
A Note on Concurrency and Complexity in Temporal Planning

Maria Fox and Derek Long
Department of Computer & Information Sciences

University of Strathclyde, Glasgow, UK

Abstract

Rintanen recently reported (Rintanen 2007) that
the complexity of temporal planning with dura-
tive actions of fixed durations in propositional do-
mains depends on whether it is possible for multi-
ple instances of the same action to execute concur-
rently. In this paper we explore the circumstances
in which such a situation might arise and show
that the issue is directly connected to previously
established results for compilation of conditional
effects in propositional planning.

1 Introduction
In his paperComplexity of Concurrent Temporal
Planning (Rintanen 2007), Jussi Rintanen shows
that temporal planning in propositional domains,
with durative actions of fixed durations, can be en-
coded directly in a propositional planning frame-
work by using (propositionally encoded) coun-
ters to capture the passage of time. Actions are
split into their end points, in much the same way
as shown in the semantics of PDDL2.1 (Fox &
Long 2003) and as implemented in some plan-
ners (Halsey, Long, & Fox 2004; Long & Fox
2003). This encoding allows him to deduce that
the complexity of this form of temporal planning
is equivalent to that of classical planning when the
number of such counters is polynomial in the size
of the original (grounded) domain. However, if
multiple instances of the same action may exe-
cute concurrently then it is not sufficient to have
a single counter for each action instance, but in-
stead as many counters are required as potential
instances of the same action that may run con-
currently. Rintanen observes that this could be
exponential in the size of the domain encoding,
placing the planning problem into a significantly
worse complexity class than classical planning:
EXPSPACE-hard instead of PSPACE-hard.

In this paper, we explore the situations in which
instances of the same action can run concur-
rently and link the complexity costs the previ-
ously recognised problem of compiling condi-

tional effects into classical propositional encod-
ings (Gazen & Knoblock 1997; Nebel 2000).

2 Preliminaries
We begin by providing some definitions on which
the remainder of the paper is based.

Definition 1 A classical propositional planning
action, a, is a triple, 〈P,A, D〉, where each ofP ,
A andD is a set of atomic propositions. The ac-
tion is applicable in a state,S, also represented
by a set of atomic propositions, ifP ⊆ S. The ef-
fect of execution ofa will be to transform the state
into the new statea(S) = (S −D) ∪A.

Although states are sets of propositions, not all
sets of propositions form valid states for a given
domain. For a given domain, consisting of an ini-
tial state, a collection of actions and a goal con-
dition, the set of states for the domain is the set
of all sets of propositions that can be reached by
legal applications of the actions. In the rest of the
paper, when we quantify over states we intend this
to be over all the valid states for the (implicit) do-
main in question.

Definition 2 A simple durative propositional ac-
tion, D, with fixed duration (Fox & Long 2003), is
the 4-tuple〈As, Ae, I, d〉, whered is the duration
(a fixed rational),As andAe are classical propo-
sitional planning actions that define the pre- and
post-conditions at the start and end points ofD re-
spectively, andI is an invariant condition, which
is a set of atomic propositions that must hold in
every state throughout the execution ofD.

We do not choose to emphasise the conditions
under which two classical actions are considered
mutex, here (see (Fox & Long 2003) for de-
tails), but note that concurrent execution of two
instances of the same durative action in which the
end points coincide will not be possible if the end
points are mutex. This means that they cannot
delete or add the same propositions, so that they
actually have no effects. Hence, there is no role
for these actions in a plan and they can be ignored



in planning. Therefore, we assume that all our du-
rative actions must, if two instances of the same
action are to run concurrently, be executed with
some offset between them.

3 Key Properties of Actions
We now proceed to define some essential proper-
ties that help to characterise the ways in which ac-
tions can interact with one another or with aspects
of the states to which they are applied.

Definition 3 A classical propositional action,
a = 〈P,A, D〉 is repeatableif in every stateS
in whicha is applicable,P ⊆ a(S).

A repeatable action can be applied twice in suc-
cession without any intervening action to reset the
state of resources that might be used by the action.
As we shall see, repeatable actions are constrained
in the impact they may have on a state.

Definition 4 A classical propositional action,
a = 〈P,A, D〉 is weakly conditionalif there are
two statesS1 andS2 such thata is applicable in
both states and either there is a propositionp ∈ A
such thatp ∈ S1 andp 6∈ S2 or there is a propo-
sitionp ∈ D such thatp ∈ S1 andp 6∈ S2.

A weakly conditional action is one that can be
executed in situations in which some of its posi-
tive effects are already true, despite not being pre-
conditions of the action, or some of its negative
effects are already false. The reason we call these
actions weakly conditional is that these effects
are semantically equivalent to the simple condi-
tional effects(when (not p) p)and (when p (not
p)) for positive and negative effects respectively.
These expressions are obviously part of a richer
language than the classical propositional actions.
In fact, they make use of both negative precondi-
tions and conditional effects. This combination is
known to be an expensive extension to the classi-
cal propositional framework (Gazen & Knoblock
1997; Nebel 2000). Nevertheless, weakly con-
ditional actions are obviously valid examples of
classical propositional actions. Notice that we re-
quire weakly conditional actions to be applicable
in states that capture both possibilities in the im-
plicit condition. This constraint ensures that situ-
ations in which the preconditions of an action im-
ply that a deleted condition must also hold, with-
out that condition being explicitly listed as a pre-
condition (or the analogous case for an add effect)
are not treated as examples of weakly conditional
behaviour.

We now define some actions with reduced
structural content of one form or another.

Definition 5 A classical propositional actiona =
〈P,A, D〉 is a null action if P , A and D are all
empty.

Definition 6 A classical propositional actiona =
〈P,A, D〉 is a null-effect actionif for every state
S such thatP ⊆ S, S = a(S).

Note that one way in which an action can be
a null-effect action is that the action simply re-
asserts any propositions it deletes and all of its ef-
fects are already true in the state to which it is ap-
plied. Actions that reassert conditions they delete
are not entirely useless, provided they also achieve
some other effects that are not already true. Some
encodings of the blocks world domain can lead to
ground actions that both delete and add the propo-
sition that there is space on the table, simply to
avoid having to write special actions to deal with
the table. Also observe that null actions are a spe-
cial case of null-effect actions.

We can now prove a useful property of repeat-
able actions:

Theorem 1 Any repeatable action is either a
weakly conditional action, a null action or a null-
effect action.

Proof: Suppose a repeatable action,a =
〈P,A, D〉, is not a null-effect action (and, there-
fore, not a null action). Then there must be some
state in whicha can be applied,Sa, such that
a(Sa) 6= Sa. Sincea is repeatable, it must be
thatP ⊆ a(Sa) = (Sa −D) ∪A 6= Sa.

Supposea is not weakly conditional. Then for
everyp ∈ D, p ∈ Sa iff p ∈ a(Ss) and for every
p ∈ A, p ∈ Sa iff p ∈ a(Sa). SinceA ⊆ a(Sa),
the latter implies thatA ⊆ Sa. The fact that
a(Sa) 6= Sa then implies that there is somep ∈ D
such thatp ∈ Sa andp 6∈ a(Sa). This contradicts
our assumption, soa must be weakly conditional.
�

We now consider the ways in which these clas-
sical actions can appear in certain roles in durative
actions.

Definition 7 A simple durative action,D =
〈As, Ae, I, d〉, is a pseudo-durative actionif Ae

is a null action andI is empty.

Definition 8 A simple durative action,D =
〈As, Ae, I, d〉, is a purely state-preserving action
if Ae = 〈P,A, D〉 is a null-effect action and every
state satisfyingI also satisfiesP .

3.1 Deadlocking Actions
One last variety of action is so significant we
choose to devote a separate subsection to it.

Definition 9 A simple durative action,D =
〈As, Ae, I, d〉, is a deadlocking actionif there is
a state,S, such thatI ⊆ S but Ae is not applica-
ble inS.

Thus, a deadlocking action is one that could be-
gin execution and then, either by execution of in-
tervening actions, or possibly simply by leaving



As

AeAs

Ae

d

I

I

X ZY

Figure 1: The intervals created by overlapping ex-
ecution of two instances of the same action.

the state unchanged, it is possible to arrive in a
situation in which the action cannot terminate be-
cause the conditions for its termination are not sat-
isfied.

Deadlocking actions are clearly no natural ac-
tions: there is no real situation in which it is pos-
sible to stop time advancing by entering a state in
which an action must terminate before time pro-
gresses, but cannot because the conditions for its
termination are not satisfied. If we adopt a model
in which a durative action has a fixed duration
then the conditions for its termination must be in-
evitable, but the effects it has might well be condi-
tional on the state at that time. In domains where
deadlock is possible (for example, in the execu-
tion of parallel processes), the effect is not to stop
time, of course, but to stop execution of the pro-
cesses. This means that if one were to consider the
behaviour of the parallel processes to be modelled
by durative actions, the failure to terminate is han-
dled by the actions having unlimited duration.

Therefore, we contend that no natural domains
require to be modelled with deadlocking actions.

4 Self-Overlapping Actions
We now turn our attention to the circumstances
in which two instances of the same simple dura-
tive action can be executed concurrently. Figure 1
shows the intervals that are created by the overlap-
ping execution of such a pair of action instances.
Note that when such an overlap occurs there are
two places where classical propositional actions
might be repeated:As andAe.

Theorem 2 If two instances of a simple dura-
tive action,a = 〈As, Ae, I, d〉 can execute con-
currently, then eithera is either a deadlocking,
pseudo-durative or purely state-preserving action,
or elseAe is weakly conditional.

Proof: Suppose that two instances ofa can exe-
cute concurrently and consider the two instances
of Ae at the ends of the action instances. Either
a is deadlocking, or else it must be possible for
these two instances to be repeatable, since there
is no requirement that an action be inserted in the
period Z. Then, by our earlier result,Ae must

be either a null action, a null-effect action or else
weakly conditional. IfAe is a null action thena
is either pseudo-durative (ifI is empty) or else
it is purely state-preserving. Finally, ifa is not
deadlocking andAe is a null-effect action, then
any preconditions ofAe must be true in any state
satisfyingI (otherwise there would be a state in
which I was satisfied, yeta could not terminate,
implying that a is deadlocking) and thereforea
is either pseudo-durative (I is empty) or else it is
purely state-preserving.�

Now that we have classified the simple durative
actions that may execute concurrently with them-
selves, we briefly analyse the alternatives. We
have already argued that deadlocking actions do
not appear in natural domains. Pseudo-durative
actions can be treated as though they were clas-
sical propositional actions, without duration, pro-
vided that a simple check is carried out on com-
pleted plans to ensure that adequate time is al-
lowed for any instances of these actions to com-
plete. Purely state-preserving actions are more
interesting. An example of such an action is an
action that interacts with a savings account that
then triggers a constraint that the money in the ac-
count must be left untouched for some fixed pe-
riod. Clearly, such an action is not unreasonable,
even if it is uncommon. Fortunately, Rintanen’s
translation of temporal domains into classical do-
mains can be achieved for purely state-preserving
actions without additional counters to monitor the
duration of overlapping instances of these actions.
This is because the only important thing about
these actions is how long the conditions they en-
capsulate must be preserved. Each time a new in-
stance is executed, the clock must be restarted to
ensure that the preservation period continues for
the full length of the action from that point. Since
the end of the action has no effects it is not nec-
essary to apply it except when the counter reaches
zero, at which point the invariant constraint be-
comes inactive.

Thus, the source of the complexity gap that Rin-
tanen identifies can be traced, for all practical pur-
poses, to the use of durative actions terminated by
weakly conditional actions. Weakly conditional
actions can be compiled into non-weakly condi-
tional actions by the usual expedient of creating
multiple versions of the actions. The idea is to
have one version for the case where the condition
is true and one for the case where the condition is
false, each with the appropriate additional precon-
dition to capture the case and the appropriate ver-
sion carrying the conditional effect, but now as an
unconditional effect. The problem with this com-
pilation is that it causes an exponential number of
variants to be created in the size of the collection
of conditional effects.



In general, the current collection of benchmark
domains do not appear to contain durative actions
with repeatable terminating actions (although in
many cases this is because the states in which the
end actions can be executed are limited by the nec-
essary application of the start effects of the dura-
tive actions to which they belong). This means
that the problem of self-overlapping actions does
not arise in these domains.

In domains in which there are repeatable termi-
nating actions, it is non-trivial to identify which
effects contribute to the weakly conditional be-
haviour. Delete effects are simpler to manage: any
delete effect that is not listed as a precondition can
be assumed to have the potential to be a weakly
conditional effect. Add effects are more problem-
atic: unless an add effect is shown to be mutually
exclusive with the preconditions of the action, it
must be assumed that it is weakly conditional. It
is possible to use mutex inference, such as that
used in Graphplan (Blum & Furst 1995) or that
performed byTIM (Fox & Long 1998), to identify
which add effects must be considered as weakly
conditional. In general, to ensure that the weakly
conditional behaviour has been completely com-
piled out, it is necessary to make a conservative
assumption about any effects that cannot be shown
to be ruled out. Nevertheless, in practical (propo-
sitional) domains the number of effects is tightly
limited (ADL domains with quantified effects are
not quite so amenable) and this makes it possible
to compile out the weakly conditional effects with
a limited expansion in the number of actions.

5 Relevance to Practical Planning

The relevance to practical planner design of the
result we have demonstrated is two-fold. Firstly,
we have shown that treatment of overlapping in-
stances of the same action can only occur under
limited conditions. These conditions can often
be identified automatically using standard domain
analysis techniques (Fox & Long 1998). This
means that it is possible to determine whether ma-
chinery is required to be activated to handle the
special case. Avoiding the use of techniques that
would be redundant is useful in practical planner
design, as a way to achieve improved efficiency.

Secondly, the results demonstrate that the focus
of temporal planning should be, in the first place,
on handling concurrency between distinct action
instances and on the treatment of weakly condi-
tional effects. The latter phenomenon is one that
has not, to the best of our knowledge, been high-
lighted in the past, but is clearly a significant is-
sue, since compilation of such effects into uncon-
ditional actions is both non-trivial and also, poten-
tially, exponentially costly.

6 Conclusions
We have shown what kinds of simple durative ac-
tions can run concurrently with instances of them-
selves. Identifying the conditions that allow this
has led to the discovery of a close link between
the complexity gap identified by Rintanen and the
complexity induced by the extension of proposi-
tional domains to those with conditional effects.
A further important consequence of this analy-
sis is to learn that if actions have bounded ef-
fect lists then the complexity of temporal planning
is PSPACE-complete, even if self-overlapping ac-
tions are allowed.

References
Blum, A., and Furst, M. 1995. Fast planning
through plan-graph analysis. InProceedings of
the Fourteenth International Joint Conference on
Artificial Intelligence (IJCAI95), 1636–1642.
Fox, M., and Long, D. 1998. The automatic
inference of state invariants in TIM.Journal of
AI Research9.
Fox, M., and Long, D. 2003. PDDL2.1: An ex-
tension of PDDL for expressing temporal plan-
ning domains. Journal of AI Research20:61–
124.
Gazen, B., and Knoblock, C. 1997. Combining
the expressivity of UCPOP with the efficiency of
Graphplan. InECP-97, 221–233.
Halsey, K.; Long, D.; and Fox, M. 2004. Crikey -
a planner looking at the integration of scheduling
and planning. InProceedings of the Workshop on
Integration Scheduling Into Planning at 13th In-
ternati onal Conference on Automated Planning
and Scheduling (ICAPS’03), 46–52.
Long, D., and Fox, M. 2003. Exploiting a graph-
plan framework in temporal planning. InPro-
ceedings of ICAPS’03.
Nebel, B. 2000. On the expressive power of
planning formalisms: Conditional effects and
boolean preconditions in the STRIPS formalism.
In Minker, J., ed.,Logic-Based Artificial Intelli-
gence. Kluwer. 469–490.
Rintanen, J. 2007. Complexity of concurrent
temporal planning. InProceedings of Interna-
tional Conference on Automated Planning and
Scheduling, 280–287.


