi-
ble (or proper or valid) colouring of the vertices of the 
graph, that is, a vertex colouring such that adjacent ver-
tices (two vertices joined by an edge) are assigned dif-
ferent colours. 
 

Given that vertex colouring is NP-Hard (Papadimitriou 
and Steiglitz 1982), the development of heuristics and 
corresponding approximate algorithms, which forfeit the 
guarantee of optimality, has been a central part of the 
research effort. 
 
Two events with a constraint between them are generally 
prohibited from being assigned the same time slot, i.e., 
the edge represents a hard constraint. In some university 
timetabling scenarios, another objective is to minimize 
the number of students that have to take exams close 
together (or courses far apart). This proximity restriction 
is generally regarded as a soft constraint.  
 
The weighted graph model introduced in 1992 (Kiaer 
and Yellen 1992a) was designed to handle timetabling 
instances for which the number of available time slots 
(colours) is smaller than the minimum needed to con-
struct a feasible colouring. (This minimum number is 
called the chromatic number of the graph.) For instance, 
in course timetabling, there is likely to be a limited num-
ber of time slots that can be used during the week, and a 
conflict-free timetable may not exist. If conflicts are un-
avoidable, then a choice must be made on which ones to 
accept.  

Distinguishing among conflicts  
Clearly, certain conflicts are worse than others. If two 
exams (or courses) require the same professor to be pre-
sent or use the same equipment that cannot be shared, 
then those two exams must not be scheduled at the same 
time. On the other hand, if two exams happen to have 
one student in common, then scheduling those two ex-
ams in the same time slot may need to be considered 
acceptable. In fact, there may be situations where the 
distinction between hard and soft constraints becomes 
less clear. For instance, a timetable having a single stu-
dent scheduled to take two exams in the same time slot 
(forcing some special accommodation) may actually be 
preferred to one that has 50 students taking back-to-back 
exams. 
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Scope of Paper 
This paper introduces an extension of the weighted graph 
model of Kiaer and Yellen (1992a). This enhanced 
model holds and keeps track of more of the information 
relevant to the two sometimes opposing objectives –  
minimizing total conflict penalty (or keeping it zero) and 
minimizing total proximity penalty. A natural byproduct 
of this approach is the emergence of some new heuristics 
that appear to hold promise for their use, separately or in 
combination, in fast, one-pass, approximate algorithms.  
 
Such algorithms can prove useful in a number of ways. 
Because solutions are produced quickly, they can be 
used within a flexible, interactive decision-support sys-
tem that can be adapted to a variety of timetabling sce-
narios.  
 
These solutions can also be used as initial solutions in 
local search and improvement based techniques, (e.g., 
Tabu Search, Simulated Annealing, Large Neighborhood 
Search, Case-Based Reasoning), or as upper bounds for a 
branch-and-bound algorithm (Kiaer and Yellen 1992b). 
Recent research has demonstrated that these algorithms, 
when hybridized effectively or integrated with other 
techniques such as meta-heuristics, are highly effective 
on solving timetabling problems (Qu et al. 2006). 
 
Also, because the model lends itself to using various 
combinations of heuristics for vertex and colour selec-
tion, it may prove useful in the context of hyper-
heuristics (Burke et al. 2003) and/or in an evolutionary 
computation approach that might involve automatic gen-
eration of combinations and switching from one combi-
nation to another as the colouring progresses (see Burke 
et al. 2007). 
 
For an up-to-date survey that includes a broad overview 
and extensive bibliography of the research in this area in 
the last ten years (see Qu et al. 2006). 

Description of the Model 
Although we restrict our attention for this paper to ex-
amination timetabling, our model is also applicable to 
course timetabling. Moreover, it incorporates more of the 
problem information at input and keeps track of more 
information pertaining to the partial colouring during the 
colouring process than do existing timetabling models. 
These features led us to the design of some new vertex- 
and colour-selection heuristics, which we introduce in 
this paper. 
  
Each vertex in the graph corresponds to an exam to be 
scheduled and each colour corresponds to a different 
time slot. Accordingly, assigning colour c to vertex v is 
taken to mean that the exam corresponding to v is sched-
uled in the time slot corresponding to c.  
 
We represent various components of a typical instance of 
an Examination Timetabling problem using a weighted 
graph model. Each vertex and each edge are weighted 
with several attributes, some that hold information from 

the problem instance and others that hold and update 
information that helps guide the colouring process. 
 
Associated with each vertex is the set of students who 
must take that exam. Two vertices are joined by an edge, 
and are said to be adjacent or neighbors, if it is undesir-
able to schedule the corresponding exams in the same 
time slot. Each edge carries information that tells us how 
undesirable it would be for the corresponding exams to 
be scheduled in the same time slot or in time slots near 
each other. In particular, each edge has two attributes: 
the set of students taking both exams (intersection sub-
set); and a positive integer indicating the conflict sever-
ity if the exams are scheduled in the same time slot. This 
second attribute is currently tied to the size of the inter-
section subset. However, it can also reflect factors not 
tied to this intersection. For instance, if the same profes-
sor is assigned to both exams, then the severity is likely 
to be set at a high level. 
 
To illustrate our model, suppose there are four available 
time slots, 0, 1, 2, and 3 for five exams, E1, E2, E3, E4, 
and E5. The set of students taking each of the exams is 
as follows: 
 
E1: {a, b, … , j} 
E2: {k, l, … , z} 
E3: {a, e, k} 
E4: {b, c, d, x, y, z} 
E5: {a, c, e, g, i, j} 
 
Each edge in the graph shown in Figure 1 has the subset 
of students enrolled in both exams corresponding to the 
endpoints of that edge. 
 
In general it may be undesirable to assign the same time 
slot (colour) to a given pair of exams for a variety of 
reasons. For this example, however, we consider two 
vertices to be adjacent only if there is at least one student 
taking both exams. 

 
Figure 1: Student intersections for pairs of exams. 
 
For our example, we set the conflict severity equal to 1, 
5, or 25, according to the size of the intersection. In par-
ticular, we set the conflict severity to 1 if the intersection 
size is 1 or 2, to 5 if the intersection size is 3 or 4, and to 
25 if the intersection size is 5 or greater (see Figure 2). 
We emphasize that these thresholds for conflict severity 
are arbitrarily chosen here. If a conflict-free timetable is 
a requirement, as it is in the University of Toronto prob-
lem instances (Carter, Laporte, and Lee 1996), then all 
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conflict severities can simply be set to one since all con-
flicts are regarded as equally bad. 
 
Of course, as mentioned, there will be many situations in 
which the conflict severity depends on other factors. In 
these situations, an edge might exist even when it corre-
sponds to an empty intersection of students. 
 

Figure 2: Additional edge attributes. 
 
The proximity penalty of assigning colours ci  and c j  to 
the endpoints of an edge is a function of how close ci  
and c j  are and the size of the intersection. For the To-
ronto problem instances, where the time slots are simply 
ci = i , i = 0,1,… , the intersection size is multiplied by a 
proximity weight that equals 25-|i-j| when 5  || ≤− ji  and 
0, otherwise. Our implementation uses this same evalua-
tion for comparison purposes with the Toronto bench-
mark results. However, if the time slots are specified by 
a day, a start time, and a duration, then our colour attrib-
utes can easily be modified to allow for the appropriate 
change in the proximity evaluation function. 
 
Our overall objective is to produce colourings (timeta-
bles) with minimum total conflict (zero may be required) 
and minimum total proximity penalty.  
 
Knowing the conflict severity and size of the intersection 
for each edge makes it straightforward to keep track of 
the two kinds of penalties as the colouring progresses. 
When a vertex gets coloured c, that colour becomes less 
desirable (or forbidden) to its neighbors, as do colours in 
proximity with colour c.  
 
Our model keeps track of these two kinds of colour un-
desirability as follows. Each vertex v has a colour-
penalties vector that indicates the undesirability of as-
signing each colour to that vertex with respect to conflict 
penalty and proximity penalty. That is, the component of 
the colour penalties vector corresponding to colour c has 
two values, one is the conflict penalty incurred if v is 
coloured c, and the other is the resulting proximity pen-
alty. 
 
Using our example and a simplified proximity function, 
we illustrate how the colour-penalties vectors change as 
the graph is coloured. Suppose that any two colours i and 
j of the colours 0, 1, 2, and 3 are within proximity if they 
differ by 1, then the proximity penalty incurred when the 
colours of the endpoints of an edge differ by 1 equals the 
intersection size. Suppose further that the colour-

penalties vectors for all of the vertices are initialized 
with [0, 0] for all of their colour components. Figure 3 
shows the result of colouring vertex E1 with colour 1.  
 
 

Figure 3: Colour-penalties vectors after E1 is coloured 1. 
 
There may be other factors that make certain time slots 
undesirable for an individual exam. For instance, if pro-
fessor X is assigned to exam A and cannot be on campus 
before noon. So any colour corresponding to a morning 
time slot for exam A would be given a prohibitively 
large conflict penalty value before the colouring begins.  
 
As each vertex is coloured, its adjacent vertices’ colour- 
penalties vectors are updated. The ease with which we 
are able to keep track of both hard and soft constraints as 
the colouring progresses creates new opportunities for 
the use of more sophisticated heuristics tied to this read-
ily accessible information.  

The Basic Approximate Algorithm  
Our basic algorithm consists of two steps, select a vertex 
and then colour that vertex. We repeat these two steps 
until all vertices are coloured. Notice that while our 
model will easily accommodate more computation-
intensive algorithms involving backtracking, local im-
provement, etc., we chose for this first phase of our re-
search to concentrate on producing fast, essentially one-
pass colourings.  

Summary of the Model Features and Parameters 
In preparation for the next section’s discussion of heuris-
tics, we list the key features and parameters on which the 
heuristics are based. The two edge attributes, conflict 
severity and intersection size, give rise to two different 
versions of the traditional concept of weighted degree of 
a vertex. 
 
• Conflict severity (of an edge) –  a measure of how 

undesirable it is to assign the same colour to both 
endpoints of the edge. In general, this would depend 
on several factors, and it could be set interactively by 
the end-user. 

• Intersection size (of an edge) –  the size of the inter-
section of the two sets corresponding to the endpoints 
of the edge. In exam timetabling, this is simply the 
number of students taking both exams. 

• Conflict degree (of a vertex) –  the sum of the conflict 
severities of the edges incident on the vertex.  
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• Intersect degree (of a vertex) –  the sum of the inter-
section sizes of the edges incident on the vertex. 

• Bad-conflict edge –  an edge whose conflict severity 
exceeds a specified threshold value. If a conflict-free 
timetable (i.e., a feasible colouring) is required, then 
this threshold is set to zero, as we do for the Toronto 
problem instances. 

• Bad-intersect edge –  an edge whose intersection size 
exceeds a specified threshold. In our current imple-
mentation, this threshold is a function of the average 
of the intersection sizes of all edges; specifically, we 
use the average intersection size times some constant 
multiplier. 

• Conflict penalty (for the colour assignment of a ver-
tex) –  a measure of how undesirable it is to assign 
that colour to the vertex. This will depend on the col-
our assignments of the vertex’s neighbors and the 
conflict severities of the relevant edges, but it could 
also depend on other factors (e.g., professor, room, or 
equipment constraints). 

• Proximity (of two colours) –  a measure of how close 
together (in the case of exam timetabling) or spread 
apart (for course timetabling) the two colours are. 
This is often a secondary objective to optimize in 
school timetabling and is typically referred to as a 
soft constraint. 

• Proximity penalty (for the colour assignment of a 
vertex) –  the sum of the proximity penalties resulting 
from that colour assignment and the colour assign-
ments of all neighbors of that vertex (determined by 
the function described immediately following Figure 
2). 

• Colour-penalties vector (of a vertex) –  indicates for 
each colour the conflict penalty and proximity pen-
alty of assigning that colour to the vertex. When a 
vertex is coloured, the colour-penalties vector of each 
of that vertex’s neighbors must be updated accord-
ingly. 

• Bad-conflict colour (for a vertex) –  a colour whose 
conflict penalty for that vertex exceeds some speci-
fied threshold (also set to zero for the Toronto in-
stances since feasible colourings are required).  

• Bad-proximity colour (for a vertex) –  a colour whose 
proximity penalty for that vertex exceeds some speci-
fied threshold. Similar to the bad-intersect-edge 
threshold, we use average intersection size times a 
(possibly different) constant multiplier. 

 
The thresholds for badness are easily adaptable to the 
requirements of the problem, and, in a decision support 
system, they could be specified by the end-user interac-
tively. Part of this ongoing research is to study the effect 
that the values of the thresholds have on the quality of 
the solution and to identify features of a problem in-
stance that determine that effect.  

Heuristics 
Vertex selection and color selection are the two key 
components of our simple, constructive algorithm, and 
our strategies for both are flexible in the varied ways 
they use new heuristics and variations of the traditional 

ones.  Our current implementation uses 10 ‘primitive’ 
heuristics for selecting the next vertex to be coloured and 
four to select a colour for that vertex. 

Ten Primitive Vertex-Selection Heuristics 
Our colouring strategies are based on the classical and 
intuitive idea that the most troublesome vertices should 
be coloured first. Some of the commonly used heuristics 
based on this idea have been largest saturated degree, 
largest degree, and largest weighted degree. 
 
We use variations of these, and we introduce some new 
ones that focus more on the number of bad edges and the 
number of bad colours. Some of these new heuristics 
rely on the information kept in each vertex’s colour-
penalties vector, while others use information tied to the 
edges incident on each vertex. The primitive heuristics 
on which our vertex selectors are based are: 
 
0. Maximum number of bad-conflict edges to uncol-

oured neighbors –  vertices having the most bad-
conflict edges among their incident edges to uncol-
oured neighbors. 

1. Maximum number of bad-conflict colours –  vertices 
having the most bad-conflict colours. For the Toronto 
data set, this heuristic reduces to largest saturation 
degree. 

2. Maximum number of bad-proximity colours –  verti-
ces having the most bad-proximity colours. 

3. Maximum conflict sum –  vertices with the largest sum 
of their conflict colour penalties. 

4. Maximum proximity sum –  vertices with the largest 
sum of their proximity colour penalties. 

5. Maximum conflict degree to uncoloured neighbors –  
vertices whose incident edges to uncoloured 
neighbors have the largest sum of the conflict sever-
ities. 

6. Maximum number of bad-conflict edges –  vertices 
having the most bad-conflict edges among their inci-
dent edges. For the Toronto data set, this reduces to 
largest degree (since every edge is considered a bad-
conflict edge). 

7. Maximum number of bad-intersect edges to uncol-
oured neighbors –  vertices having the most bad-
intersect edges among their incident edges to uncol-
oured neighbors.  

8. Maximum intersect degree to uncoloured neighbors –  
vertices whose incident edges to uncoloured 
neighbors have the largest sum of the intersection 
sizes. 

9. Maximum number of bad colours –  a consolidation of 
heuristics 1 and 2; a bad colour is one whose conflict 
penalty or whose proximity penalty exceeds its re-
spective threshold. 

 
Observe that heuristic 7 may be better at evaluating the 
difficulty of a vertex than its sum counterpart, heuristic 
8. To illustrate, suppose that the edge weights in Figure 4 
represent intersection size and that all neighbors of verti-
ces v1 and v2 are uncoloured. Then heuristic 8 would 
select v1, whereas, for any bad-intersect-edge threshold 
greater than one, heuristic 7 would select v2, which ap-



pears to be more difficult. A similar observation can be 
made for heuristic 2 versus heuristic 4.  
 

 
Figure 4: Heuristic 8 would select v1 before v2.  

Four Primitive Colour-Selection Heuristics 
Given a vertex v that has been selected, the primitive 
heuristics that we use to choose a colour for v are: 
 
0. Minimum conflict penalty –  a colour that has mini-

mum conflict penalty for vertex v. 
1. Minimum proximity penalty –  a colour that has mini-

mum proximity penalty for vertex v. 
2. Least bad for neighbors with respect to conflict pen-

alty –  a colour which when assigned to v causes the 
fewest good-to-bad conflict penalty switches for the 
uncoloured neighbors of v. 

3. Least bad for neighbors with respect to proximity 
penalty –  same as heuristic 2 but with respect to 
proximity penalty. 

Combining Heuristics 
One of the innovations of our model and implementation 
is the ability to combine any number of the primitive 
heuristics to form compound vertex selectors and com-
pound colour selectors. A compound vertex selector 
starts with one of the 10 primitive vertex-selection heu-
ristics listed above. Typically there will be several verti-
ces identified as the most difficult with respect to that 
heuristic. This subset of vertices is then narrowed down 
by applying a second primitive heuristic, and so on. 
Thus, a compound vertex selector consists of a sequence 
of primitive heuristics, where all but the first one in the 
sequence, is regarded as a tiebreaker for the ones before 
it. Once the subset of vertices is pared down by the com-
bination of heuristics, some vertex is chosen from the 
subset (typically the first one in the list). Compound col-
our selectors are similarly constructed from the four 
primitive colour-selection heuristics listed above.  

Switching Selectors in the Middle of a Coloring  
Another feature of our model is the ability to switch 
from one combination of heuristics to another at various 
stages of the colouring. Including this feature was moti-
vated by the general observation that the effectiveness of 
a heuristic is likely to change as the colouring pro-
gresses. The primitive vertex-selection heuristic 1 is per-
haps the simplest illustration of this behavior. As we 
mentioned earlier, this heuristic is essentially the tradi-
tional saturation degree, which has proven to be among 
the most preferred heuristics for classical graph colour-
ing. However, applying heuristic 1 in the very early 
stages of a colouring will produce a huge number of ties. 

Moreover, early in a colouring, the only vertices with 
any bad-conflict colours will tend to be those few that 
have neighbors that have already been coloured. Thus, 
until several vertices are coloured, the order in which 
they are selected will tend toward a simple breadth-first 
order and not be an effective predictor of the difficult-to-
colour vertices.  
 
Accordingly, the compound vertex selectors used early 
in the colouring process begin with a primitive heuristic 
based on the weights of incident edges (e.g., heuristic 0). 
Then, after a designated number of vertices have been 
selected and colored, we switch to a compound selector 
that begins with heuristic 1 when it is more likely to be a 
stronger predictor of the difficulty of a vertex. 

Vertex Partitioning 
A final innovation involves a preprocessing step that 
partitions the vertex set and allows us to reduce the 
amount of computation without incurring additional con-
flict penalties. The preprocessing is based on the follow-
ing simple observation. If v is a vertex with degree less 
than k, and v initially has k colours available, then v can 
safely be left until last to colour, since it will always 
have at least one non-conflict colour available, inde-
pendent of how its neighbors are coloured and how 
heavy the edge-weights are between v and its neighbors.  
 
The preprocessing uses an iterative partitioning algo-
rithm that places all vertices whose colouring can be 
done last into the easiest-to-colour subset, say S1. Next, 
for each vertex in S1, we calculate a reduced (quasi-) 
degree of each of its neighbors and put all vertices whose 
reduced degree is less than the number of colours avail-
able into the next-easiest-to-colour subset, S2 . Again, as 
long as a vertex in S2  is coloured before any of its 
neighbors in S1 , it can safely be left uncoloured until its 
other neighbors are coloured. The process continues until 
no additional vertices can be removed from 
the ‘hardest’ subset and the vertices in that last subset of 
the partition must be coloured first using the specified 
selection criteria.  
 
As long as the subsets are done in order (last to first), 
vertices in all subsets except for the hardest one can be 
selected arbitrarily with no possibility of incurring a con-
flict penalty. One simply chooses an available colour, 
whose existence is guaranteed by the construction. Thus, 
in a fairly sparse graph, computation can be considerably 
reduced. Notice that because any penalties that result 
from the colouring occur in the process of colouring the 
hardest cell, any local improvement algorithms could be 
applied only to that set of vertices before moving on to 
colour the rest of the graph, again without incurring ad-
ditional penalties at a later stage.  
 
Another potential advantage to this partitioning strategy 
is that the vertex-selection process after the hardest sub-
set has been coloured can be based solely on proximity 
considerations. 
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Some Preliminary Results 
We present the preliminary results of applying our ap-
proach on the Toronto benchmarks, which is available at 
ftp://ftp.mie.utoronto.ca/pub/carter/testprob/. This data-
set was first introduced in (Carter, Laporte, and Lee 
1996), and since then has been extensively studied using 
a wide range of algorithms in the literature. We set the 
number of colors equal to the number of time slots in the 
Toronto dataset. Due to the fact that two versions of the 
datasets have been circulated under the same name in the 
last ten years, we have renamed the problems in (Qu et 
al. 1996). We used version I of the data in our experi-
ments. 
 
Testing is ongoing and much more needs to be done. 
However, we can make some initial observations. 
 
Table 1 presents the best results we have obtained so far.  
 
Although we haven't fully tested it yet, partitioning ap-
pears to improve solution quality most of the time. Ex-
cept for the “sta83 I” problem instance, all results in col-
umn 2 of the table were produced using the partitioning 
pre-processing. 
 
We obtained them using the following two groups of 
three compound vertex selectors: 
 
 vs1: 0 7 8 1 2 4 | 1 0 2 4 7 8 | 2 4 7 8 
 vs2: 0 7 8 9 4 | 9 0 7 8 2 4 | 2 4 7 8 
 
The numbers refer to the primitive vertex-selection heu-
ristics introduced earlier, and the vertical lines separate 
the three compound selectors that form each group. The 
first compound selector in a group is applied to the hard-
est subset until a designated fraction (the switch fraction) 
of the vertices have been selected and coloured. Then the 
second compound selector is applied to the rest of the 
hardest subset. Finally, the third selector, which consists 
of the four proximity-related primitive heuristics, is ap-
plied to the remaining (non-hard) vertices.  
 
We used the following two groups of two compound 
color selectors: 
 
 cs0: 0 1 2 3 | 0 1 3 
 cs1: 0 2 3 1 | 0 3 1 
 
The first compound selector in each group was applied to 
the entire subset of hardest-to-color vertices, and the 
second one was applied to the rest of the vertices.  
 
As we described earlier, the thresholds for a bad-
proximity color and a bad-intersect edge were set equal 
to the average intersection size times two different con-
stant multipliers. In the table, PC is the multiplier for the 
bad-proximity color, and IE is the one for the bad-
intersect edge.  
 
The Settings column gives the values of the switch frac-
tion and the multipliers, PC and IE, and indicates the 

vertex and color selectors used to produce the given re-
sult. 
 

Problem Best 
results 

Settings 
 switch | PC | IE | vs | cs 

Best 
reported 

car91 I 5.22 1/23 | 90 | 1 | vs2 | cs0 4.97 
car92 I 4.40 1/13 | 126 | 2 | vs2 | cs0 4.32 
ear83 I 39.28 1/5.2 | 115.5 | 1,2 | vs2 | cs0 36.16 
hec92 I 12.35 1/5 | 16 | 1,2 | vs1 | cs0 10.8 
kfu93 I 19.04 1/14 | 134 | 1,2 | vs2 | cs0 14.0 
lse91 12.05 1/32 | 192 | 1,2 | vs2 | cs0 10.5 
rye92 10.21 1/28 | 133.5 | 2 | vs2 | cs0 7.3 
sta83 I 163.05 1/26.5 | 81 | 1 | vs2 | cs1 158.19 
tre92 8.62 1/39 | 207 | 20 | vs2 | cs0 8.38 

uta92 I 3.62 1/16 | 50 | 1,2 | vs1 | cs0 3.36 
ute92 30.60 1/5 | 369 | 1,2 | vs2 | cs1 25.8 

yor83 I 42.05 1/17 | 340 | 2 | vs2 | cs0 39.8 
 
Table 1. Best results with the corresponding settings for To-
ronto benchmarks. 
 
Results from Table 1 demonstrate that for vertex selec-
tion, vs2 outperforms vs1; 10 of the 12 best results were 
achieved using vs2. Changing threshold values for bad-
ness and changing the switch point between the first and 
second compound vertex selector clearly affect the per-
formance of our algorithm.  
 
In Table 1, we also gave the best results reported in the 
literature which used different constructive methods. 
Although our totals for proximity penalty are, on the 
average, 13% worse than the best ones reported, we be-
lieve our approach still holds promise, particularly in 
view of the fact that it is, at the moment, a one-pass algo-
rithm without any backtracking or local improvement. 
The best results reported in the last column were by dif-
ferent approaches cited in the literature. No single algo-
rithm outperformed others on all problems tested here. 
 
In general, these preliminary results indicate that the 
performance of the algorithm is sensitive to the settings 
of the switch points and thresholds. Although we have 
some initial observations on which settings perform bet-
ter on which Toronto problems, the setting of these pa-
rameters in relation to particular problems is not clear. 
More research effort needs to be spent to develop more 
intelligent mechanisms to adaptively choose these set-
tings for different problems. 
 
One of our future directions is to use heuristics to choose 
how to construct the combinations of heuristics. This 
hyper-heuristic approach (see Burke et al. 2003) has 
been applied successfully in a range of scheduling and 
optimization problems, including timetabling. It is well 
known in meta-heuristics research that different heuris-
tics perform better on different problems, or even differ-
ent instances of the same problem. One of the research 
challenges is concerned with the automatic design of 
heuristics in solving a wider range of problems. Devel-
oping an automatic algorithm that can intelligently oper-
ate on a search space of vertex and colour selectors, 
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switch point selectors and threshold settings will become 
one of our primary research efforts in the future. 

Features of the Model Not Being Used Yet 
There are some features of our model not used in our 
current implementation that add to its robustness. 
 
Our model can handle pre-colored vertices, that is, ex-
ams that must be assigned to certain time slots. Further-
more, if certain time slots are forbidden for a particular 
exam (for example, the professor is only available on 
certain days and times), then this can easily be handled 
by setting an initial nonzero penalty for the relevant 
color. 
 
As we noted earlier, each color, which represents a time 
slot, can have attributes associated with fairly general 
information, like start time, duration and/or finish time. 
For this paper we used only a single attribute, an integer 
value between zero and the maximum number of time 
slots in use, since we were testing our implementation on 
the Toronto benchmark problems. 

Ongoing and Future Work 
The robust model presented in this paper can be easily 
extended or integrated with other techniques to develop 
more advanced and powerful algorithms. We give below 
some possible (and ongoing) research directions. 
 
• Study the effects of varying the switch points, the 

badness threshold values, and the use of different 
heuristic combinations. In the context of hyper-
heuristics, there are a number of different search 
spaces to consider: 
o The set of all the combinations of one or more of 

the primitive vertex selectors and of the color-
selectors. 

o For a given group of compound vertex selectors, 
the set of all switch points. 

o For a given group of compound vertex selectors, 
the set of threshold values for badness. 

• In the context of case-based reasoning, test heuristic 
combinations, thresholds, and switch points with ran-
domly generated problem instances that are in the 
Toronto format to see if certain performance patterns 
emerge. Previous work on using case-based reason-
ing (see Burke, Petrovic and Qu, 2006) to intelli-
gently select graph colouring heuristics demonstrated 
that there are significant, wide-ranging possibilities 
for research in knowledge-based heuristic design. 

• Adding a backtracking component to the algorithm is 
likely to lower the total proximity penalty. For in-
stance, when every colour assignment for a selected 
vertex incurs a proximity penalty above some thresh-
old, the algorithm un-colours or re-colours some 
other vertex in order to reduce the selected vertex’s 
proximity penalty. 

• Write an improvement method that takes a given col-
ouring produced by our algorithm and looks for ver-

tices whose colours can be changed to decrease the 
total proximity penalty while maintaining feasibility. 

• With the current implementation, we have not yet 
made full use of the varying conflict severity of 
edges, nor have we allowed any trade-off between 
conflict penalty and proximity penalty. In timetabling 
situations where conflicts must be tolerated, the end-
user might specify that a certain amount of conflict 
penalty is equivalent to a certain amount of proximity 
penalty, e.g., a proximity violation involving 50 stu-
dents equals a conflict involving one student. This 
might lead naturally to a single objective function to 
be minimized. 

• As we mentioned at the start, the model can be 
adapted to a variety of scenarios, in which a number 
of parameters would be specified interactively by the 
end user through an appropriate interface. Follow-up 
work will include building such an interface. 
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