
AI Planning 

with Time and Resource Constraints 

Filip Dvořák, Roman Barták 

Charles University in Prague, Faculty of Mathematics and Physics, 

Malostranské nám. 2/25, 118 00 Praha 1, Czech Republic 
filip.dvorak@runbox.com; roman.bartak@mff.cuni.cz 

Abstract. Planning deals with the problem of finding a partially ordered se-

quence of actions (plan) that transfers the world from some initial state to a de-

sired state. Causal relations between actions play a critical role here. Introduc-

tion of explicit time and resources into planning is an important step towards 

modeling real-life problems. In this paper we propose a suboptimal domain-

independent planning system Filuta that focuses on planning, where time plays 

a major role and resources are constrained. We benchmark Filuta on the plan-

ning problems with time and resources from the International Planning Compe-

tition 2008 and compare our results with the competition participants. 

Keywords: automated planning, temporal constraints, resource reasoning. 

1   Introduction 

Planning is an abstract, explicit deliberation process that chooses and organizes ac-

tions by anticipating their expected outcomes. Real world planning problems usually 

differ from each other significantly; various approaches were taken dealing with path 

and motion planning, perception planning, navigation planning, manipulation plan-

ning, communication planning or different branches of social and economic planning. 

These approaches often rely on their own domain representations and problem specif-

ic techniques limiting their reusability and transferability to other branches of plan-

ning problems. Finding a common ground for representing and solving planning prob-

lems has always been a challenge as the representation of various real-world features 

and emphasis on different aspects of problem are required and domain-independent 

planning is generally a PSPACE-complete problem [1]. 

AI Planning [2] deals with finding a set of actions that transfer an initial state of the 

world into a goal state; such set is then called a plan. Actions in a plan may be re-

quired to be partially ordered, totally ordered or scheduled in time. Usually, the goal 

state is only partially defined and the number of possible plans is infinite, unless ei-

ther a bound is a natural part of the planning problem, or we bound the problem arbi-

trarily. Abstraction is a natural part of planning problem formulation; we omit details 

of the world properties that are not relevant for the problem. Resources in planning 

are another form of abstraction, where the omitted detail is the uniqueness, e.g., the 

exact seat a passenger took in car may not be relevant, if we are only interested in the 

number of available seats. Historically, resources have been considered a domain of 

scheduling, in which they were extensively studied. While planning is concerned in 



finding a set of actions needed to achieve a goal, the scheduling problem consists of 

finding time and resource allocation for a given set of actions [3]. Solving many real 

world problems naturally requires both planning and scheduling; however separation 

of both processes may not always be efficient, e.g., the problem with many valid 

plans and a few valid schedules would require many iterations of the planning 

process. The problem of such sequential model is that planning itself is not informed 

enough about how a plan should be shaped and structured to satisfy the constraints 

later enforced in the scheduling process. Hence, it seems more appropriate to integrate 

planning and scheduling, for example by assuming the scheduling constraints such as 

limited time and resources during the planning process. This approach is advocated in 

this paper where we present a planning system called Filuta that handles time and 

resource constraints in addition to traditional causal relations from planning. 

In this paper we focus on fully observable, deterministic temporal planning with 

resources [2]. It means that world states are completely known to the planner (fully 

observable), the effects of planning actions are unique (deterministic) and the actions 

have some duration, can overlap in time and require resources for execution. In par-

ticular, the world state is specified using a set of multi-valued state variables where 

different states are distinguished by different values assigned to the state variables. 

The values of all state variables are specified for the initial state, while the goal state 

is specified by required values of certain state variables. Actions have known dura-

tion, require particular values of certain state variables for execution (precondition) 

and change values of some state variables at some time point of execution (effect). 

Resource constraints can then be naturally described using state variables, where the 

value is changed relatively (increased or decreased) rather than being set absolutely. 

The planning task is to find a set of actions allocated to time such that the time evolu-

tion of state variables is feasible (each state variable has a unique value at each time 

point and this value is consistent with actions being executed at this point) and the 

final values of state variables satisfy the goal condition. The quality of plan is meas-

ured by time needed to reach the goal state – makespan. Plans with a smaller makes-

pan are preferred. Filuta is a sub-optimal domain-independent planning system that 

solves the above sketched planning problems. 

In the paper we will first describe the formal representation of the planning prob-

lem consisting of temporal databases modeling evolution of state variables and re-

source models. Then we will show how to solve the problem by integrating search 

decisions with maintaining consistency of temporal databases and resource models. 

Finally, we will experimentally compare Filuta with the state-of-the-art planners. 

2   Representation 

The cornerstone representation we build on is the state-variable representation for 

classical planning [4]. The State-variable is a variable whose domain contains facts 

about the world such that no two facts from the domain can be true at any given time. 

For example, the state variable describes a position of robot where possible locations 

determine the values of the state variable. A state of the world can then be defined as 

an n-tuple of values of n state-variables. Since we need to represent time explicitly, 

we represent the states of the world through a set of functions {sv1,…,svn}, where 



each function maps time to the domain of the state variable. For purposes of our plan-

ner we rely on the structure of time as modeled by the set of natural numbers ℕ. The 

functions capturing the evolution of state variables in time are piecewise-constant, 

hence to represent them we solely need to keep the changes of their value in time, 

which is the role of temporal databases. 

Though resources can be modeled via state variables, we approach the modeling of 

resources separately by creating for each planning problem a set of resource in-

stances, where each instance corresponds to a single resource appearing in the prob-

lem. By itself the resource instance is a set of resource events, which take different 

forms based on the category of resource the instance is representing (see below). 

Actions in our representation are grounded temporal operators that contain changes 

of the state variables’ value (effects), requests on the value of the state variable (pre-

conditions) and resource events on the resource instances (preconditions and effects). 

We define a planning problem as a quadruple (TDBs, RIs, Actions, Goals), where 

TDBs is a set of temporal databases, each corresponding to a single state-variable and 

containing the initial value of this variable, RIs is a set of resource instances, Actions 

is a set of actions and Goals is a set of goal values of state variables. The solution of 

the planning problem is a set of scheduled action instances (a plan) such that the last 

values of the state variables’ temporal evolutions are the goal values (we do not con-

sider intermediate goals), all temporal databases are consistent, all resource instances 

are consistent, and all changes, requests and resource events from the actions in-

stances in the plan are settled in the corresponding temporal databases and resource 

instances. Note that action may appear as several action instances in the plan. 

In the following subsection we will describe the Simple Temporal Problem and the 

Simple Temporal Network used for temporal reasoning. We will further define repre-

sentations of temporal databases, resources and actions in our planning system. 

2.1   Simple Temporal Problem  

Simple temporal problem [5], shortly STP, is built upon constraint satisfaction prob-

lem formalism [6]. Formally, STP is a kind of CSP, where X = {x1, …, xn} is a set of 

CSP-variables, also known as time points, whose domains are ℕ (in our case), and C 

= {c1, …, cm} is a set of unary and binary constraints, where each constraint ci is 

represented by an interval [ai, bi]. A unary constraint cj upon variable xi restricts the 

domain of a variable to an interval; it represents the relation aj ≤ xi ≤ bj. A binary 

constraint ck upon (xi, xj) restricts the permissible values for the distance xj – xi; it 

represents the relation ak ≤ xj - xi ≤ bk. Although we have defined unary constraints, 

we can directly omit them, since they can be transformed into binary constraints by 

relating the concerned time points to some reference time point, e.g., “the beginning 

of the world”. Having only binary constraints, we can depict a STP instance as a di-

rected graph, whose nodes represent the time points and arcs between nodes are anno-

tated by the corresponding intervals. Such graph is called a Simple temporal network 

(STN). We say that the STN instance is consistent if and only if there exists such 

instantiation of the time points that all the binary constraints are satisfied. 

We further define two intuitive operations upon pairs of constraints: composition 

cij ∙ cjk = [aij + ajk, bij + bjk], and intersection cij ∩ c’ij = [max{aij, a’ij}, min{bij, b’ij}]. 



Together we can define a transitive closure operation as cij ← cij ∩ (cik ∙ ckj). The 

propagation of transitive closure upon consistent STN tightens constraints to its mi-

nimal form [5]; such network is called minimal. Having a minimal network (X,C) we 

define an update operation up(xi,xj,c) as cij ← c ∩ cij, where xi, xj ∈ X, c is a new con-

straint of form a ≤ xj - xi ≤ b, and we say that the operation is consistent iff c ∩ cij  ≠ 

∅; intuitively, for up(xi,xj,c), where c = [a,b], the application of up(xi,xj,c) operation 

upon a STN says that xi happens at least a and at most b time units before xj. Al-

though computing the minimal network takes generally O(n3) operations, where n is 

the number of time points, we can minimize the network, whose minimality was inva-

lidated by a single consistent update, in O(n2) using IFPC algorithm [7]. 

While STN allows us to represent quantitative temporal relations, we need to 

represent qualitative relations as well. We say that xi happens possibly before or at 

the same time as xj iff up(xi,xj,[0,∞]) is consistent; we denote it as PBE(xi,xj). We say 

that xi happens necessarily before or at the same time as xj iff up(xj,xi,[1,∞]) is incon-

sistent; we denote it as NBE(xi,xj). 

The upside of maintaining a minimal network is mainly in the constant time detec-

tion of inconsistent updates, possibility to solve certain sub-problems upon a smaller 

sub-network (taking only a subset of time points) and constant access to lower bounds 

on time between helpful time points (e.g. the lower bound on makespan). The down-

side is the need to perform expensive propagation of transitive closure, which also 

generates many unhelpful constraints. Using symmetry of the constraints and implicit 

constraints we can reduce the number of stored constraints to n2/2 – n. Further we can 

omit any time points that become redundant during the planning; once the constraint 

between any two time points reduces to [0,0], we can safely say, that one of the time 

points is unnecessary. 

2.2   Temporal Databases 

The purpose of temporal database is to store information on how a state variable 

evolves in time. Since the time evolution of a state variable is a piecewise constant 

function, we can express and store the time evolution of a state variable as a set of 

changes of the state variable’s value. Additionally we need to represent requests on a 

state variable to keep certain value for a period of time. Using qualitative temporal 

relations we have defined for a simple temporal network, we define changes and re-

quests for a state variable with domain D and a minimal temporal network (X,C) as 

follows: change is a quadruple (xs,xe,vinitial,vfinal), where xs, xe ∈ X, NBE(xs,xe),vinitial, 

vfinal ∈ D, and request is a triple (xs,xe,v), where xs, xe ∈ X, NBE(xs,xe), v ∈ D. 

For a minimal temporal network (X,C) we define the temporal database TDB for a 

state variable to be a sequence (ch1,R1,...,chn,Rn), where chi is a change, Ri = {(xs1, xe1, 

v1), ..., (xsm, xem, vm)} is a set of requests, and all time points contained in an element 

of the sequence happen necessarily before or at the same time as all the time points 

contained in any consecutive element. We say that a temporal database TDB is con-

sistent if and only if ∀chi, Ri ∈ TDB ∀(xsj,xej,vj) ∈ Ri: vfinal-i = vj = vinitial-i+1. In other 

words, consistency tells us that any two consecutive changes must share the inner 

value and any request between those two changes must share the value of the state 

variable as well. 



Other principles and concepts of temporal databases can be found in [2]. Our ap-

proach differs by distinguishing temporal expressions to changes and requests, keep-

ing them as a sequence instead of a more general set, and using a temporal database 

for each state-variable instead of managing binding constraints, which are, in our 

case, strong decisions of the search algorithm (section 3). 

2.3   Resources 

The concept of resources is similar to temporal databases in sense that we only need 

to capture discrete changes in the evolution of the resource level. However, contrary 

to temporal database, the changes of the resource level are frequently coupled (bor-

rowing a resource means consumption at the beginning of action and production at the 

end of action). Since the behavior of a resource varies depending on the represented 

properties of the world, we distinguish resources into categories and define compact 

representations for each category; in our planning system we have so far defined 

category for a single-capacity reusable resource (also known as a unary resource), a 

multi-capacity reusable resource (also known as a discrete resource), and a multi-

capacity replenishable resource (also known as a reservoir). 

 Unary Resource corresponds to a single machine that can support only one activi-

ty at any given time. An instance of the unary resource is a set of resource events, 

where each event consists of a pair of time points that represent the start and the 

end of the event. 

 Discrete Resource corresponds to a pool of multiple uniform machines. An in-

stance of the discrete resource is a set of resource events, where each event is de-

fined as a triple (xs,xe,rq), where xs, xe are time points, and rq ∈ ℕ represents the 

number of required machines. Each resource instance has a fixed capacity. 

 Reservoir is a resource that can be consumed and produced and consumption and 

production events may not happen in tandem. An instance of the reservoir resource 

is a set of events, where each event is defined as a pair (x,e), where x is a time 

point and e ∈ ℤ is a relative change of the resource level; e < 0 represents con-

sumption and e > 0 represents production. Each instance has fixed capacity. 

2.4   Actions 

Based on definitions of temporal network, temporal database and resource instance, 

we define an action. An action is a sextuple A = (tps, tpe, dur, CHs, RQs, REs), where  

 tps and tpe are time point parameters; upon the introduction of the action into a 

plan we associate them with the time points from the temporal network. 

 dur ∈ N is a duration of the action, 

 CHs is a set of changes of the state variables’ value, 

 RQs is a set of requests on the state variables, 

 REs is a set of resource events upon the resource instance. 

Once the action becomes instantiated with the time points, we call it an action in-

stance. The instantiation of action by a pair of time points propagates these time 

points into the changes, requests and events contained in the action. The changes and 



requests can occur at the beginning, at the end, or over the duration of the action. The 

propagation into events depends on the resource instance the event belongs to, e.g., an 

event for a unary resource instance occurs over the duration of the action. To demon-

strate the definition, we can imagine an action load-truck3-package2-location1 that 

represents loading the package2 into the truck3 at the location1. The action takes 5 

time units to execute, the truck has a limited capacity, loading a package requires a 

crane and the package2 requires 11 units of space. We further assume we have state-

variable svp and svt, where svp represents the position of the package2 and svt 

represents the location of the truck3. The corresponding action in our representation 

would be constructed as (x,y,5,{svp[x,y]:location1→truck3},{svt[x,y]:location1}, 

{crane[x,y],truck3-cap[y]:-11}), where svp[x,y]:location1→truck3 depicts the change 

of package position over time interval [x,y], svt[x,y]:location1 depicts the request on 

the location of truck3, crane[x,y] is an event for the unary resource instance 

representing the usage of the crane, and truck3-cap[y]:-11 depicts a consumption 

event upon the reservoir resource instance representing the space in truck3. 

Our concept of action takes the middle ground in context of similar approaches to 

temporal planning. In [2] authors define a more general concept of temporal operator, 

where the parameters include the planning atoms, e.g. there would exist only one 

action load parameterized by trucks, packages and locations. In [8] authors take oppo-

site direction, removing the temporal parameters of the action and efficiently model-

ing temporal planning problems as a CSP, which in other hand implies that an action 

cannot occur multiple times and the approach is not suitable for problems with large 

numbers of grounded actions. 

3   Solving Approach 

The cornerstone of our planning system is the simple temporal network, whose time 

points are used for temporal annotation of changes and requests in the temporal data-

bases and temporal annotations of the events in the resource instances. The resource 

reasoning upon the resource instances is realized by a resource manager, which keeps 

a least-commitment approach (not deciding unless necessary) by maintaining the 

potential resource conflicts (overconsumptions and overproductions of a resource) as 

a CSP. Upon the state-variables we further build domain transition graphs [9]. 

The domain transition graph (DTG) for a state-variable with a domain D and a set 

of actions S is a directed multigraph (V,E), where V = D and an action from S 

represents an arc (vi,vj) ∈ E if and only if it contains a change of the concerned state-

variable from vi to vj. 

Having the domain transition graphs generated, we can look at the planning prob-

lem as a problem of finding paths from the initial node (which represents the initial 

value of the state variable) to a goal value in each DTG (whose state-variable contains 

a goal value). However traversing a single arc in a domain transition graph represents 

adding the represented action into the plan. Such action then also represents traversing 

an arc in other domain transition graphs (for each change it contains), and the action 

may contain a request on certain value of another state variable. To support these 

collateral transitions and requests, we need to traverse all other domain transition 

graphs to the point when the original transitions and requests do not violate consisten-



cy of the temporal databases, which is in principle the same problem as traversing the 

graph to satisfy a goal. Since we construct DTGs in advance, we can also calculate 

shortest paths for them, and use the paths to help to guide the search algorithm. We 

calculate two types of shortest paths. One type measures the length of the path in a 

graph as the minimal time needed to traverse this path (a sum of durations of actions 

traversed); we denote these paths as T-P. The second type measures the minimal 

number of arcs traversed, while less time demanding paths are preferred; we denote 

these paths as OT-P. 

Generated DTGs also allow us to simplify the planning problem through detection 

of additional unary resources. If we find such DTG (V,E) that all arcs in E are loops 

upon one node, we remove such DTG, the corresponding temporal database and the 

state-variable, and we create a new instance of the unary resource and substitute the 

changes for resource events in the actions that represented the looping arcs. 

In the following subsections we describe the resource manager and the search algo-

rithm in more details. 

3.1   Resource Manager 

Our representation of resources distinguishes resources into several categories. For 

each category we build an incremental solver. The input of the solver is an STN, a 

resource instance (a set of events), and one new event for this instance. The solver 

determines whatever the new event may cause an overproduction or overconsumption 

conflict in the resource instance, and if the conflict can be prevented by updating the 

temporal network with an appropriate set of new constraints – resolvers. Since we 

would like to keep all the options of preventing the conflict (because strong early 

decision can cut us from good plans), we build the solver to encode all the options as 

an output. The output of the solver is defined as a set SR = {S1,…,Sn}, where Si is a 

set of resolvers – updates of the temporal network that prevent a single resource con-

flict. To prevent a resource conflict having the output of the solver, we have to choose 

from each set Si one update, such that the set of chosen updates is consistent with the 

temporal network. Trivial cases occur when SR = ∅, which indicates that no conflicts 

need to be resolved, and ∅  SR, indicating that some resource conflict cannot be 

resolved (which may imply a backtrack point for the search algorithm). 

We shall demonstrate the above-mentioned principle using an example for an in-

stance of unary resource. Assuming we have an STN, an instance {(a,b), (c,d)} and a 

new event (e,f), where a-f are time points, the solver for the unary resource produces a 

set {{f < a, b < e}, {f < c, d < e}}, where x < y represents an update operation 

up(x,y,[0,∞]) (a resolver that enforces NBE(x,y) upon the STN). The intuitive mean-

ing of the produced set and the semantic of the solver is that since only one event (an 

action) may occupy the unary resource instance (a machine) at any time, the new 

event must necessarily happen before or after any other event. By choosing an update 

from each set of updates we temporally separate the new event from all other events 

(separations between the other events is an assumption of the incremental solver). 

Due to space limitations we do not describe solvers for other resource types; the read-

er may find their concepts in [2], [10] and [11]. 



Planning problems generally contain multiple resource instances and the solvers 

together often produce multiple (non-trivial) sets SR1, …, SRn. The formulation of the 

solvers output now becomes helpful as we can aggregate the outputs into one set SR = 

SR1 ∪ … ∪ SRn. The purpose of the resource manager is to maintain the aggregated 

set SR of resolvers. The maintenance consists of including outputs of solvers into SR, 

removing updates inconsistent with given STN and checking the existence of solution 

(a selection of an update from each element of SR). Given an STN, to find a solution 

for SR we run a depth-first search in the space of possible choices of updates, while 

each choice is followed by realizing the update operation upon the STN and conse-

quent removal of inconsistent updates. To improve efficiency, the resource manager 

works only with a sub-network of the STN (taking only the time points contained in 

updates in SR). The efficiency can also be improved by remembering the last found 

solution, relaxing the frequency of solution checking and incorporating CSP tech-

niques (the described problem can be seen as a meta-CSP). 

3.2   Search algorithm 

In the Filuta system we adapted the plan-space planning approach [2] where the 

search space consists of states representing partially specified plans (note that the 

search state differs from the world state). For a planning problem (TDBs, RIs, Ac-

tions, Goals) we define the initial state as a quintuple s0 = (STN, TDBs’, RIs’, SR, 

Plan), where TDBs’ = TDBs, RIs’ = RIs, SR = ∅, Plan = ∅ and STN is the initial 

temporal network. 

The initial temporal network is constructed from a set of helpful time points. We 

first insert a pair of time points xg-start and xg-end and update the network by up(xg-start, 

xg-end, [0,∞]); the time points represent global start and end of the world. Any further 

time point x inserted into the network is implicitly constrained by up(xg-start, x, [0,∞]). 

We further insert a time point xi-end for each TDBi ∈ TDBs and update the network 

with up(xi-end, xg-end, [0,∞]) for each such time point; these time points represent local 

ends of the world upon the evolution of the corresponding temporal databases. When-

ever a request or a change is inserted into a TDBi, the later time point xe contained in 

the request or the change is constrained by up(xe, xi-end, [0,∞]). 

For a planning problem (TDBs, RIs, Actions, Goals) the solution state is such a 

state (STN’, TDBs’, RIs’, SR, Plan) that the goals are satisfied (goal requests are the 

last in the temporal databases), STN’ and TDBs’ are consistent, and the set SR of 

resource resolvers has a solution (decided by the resource manager). The solution 

state is transformed into a solution of the planning problem by finding an optimal 

solution for SR upon STN’ (the resource instances become consistent) and instantiat-

ing STN’ starting with assignment xg-start ← 0 and assigning the lowest possible value 

to all other time points. The Plan then contains a fully scheduled set of action in-

stances that solve the planning problem. The makespan of the plan is then defined as 

the value of the time point that represents the end-time of the latest action in the plan 

(the same value as in the time point representing “the global end of the world”). 

The states of the search evolve from the initial state s0 by insertion of actions into 

the Plan, insertion of changes, requests and events of these actions into the corres-

ponding temporal databases and resource instance, insertion of new time points (and 



constraints) into the temporal network (two time points per action instance), and in-

sertion of goal requests into temporal databases (a goal request is constructed from 

one new time point and the goal value of the state variable). Solving the planning 

problem consists of finding a path from the initial state to some solution state, or more 

precisely finding a solution state that is reachable from the initial state. 

For a problem (TDBs, RIs, Actions, Goals) we denote the set of all possible search 

states as S. For a state s ∈ S we define ms(s) to be the smallest distance between xg-start 

and xg-end in the corresponding STN (the lower bound for makespan), and ft(s) to be 

the sum of smallest distances between xg-start and xi-end for all end points in TDBs (the 

lower bound for the sum of times to achieve all goal values). We define the state 

evaluation function eval: S → ℕ × ℕ as eval(s) = (ms(s), ft(s)) and the goal of planner 

is to find a reachable solution state with the minimal value of the eval function (using 

ordering (a,b) < (c,d) ↔ a < c or (a = c and b < d)). 

The search algorithm divides into search procedures root_search, way_search, 

support_search and resource_search. The input of all procedures is a state and the 

current upper bound, which can be an evaluation of the best state found so far, it can 

be given arbitrarily (random restarts), or it can be unknown (represented as (∞,∞)). 

The output of the procedures is a state, where a state = ∅ indicates that either all states 

in sub-tree were pruned (the lower bound exceeded the upper bound), or the sub-tree 

does not contain the intended partial solution. 

For a problem (TDBs, RIs, Actions, Goals), the root_search proceeds by picking a 

goal value of a state-variable from Goals that is not currently achieved (the last 

change in the corresponding TDB does not support the goal value), building a goal 

request (from a new time point in STN and the goal value) and calling the way_search 

to find a way in the corresponding DTG to support the goal requests. The process is 

iterated until a solution state is found; the solution state is constructed incrementally 

as the first call of the way_search takes the initial state s0 and returns state s1, which is 

taken by the consecutive call of the way_search and so on (a goal request can be con-

structed multiple times for one goal value as the way_search may invalidate a pre-

viously achieved goal). This is similar to STRIPS algorithm for classical planning [2]. 

The way_search procedure takes as an additional input a problem of finding a way 

in a domain transition graph, which consists of an anchoring change from the current 

state and a fact that is either a change or a request (for a goal request the anchoring 

change is the last change in the corresponding TDB, otherwise the choice of the anc-

horing change is a decision made in the support_search). The way_search initially 

imposes new constraints into the current STN, improving the lower bound; the con-

straints represent the minimal time needed to traverse the path in DTG from the final 

value of the anchoring change to the initial value of the fact (we use the value of the 

shortest path T-P pre-calculated for the DTG). To find the best path in the DTG (ac-

cording to eval) way_search recursively performs a depth-first search in the DTG, 

where each arc traverse involves a call of the support_search, whose output state is 

passed to the next step of the depth-first search. The search is guided by the shortest 

paths OT-P (the shorter paths are tried first). Traversing an arc also includes insertion 

of the action’s resource events into the resource instance (invoking a resource manag-

er), while the changes and requests from the action are passed to support_search. If 

the anchoring change is not the last change in TDB, the way_search also finds a way 

back (from the final value of the fact to the initial value of next change in TDB). 



The additional input of the support_search is a set of facts (changes and requests 

that contain the time points propagated from the action instance). The task upon the 

support_search is to find an anchor change for each fact such that solving all the 

resulting path problems (finding the paths through way_search) produces the best 

state according to eval. The support_search performs a depth-first search in the space 

of possible assignments of the anchor changes to the facts. The search is guided by 

the fewest-options-first principle, which is particularly efficient, since by assigning a 

anchor change to a fact, we may also significantly reduce the number of possible 

assignments of anchor changes to other facts; this is caused by the updates of the STN 

that preserve the consistency of the TDB and shared time points among the facts (we 

can imagine the principle as narrowing a temporal window that represents the possi-

ble temporal positions of an action instance). 

The resource_search procedure is called whenever the set SR in the current state 

becomes inconsistent (we are not able to prevent all the resource conflicts); this oc-

curs mainly upon the insertion of a resource event into a resource instance. The re-

source_search identifies the inconsistent resource instance and systematically tries to 

extend the plan by an action that contains a helpful event for the inconsistent resource 

instance and the choice of the action is the best according to eval; for example the 

helpful event can be a production event for a reservoir instance, which was overcon-

sumed. For each choice of the action the contained facts are passed to the sup-

port_search. 

The described search algorithm assumes a given ordering of the goal values in the 

planning problem (we achieve the goal values in a sequence). We further extend the 

algorithm with random restarts of the ordering of the goal values (we explore random 

permutations of the sequence of the goal values). The random restarts are also helpful 

for tightening the upper bound for consecutive searches, which significantly improves 

pruning the search space. We formulate the algorithm extended with the random res-

tarts as an anytime algorithm. Due to space limitations we do not include the pseudo 

code; the reader may find it in [11]. 

4   Experimental Results 

To evaluate the above described planning system, we implemented Filuta in Java and 

compared it with the best planners competing in the latest planning competition. In 

particular, we used three planning domains: Openstacks, Elevators, and Transport 

from the deterministic temporal satisfaction track of International Planning Competi-

tion 2008 [12] and compared planning systems competing in this track, namely 

SGPlan6 (the winner), TFD (the runner-up), and Base-line planner proposed by the 

competition organizers. Due to space reasons we present here only the results for the 

Elevators domain which is briefly described as a problem of planning movements of 

elevators for a set of passengers (the complete descriptions of the domains and the 

planning problem instances itself can be found in [12]). We used the same setting as 

during the competition, that is, each planner was given a 30-minutes time limit (we 

used 2.5 GHz Intel Dual-core CPU) and 2 GB memory per single problem. We run 

Filuta in two modes: Filuta1 uses a single-shot run so we present a runtime for this 

mode while FilutaRR is using random restarts so it is running for all 30 minutes. Table 



1 compares the makespan achieved by different planners and it clearly demonstrates 

that Filuta generates plans of best quality. Similar results were achieved for the 

Transport domain where Filuta was able to solve 25 out of 30 problems (the largest 

number among the competing systems). All plans generated by FilutaRR for the solved 

problems have the smallest makespan among the competing system. The Openstacks 

domain differs significantly in the type of resources (reservoir) and Filuta was able to 

solve only 11 smaller problems out of 30, while for larger problems it exceeded the 

30-minutes limit due to time consuming generation of resource resolvers (the Opens-

tacks domain forms an NP-complete optimalization problem, which together with the 

least-commitment of the resource reasoning causes exponential grow of the runtime). 

Nevertheless, for the solved problems Filuta found plans better than other planners. 

Table 1. Makespan achieved by different planners for problems from the Elevators domain of 

IPC 2008; the last column shows runtime of Filuta system. 

Problem  Base SGPlan6 TFD Filuta
RR

 Filuta
1
 Filuta

1
(sec) 

1 210 162 144 84 132 0.031 
2 122 121 144 91 96 0.001 
3 66 80 54 46 54 0.016 
4 163 205 156 97 129 0.047 
5 110 151 92 58 70 0.031 
6 248 211 316 110 169 0.062 
7 144 226 257 90 98 0.156 
8 185 268 267 115 124 0.047 
9 216 141 111 73 111 0.094 
10 397 333 411 138 261 0.297 
11 305 260 380 162 228 0.125 
12 438 456 617 218 310 0.361 
13 466 707 537 186 285 0.578 
14 505 523 882 233 330 0.751 
15 812 688 

 
255 403 1.375 

16 456 420 
 

225 292 1.453 
17 488 659 1074 290 414 2.502 
18 788 751 1273 416 601 3.532 
19 866 1425 

 
539 906 51.579 

20 628 841 
 

342 410 3.828 
21 629 757 674 184 236 2.172 
22 400 570 419 244 280 6.109 
23 477 796 

 
279 397 5.422 

24 475 939 
 

209 345 14.751 
25 776 1407 

 
335 545 21.907 

26 736 1043 
 

387 464 29.281 
27 868 1145 

 
387 449 47.109 

28 862 1607 
 

433 471 26.546 
29 877 1244 

 
382 514 73.625 

30 1237 1762   488 532 78.485 

 

The experimental evaluation was mainly focused on temporal planning problems 

with significant presence of resource reasoning, which determined the three chosen 

domains that also represented the initial motivation examples for the development of 

the planning system. The preliminary results from the other IPC temporal domains 

lacking resources show the dependency of Filuta on quality of the domain transition 

graphs, e.g. graphs with a few nodes and near-instant actions do not provide enough 

information to efficiently prune the search space. 



5   Conclusions and Future Work 

The paper presents an integrated approach to solving planning problems with time 

and resource constraints. The proposed system Filuta exploits existing techniques for 

temporal reasoning, has a modular architecture to describe resource constraints (other 

types of resources can be easily added), and uses domain transition diagrams to guide 

the search procedure. Experimental comparison showed that Filuta generates better 

plans than existing state-of-the-art planners. The experiments also showed the bottle-

necks of such integrated systems. Most of the time during planning was spent by 

maintenance of the temporal network so novel incremental techniques for temporal 

reasoning may significantly improve runtime. Also resource reasoning in Filuta is still 

not fully exploiting the existing techniques from scheduling and for example the ex-

isting global constraints modeling resources may help there. Similarly, advanced 

planning techniques such as finding landmarks or using more advanced heuristics 

may be added. 

Acknowledgments. The research is supported by the Czech Science Foundation 

under the contract 201/07/0205. 

References 

1. Ero, K., Nau, D., Subrahmanian, V.: Complexity, decidability and undecidability results 

for domain-independent planning. Artificial Intelligence 76, 65-88 (1995) 

2. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice. Morgan 

Kaufmann Publishers, San Francisco (2004) 

3. Baptiste, P., Pape, C., Nuijten, W.: Constraint-based Scheduling: Applying Constraint 

Programming to Scheduling Problems Second Printing edn. Kluwer Academic Publishers 

(2001) 

4. Jonsson, P., Bäckström, C.: State-variable planning under structural restrictions: 

Algorithms and complexity. Artificial Intelligence, 100(1-2):125-176 (1998) 

5. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artificial Intelligence, 

49:91-95 (1991) 

6. Dechter, R.: Constraint Processing. Elsevier, Morgan Kauffman Publishers (2003) 

7. Planken, L. R.: New Algorithms for the Simple Temporal Problem. Master thesis, Faculty 

EEMCS, Delft University of Technology, Delft, the Netherlands (2008) 

8. Vidal, V., Geffner, H.: Branching and pruning: An optimal Temporal POCL Planner based 

on Contraint Programming. Artificial Intelligence, 298-335 (2006) 

9. Bäckström, C., Nebel, B.: Complexity results for SAS+ planning. Computational 

Intelligence, 625-665 (1995) 

10. Laborie, P.: Algorithm for propagating resource constraints in AI planning and scheduling: 

existing approaches and new results. Proceedings of the European Conference on 

Planning, 205-216 (2001) 

11. Dvořák, F.: AI Planning with Time and Resource Constraints. Master Thesis, Charles 

University in Prague, Faculty of Mathematics and Physics, Prague (2009) 

12. Helmert, M., Do, M., Refanidis, I. In: International Planning Competition 2008 - Determi-

nistic Part. (Accessed 2008) Available at: http://ipc.informatik.uni-freiburg.de/ 


