
Planning as a software component: A Report from the trenches∗

Olivier Bartheye and Éric Jacopin
MACCLIA

Crec Saint-Cyr
Écoles de Coëtquidan
F-56381 GUER Cedex

{olivier.bartheye,eric.jacopin}@st-cyr.terre.defense.gouv.fr

An awarded claim While the Pengi paper (AGRE &
CHAPMAN 1987) received a Classic Paper award at
AAAI’2006 (News 2006), to our knowledge we have yet
to see whether its main claim on classical planning is
true (AGRE & CHAPMAN 1987, page 269): that “a tra-
ditional problem solver for the Pengo domain [could not
cope] with the hundreds or thousands of such represen-
tations as (AT BLOCKS-213 427 991), (IS-A BLOCK-213
BLOCK), and (NEXT-TO BLOCK-213 BEE-23)”. Or, stated
differently (AGRE & CHAPMAN 1987, page 272): “[The
Pengo domain] is one in which events move so quickly that
little or no planning is possible, and yet in which human ex-
perts can do very well."

The Pengo domain is that of a video-game of the eighties
where a player navigates a penguin around a two dimen-
sional maze of pushable ice blocks. The player must collect
diamonds distributed across the maze while avoiding to get
killed by bees; but the player can push an ice block which
kills a bee if it slides into it.

The Pengi system described in the Pengi paper (AGRE &
CHAPMAN 1987) is a video-game playing system which just
happens to fight bees in the Pengo game. Pengi first searches
for the penguin on the screen to register its initial position.
Then searches for the most dangerous bee, an appropriate
weapon to kill that bee (that is, an ice block) and then navi-
gate the penguin towards that weapon to kick it. Both written
in Lisp, the Pengo game and the Pengi system are in fact the
same Lisp program: the search for the penguin and the most
dangerous bee can be made directly by looking at the Lisp
data structures. According to the on-going conditions of the
game, various pieces of code are activated (for instance, you
may wish to push an ice block several times before it be-
comes a weapon). We refer the reader to the Pengi paper for
further information on the Pengi system. Finally, “[Pengi]
plays Pengo badly, in near real time. It can maneuver be-
hind blocks to use as projectiles and kick them at bees and
can run from bees which are chasing it” (A GRE & CHAP-
MAN 1987, page 272).

Interpreted as a finite state machine, the Pengi system can
easily be re-implemented and not only fight bees not badly
but also collect diamonds even in non trivial mazes (DRO-
GOUL, FERBER, & JACOPIN 1991).

∗Special thanks to Maria FOX, Jörg HOFFMANN, Jana
KOEHLERand Derek LONG about the gripper domain.

The awarded claim eventually is about space and time
complexity in the Pengo domain and of classical planning
algorithms around 1987. But since 1987, processors are sev-
eral hundred times faster and fastest classical planners are
able to produce plans with hundreds of actions in a matter
of seconds for certain problems. Consequently, we thought
it would be interesting and, most surely, fun, to see how the
current technology could cope with an 1980s video-game.

We here report on our very first steps towards the evalua-
tion of the claim about classical planning.

Classical planning, really? As a testbed, we chose Ice-
blox (BARTLETT, SIMKIN , & STRANC 1996, pages 264–
268), a slightly different version of the Pengo game for
which there exists an open and widely available java imple-
mentation (HORNELL 1996). For instance (cosmetic differ-
ences): flames, and not bees, are chasing the penguin-player
who must now collect coins, and not diamonds. Moreover
(different actions), coins must be extracted from ice blocks.
Extraction means kicking seven time at an ice block to de-
stroy the ice and thus making the coin ready for collection.
Such an ice block with a coin inside slides as well as any
other ice block. So the player must kick in a direction where
the ice block cannot slide (e.g. against the edge of the game)
in order to extract an iced coin.

Instead of designing a new planning system, we decided
to pick up an existing one, and eventually several, in order to
compare their relative performance if they had any ability at
playing Iceblox. We consequently decided to re-implement
Iceblox in Flash (Adobe 2007). Not only would we provide
a new implementation of the game, but also could we use the
plug-in architecture of the Flash runtime: a call and return
mechanism can run (and pass in and out parameters to) any
external piece of executable code when put in the appropri-
ate directory.

This deviates from the original Pengi system which was
the same Lisp program as the Pengo game (and also deviates
from (DROGOUL, FERBER, & JACOPIN 1991) where every-
thing was implemented in the same SmallTalk program), but
would eventually ease the comparison as classical planners
are not necessarily written in Flash.

However, this dramatically changes the setting of the
problem.



On one side, a classical planner becomes an external com-
ponent which happens to provide a planning functionality:
fine, that’s how we want it to work.

On the other side, the world view of the Pengi pa-
per (AGRE 1993) is that of the dynamics of everyday
life (AGRE 1988) (plans do exist, but are better commu-
nicated1 to people than built from scratch) and thus is op-
posed to the heavily intentional (BRATMAN 1987; MILLER,
GALANTER, & PRIBRAM 1986) world view of planning.

In other words: the Pengi system is always in charge
of the actions (moving the penguin, kicking ice blocks)
whereas an external component is in charge only when ac-
tivated and is harmless otherwise: a player must be able to
play Iceblox when the planning component is not activated
or no component is plugged-in. This generates supplemen-
tary questions: when is classical planning activated and for
how long? One more constraint. To respect the dynamics
of the domain of video-games, Iceblox must never stop and
must run while the classical planning component is plan-
ning: flames keep on chasing the penguin and sliding ice
blocks keep on sliding.

Consequently, the classical planning component is acti-
vated when the player presses the “p” key. This activation
is ended as soon as the player presses the keyboard again:
the arrow keys to move the penguin up, right, down and left;
and the space key to kick an ice block.

Hopefully, an anonymous classical planner shall build a
plan and return it to Iceblox. What shall Iceblox do with
this plan? Please, note that this question does not immedi-
ately entail further questions of interleaving classical plan-
ning and execution (AMBROS-INGERSON& STEEL 1988).
To begin with, there is a matter of level of detail: actions
in Iceblox corresponds to keys pressed by the player. Is the
classical planning component really expected to build plans
with such actions?

Hints from a gripper video game On one hand, the clas-
sical planning component is expected to build plans with
keys pressed. First because it seems part of the claim: if the
classical planning component (that is, the “traditional prob-
lem solver” of the claim) has to cope “with hundreds or thou-
sands” of detailed representations describing the initialand
final situations, then we can expect action representations
to be as detailed as the initial and final situations. However,
the Pengi literature (AGRE& CHAPMAN 1987; AGRE1988;
1993; 1997; CHAPMAN 1990) says nothing about this.

On the other hand, classical planners are used to cope
with high-level action description. For instance, here is the
classical planning Move operator from the well-known grip-
per (FOX & L ONG 1999) domain:

Move(X,Y) =

{

Preconditions : {at-robby(X)}
Additions : {at-robby(Y)}
Deletions : {at-robby(X)}

1Official player’s guides are good sources of plans communi-
cated to video-game players that would otherwise take some time
to build.

Figure 1: An anonymous classical planning system has built
(actually, it’s FF, plugged-in our Flash application as de-
scribed earlier; but let’s say we didn’t tell you) a plan for the
following the gripper video game problem: 4 balls must be
moved from roomB to roomD. The on-going action (from
the plan) is printed in the green area at the bottom of the
window: robby is moving from roomD to roomB; details
of the navigation (and of the picking up and down of balls)
are left to the Flash application.

In the gripper domainrobby-the-robot uses its arms to
move balls from one room, along a corridor, to another. Nei-
ther bees nor flames preventrobby-the-robot from succeed-
ing in transporting balls from one room to another. It is nev-
ertheless easy to come up with a simplistic two dimensional
gripper video-game: your task is to move as fast as possible
a set of balls from their initial location to their final location
(see Figure 1).

As stupid as this may sound, this gripper video-game isn’t
too far from, say, the popular Sokoban video-game (in a
maze, blocks must be slided from one place to another, with
no time limit) (CHARRIER 2007). In such a puzzle, the
details of the block pushing activity are important: e.g. a
wrong push at a corner can make the problem unsolvable.
But more important is the block you push next, which se-
quences the player’s next Move. Similar Iceblox situations
where the player only needs to navigate towards iced coins
and then extract them do exist (See Figure 2).

Here are two operators which can combine into a plan and
solve the simple situation of Figure 2: firstMoveToCoin(6,4),
thenExtract(6,4).



Figure 2: A simplistic level in the Iceblox domain: move to
the ice block containing a coin and then extract it. Details
of the navigation, as far as possible from the flames, and of
the extraction of the coin (seven kicks to the ice block) are
again left to the Flash application.

MoveToCoin(X,Y) =

{

Preconditions : {at(X,Z)}
Additions : {at-coin(X,Y)}
Deletions : {at(X,Z)}

Extract(X,Y) =























Preconditions : {at-coin(X,Y),
iced-coin(X,Y)}

Additions : {at(X,Y),
extracted(X,Y)}

Deletions :{at-coin(X,Y),
iced-coin(X,Y)}

Since we have neither implemented flame-fighting nor
fleeing operators, flames must be un-aggressive so that the
coin of Figure 2 can be extracted. And because of the sim-
ple path from the Penguin to the coin, the initial and final
situations are simply described:{at(1,1), iced-coin(6,4)} and
{extracted(6,4)}, respectively.

We won’t discuss this extremely low number of formulas
needed to describe what could be called aminimal Iceblox
problem: up to now, the biggest part of our work has been
devoted to stay as close as possible to the spirit of classi-
cal planning and video-games, while designing a satisfying
testbed. In the future, we hope to concentrate more on de-
signing classical planning predicates and operators in order
to cope with more complex Iceblox situations.

References

Adobe. 2007. Flash.http://www.adobe.com/ .

News, A. 2006. Classic paper award.AI Magazine 27(3)
4.

AGRE, P., and CHAPMAN, D. 1987. Pengi: An implemen-
tation of a theory of activity. InProceedings of 6

th AAAI,
268–272.

AGRE, P. 1988. The Dynamics of Everyday life. Ph.D.
Dissertation, MIT AI Lab Tech Report 1085.

AGRE, P. 1993. The symbolic worldview: Reply to vera
and simon.Cognitive Science 17(1) 61–69.
AGRE, P. 1997. Computation and Human Experience.
Cambridge University Press.
AMBROS-INGERSON, J., and STEEL, S. 1988. Integrating
planning, execution and monitoring. InProceedings of 7

th

AAAI, 83–88.
BARTLETT, N.; SIMKIN , S.; and STRANC, C. 1996.Java
Game Programming. Coriolis Group Books.
BRATMAN , M. 1987.Intentions, Plans and Practical Rea-
son. Harvard University Press.
CHAPMAN, D. 1990.Vision, Instruction and Action. Ph.D.
Dissertation, MIT AI Lab Tech Report 1204.
CHARRIER, D. 2007. Super sokoban 2.0.http://d.-
ch.free.fr/ .
DROGOUL, A.; FERBER, J.; and JACOPIN, E. 1991.
Viewing cognitive modelling as eco-problem solving: The
PENGI experience. InProceedings of the 1991 European
Conference on Modelling and Simulation Multiconference,
337–342.
FOX, M., and LONG, D. 1999. The detection and exploita-
tion of symmetry in planning problems. InProceedings of
16

th IJCAI, 956–961.
HORNELL, K. 1996. Iceblox.http://www.tdb.uu.-
se/˜karl .
M ILLER, G.; GALANTER, E.; and PRIBRAM, K. 1986.
Plans and the Structure of Behavior. Adams-Bannister-
Cox.


