Evolutionary Algorithms for Optimization

Darrell Whitley
Colorado State AI Lab
Colorado State University

OVERVIEW

04-14 Genetic Algorithms and Models

15-18 Evolution Strategies
19-33 Variants, CHC, Genitor, Parallel
34-40 No Free Lunch
41-47 Gray Codes, Ridges, Temperature Inversion
48-52 CMA Evolution Strategies
53-60 Quad Search, Hybrid/Memetic Algorithms
61-79 Tabu Search, Permutation Operators, GAs and Scheduling
GENETIC ALGORITHMS

CMA-EVOLUTION STRATEGIES

EVOLUTION ARY PROGRAMMING

CHC

MEMETIC ALGORITHMS

HYBRID EVOLUTIONARY ALGORITHMS

PARALLEL ISLAND MODELS

Local Search, Tabu Search, Generalized Pattern Search, Nelder-Mead ...

GENETIC RECOMBINATION

Let the following two binary strings represent an encoding of 5 parameters that are used in some optimization problems.

| 1001010 | 1101100 | 0111010 | 1010010 | 1000010 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0101110 | 0111101 | 0110110 | 1101000 | 1010101 |

Which Produces the Offspring
01011101101100011101011010001010101
10010100111101011011010100101000010

SIMPLE GENETIC ALGORITHM MODEL

CPAIOR 2005-6

THE SCHEMA THEOREM

Selection Only: $P(H, t+$ intermediate $)=P(H, t) \frac{f(H)}{f}$.
An Exact Calculation:

$$
\begin{gathered}
P(H, t+1)=\left(1-p_{c}\right) P(H, t) \frac{f(H)}{\bar{f}}+p_{c}\left[P(H, t) \frac{f(H)}{\bar{f}}(1-\text { losses })+\text { gains }\right] \\
P(H, t+1)=P(H, t) \frac{f(H)}{\bar{f}}\left(1-p_{c} \text { losses }\right)+p_{c} \text { gains }
\end{gathered}
$$

A Common Version of the "Schema Theorem":
$P(H, t+1) \geq P(H, t) \frac{f(H)}{f}\left[1-p_{c} \frac{\Delta(H)}{L-1}\left(1-P(H, t) \frac{f(H)}{f}\right)\right]\left(1-p_{m}\right)^{o(H)}$

The Vose and Liepins Model

The i th component of vector s^{t} is the probability that the string i is selected for the gene pool.

$$
s_{i}^{t}=P(i, t) f(i) / \bar{f}
$$

Construct a mixing matrix M where the i, j th entry $m_{i, j}=r_{i, j}(0)$. This matrix gives the probabilities that crossing strings i and j will produce the string $i=0$. Then the proportional representation for string 0 at time $t+1$ is given by:

$$
p_{0}=s^{T} M s
$$

Matrix F stores the fitness values along the diagonal.

$$
s^{t+1}=\frac{F p^{t+1}}{1^{T} F p^{t+1}}
$$

MUTATION

Let M_{1} be the recombination matrix.
Define \mathcal{Q} as the mutation matrix.

Mutation can be done after crossover: $p^{T} \mathcal{Q}$
Mutation can be done before crossover: $s^{T} \mathcal{Q}$ or $\mathcal{Q}^{T} s$

$$
\begin{gathered}
p_{0}^{t+1}=\left(\mathcal{Q}^{T} s\right)^{T} M_{1}\left(\mathcal{Q}^{T} s\right) \\
p_{0}{ }^{t+1}=s^{T}\left(\mathcal{Q} M_{1} \mathcal{Q}^{T}\right) s \\
p_{0}{ }^{t+1}=s^{T}\left(\mathcal{Q} M_{1} \mathcal{Q}^{T}\right) s \\
p_{0}{ }^{t+1}=s^{T} M s \quad \text { where } \quad M=\left(\mathcal{Q} M_{1} \mathcal{Q}^{T}\right)
\end{gathered}
$$

A Transform Function using bit-wise exclusive-or: \oplus

$$
\begin{aligned}
& 000 \oplus 010 \Rightarrow 010 \\
& 001 \oplus 010 \Rightarrow 011 \\
& 010 \oplus 010 \Rightarrow 000 \\
& 011 \oplus 010 \Rightarrow 001 \\
& 100 \oplus 010 \Rightarrow 110 \\
& 101 \oplus 010 \Rightarrow 111 \\
& 110 \oplus 010 \Rightarrow 100 \\
& 111 \oplus 010 \Rightarrow 101
\end{aligned}
$$

Let $r_{i, j}(k)$ be the probability that k results from the recombination of strings i and j . If recombination is a combination of crossover and mutation then

$$
r_{i, j}(k \oplus q)=r_{i \oplus k, j \oplus k}(q) \text { which implies } r_{i, j}(k)=r_{i \oplus k, j \oplus k}(0)
$$

We use this to construct $G\left(p^{t}\right)$ which is the exact trajectory of an infinite population: $p^{t+1}=G\left(p^{t}\right)$

CPAIOR 2005-12

MARKOV MODELS

The Markov Model is an N X N transition matrix \mathbf{Q}, where $Q_{i, j}$ is the probability that the $k^{t h}$ generation is population \mathcal{P}_{j} given that the $(k-1)^{t h}$ population is \mathcal{P}_{i}.

Let $<Z_{0}, Z_{1}, Z_{2}, \ldots, Z_{r}-1>$ represent a population, where Z_{k} represents the number of copies of string k in population and $r=2^{L}$.

Vector p vector represents the distribution of an infinite population, and the probability distribution for generating any single string.

$$
Q_{i, j}=K!\prod_{y=0}^{r-1} \frac{\left(G\left(p^{t}\right)_{y}\right)^{Z_{y}}}{Z_{y}!}
$$

EVOLUTION STRATEGIES

- Uses Real-Valued Parameter Representation
- (μ, λ)-selection:
λ Offspring replace μ Parents
- $(\mu+\lambda)$-selection:

Truncation Selection

- Self Adaptive Mutation and Rotation
- Blending Recombination

Note when $\lambda>\mu$ we generate extra offspring, then reduce back to μ.

Simple Mutations

Correlated Mutation via Rotation
$N(0,1)$ normally distributed 1-D random variable, zero mean $\sigma=1.0$. $N_{i}(0,1)$ the same function, a new sample for each i. τ, τ^{\prime} and β denote constants that control step sizes.

Mutation acts on a chromosome $\langle\vec{x}, \vec{\sigma}, \vec{\alpha}\rangle$ to creat a new chomosome $<\vec{x}^{\prime}, \vec{\sigma}^{\prime}, \vec{\alpha}^{\prime}>$

The new step size: $\sigma_{i}^{\prime}=\sigma_{i} \exp \left(\tau^{\prime} N(0,1)+\tau N_{i}(0,1)\right)$
The new rotations: $\alpha_{j}^{\prime}=\alpha_{j}+\beta N_{j}(0,1)$
The new object parameters: $\vec{x}^{\prime}=\vec{x}+\vec{N}\left(\overrightarrow{0}, \mathbf{C}\left(\vec{\sigma}^{\prime}, \vec{\alpha}^{\prime}\right)\right)$
where $\mathbf{C}^{-\mathbf{1}}$ is a covariance matrix constructed from $\vec{\sigma}^{\prime}$ and $\vec{\alpha}^{\prime}$.

The $1 / 5$ rule for the Sphere Function.
When the step size is adapted so that 1 mutation in 5 is an improving move, the speed to the optimum is (approximately) maximized.

A Sample Set of Evolutionary Algorithms

- Simple Genetic Algorithm: Holland/Goldberg
- Evolution Strategies: Schwefel/Rechenburg
- Genitor, Steady-State GAs: Whitley
- CHC: Eshelman
- CMA Evolution Strategies:Hansen, Ostermeier
- Parallel Genetic Algorithms
- Island Model Genetic Algorithms
- Cellular Genetic Algorithms

The Simple Genetic Algorithm (with Elitism)

- Roulette Wheel Selection
- One Point Crossover
- Mutation
- Elitism

SIMPLE GENETIC ALGORITHM MODEL

Universal Stochastic Sampling, Roulette Wheel Selection

TOURNAMENT SELECTION

Time t
Time t
intermediate

A Less Noisy Form of Tournament Selection

Assume a population of size K
For $i=1$ to K
Compare the $i^{\text {th }}$ member of the population
against a random member of the population.
Keep the best.

Genitor: A "Steady State" GA

- Rank Based Selection
- Two Point Crossover with Reduced Surrogates
- Randomly Choose One Offspring
- Mutate
- Insert and Displace Worst

GENITOR MODEL

CHC

- Population-elitist selection: Truncation Selection
- Incest Prevention
- HUX
- Restarts

CHC MODEL

\(\left.\begin{array}{|c|}\hline Parent \mathrm{i}

\hline Child \mathrm{k}

\hline Child l

\hline Parent \mathrm{j}

\hline \cdot

\vdots

\hline Parent \mathrm{m}

\hline \mathbf{P (t + 1)}\end{array}\right]\)| |
| :---: |
| $\mathbf{P e s t} \mathbf{t})+\mathbf{C}(\mathbf{t})$ |
| |

CPAIOR 2005-28

ONE POINT CROSSOVER

UNIFORM CROSSOVER

HUX

Parallel Genetic Algorithms

- Island Model Genetic Algorithm
- Coarse Grained
- Cellular Genetic Algorithm
- Fine Grained

ISLAND MODEL WITH MIGRATION

CPAIOR 2005-31

CPAIOR 2005-32

CELLULAR GENETIC ALGORITHM MODEL

Some No Free Lunch Results

For ANY measure of algorithm performance:

The aggregate behavior of any two search algorithms is equivalent when compared all possible discrete functions.

The aggregate behavior of
ALL possible search algorithms is equivalent when compared over any two discrete functions.

All search algorithms are equivalent when compared over all possible representations.

CPAIOR 2005-34

Variations on No Free Lunch

Consider any algorithm A_{i} applied to function f_{j}.
$\operatorname{On}\left(A_{i}, f_{j}\right)$ outputs the order in which A_{i} visits the elements in the codomain of f_{j}. For every pair of algorithms A_{k} and A_{i} and for any function f_{j}, there exist a function f_{l} such that

$$
O n\left(A_{i}, f_{j}\right) \equiv O n\left(A_{k}, f_{l}\right)
$$

Consider a "BestFirst" local search with restarts.
Consider a "WorstFirst" local search with restarts.

For every j there exists an l such that

$$
O n\left(\text { BestFirst }, f_{j}\right) \equiv O n\left(\text { WorstFirst }, f_{l}\right)
$$

CPAIOR 2005-36

Theorem:

NFL holds for a set of functions IFF the set of functions form a permutation set.

The "Permutation Set" is the closure of a set of functions with respect to a permutation operator. (Schmacher, Vose and Whitley-GECCO 2001).

F1: A B C	F1:	0	0	0	1	
F2: A C B	F2:	0	0	1	0	
F3:	B A C	F3:	0	1	0	0
F4: B C A	F4:	1	0	0	0	
F5: CAB						
F6: CB A						

Theorem:

Given a finite set of N unique co-domain values, NFL hold over a set of N ! functions where the average description length is $\mathrm{O}(\mathrm{N} \log \mathrm{N})$.

Sketch of Proof:

Construction a Binary Tree with N! leaves. Each leaf represents one of the N! functions. To just label each function requires $\log (N!)$ bits. Each label has average length $\log (\mathrm{N}!)=\mathrm{O}(\mathrm{N} \log \mathrm{N})$.

Note enumeration also has cost $\mathrm{O}(\mathrm{N} \log \mathrm{N})$.

Corollary:

If a fixed fraction of the co-domain values are unique, the set of N ! functions where NFL holds has average description length $O(N \log N)$.

QUESTION:

How should we evaluate search algorithms?

Let β represent a set of benchmarks.
$P(\beta)$ is the permutation closure over β.

If algorithm \mathbf{S} is better than algorithm \mathbf{T} on β THEN \mathbf{T} is better than \mathbf{S} on $P(\beta)-\beta$.

S. Christensen and F. Oppacher

What can we learn from No Free Lunch? GECCO 2001

CPAIOR 2005-40

Gray vs Binary vs Real

There are good arguments for Gray codes. The number of optima in Gray space are less than or equal to the number of optima in the "defining neighborhood" of Real Space.

The number of local optima are important for local search methods.

Comparisons that compare only Real and Binary are less common (But still happen.)

Comparisons that involve different levels of bit precision are very common.

Adjacency

4-bit Gray Encoding			
1111	1110	1010	1011
10	11	12	13
()
1101	1100	1000	1001
9	8	15	14
0101	0100	0000	0001
6	7	0	1
)
0111	0110	0010	0011
5	4	3	2

But Gray codes are "blind" to ridges.

Ruffled by Ridges:
 How Evolutionary Algorithms Can Fail

- Direction - coordinate search cannot see improving points that fall between axis.
- Precision - increasing precision generally decreases the number of false optima.

CPAIOR 2005-44

The Temperature Inversion Problem

Researchers have created a forward model that relates 43 vertical temperature profiles (\vec{x}) to 2,000 observed measurements (\vec{y}).

- $\operatorname{model}(\vec{x}) \longrightarrow \vec{y}$
- An analytical inversion of this model is impossible.
- Formulate as an optimization problem:

$$
f(\vec{x})=\left(\vec{y}_{o b s}-\operatorname{model}(\vec{x})\right)^{T}\left(\vec{y}_{o b s}-\operatorname{model}(\vec{x})\right)
$$

- Sometimes first order derivatives can be calculated analytically. In the general case, this is impossible.

Empirical Results

Why is the temperature problem so hard?

- Ridges in search space.

CPAIOR 2005-47

CMA Covariance Matrix Adaptation

Let $\mathbf{Z}^{(g+1)}$ be the covariance of the μ best individuals.
Let $\mathbf{P}^{(g+1)}$ be the covariance of the evolution path.
The new covariance matrix is:

$$
\mathbf{C}^{(g+1)}=\left(1-c_{\operatorname{cov}}\right) \mathbf{C}^{(g)}+c_{\operatorname{cov}}\left(\alpha_{\operatorname{cov}} \mathbf{P}^{(g+1)}+\left(1-\alpha_{\operatorname{cov}}\right) \mathbf{Z}^{(g+1)}\right)
$$

Where $c_{c o v}$ and $\alpha_{c o v}$ are constants that weight each input.

CPAIOR 2005-49

CPAIOR 2005 -50

There is a fundamental tension is search between:

- Following the gradient to locate an optima
- Exploring as many optima as possible

"Exploration versus Exploitation"
"Intensification versus Diversification"

PRECISION plays a key role in this trade-off

Comparing "Real-Valued" and "Bit" representation is much more complex than most of the literature suggests.

Genetic algorithms at 20 bits of precision can be 10 to 100 times slower to converge using 20 versus 10 bits of precision.

Low Precision might "miss" good solutions.
But it aids exploration.

High Precision can result in low/slow exploration.

Local Quad Search

"Quad Search" uses only 4 neighbors, and evaluates 2.
On unimodal functions it is proven to converge to optimal in less than 2 L evaluations.

CPAIOR 2005-54

The Sphere Function

Algorithm	20-Dimension		30-D	
	Sol	Evals	Sol	Evals
Quad Search	30	1240	30	1890
Next Ascent	30	12115	30	18420
Steepest Asc	30	208198	30	458078
$(50+50) \mathrm{ES}$	30	130571	28	500807

All searches at 32 bits of precision. BUT did we use the right Evolution Strategy?? The 1/5 rule.

A Hybrid: Genetic Quad Search

We used GENITOR, a steady-state GA, as the genetic algorithm.
We also tested CHC and SGA not as good.

We used 3 forms of local search:

1. Quad Search
2. Local Search Bit Climbing (RBC, next ascent)
3. Steepest Ascent Bit Climbing (SABC)

We ran RBC (and Steepest Ascent) in three modes:

1. Full (F): all strings improved with local search.
2. Stochastic (S): a string is improved with 5% probability.
3. Restricted (R): improve each string until 1 improvement is found.

Rana's Function $F(x, y)=x \sin (\sqrt{|y+1-x|}) \cos (\sqrt{|x+y+1|})$

$$
+(y+1) \cos (\sqrt{|y+1-x|}) \sin (\sqrt{|x+y+1|})
$$

How do the hybrids do?

Function	ALG	Mean	σ	Sol	Evals
Powell	CHC	0	0.0	30	200 K
Powell	Quad-F	$3 \mathrm{e}-9$	$9 \mathrm{e}-9$	22	262 K
Powell	RBC-F	$2 \mathrm{e}-4$	$8 \mathrm{e}-5$	0	-
Powell	RBC-S	$1 \mathrm{e}-7$	$7 \mathrm{e}-7$	5	351 K
Rana	CHC	-495.5	5.5	0	-
Rana	Quad-F	-510.2	2.5	26	267 K
Rana	RBC-F	-471.4	7.0	0	-
Rana	RBC-S	-484.0	7.6	0	-

Function	Algorithm	Mean	σ	Solved	Evals
Rana 10-D	CMA-ES	-388.0	15.0	0	500 K
	Quad	-434.8	8.4	0	500 K
	RBC	-446.4	9.9	0	500 K
	Genitor	-443.4	17.8	0	500 K
	CHC	-495.5	5.5	0	500 K
	Hybrid Quad	-510.3	2.5	26	268 K

NO FREE LUNCH is not proven to hold over the class of problems in NP unless we prove that $P \neq N P$. If $P=N P$ then there are more efficient algorithms than RANDOM SEARCH.

NO FREE LUNCH does not hold over the class of problems in NP that have ratio bounds which can be exploited by branch and bound algorithms.

Local Search for Permutations

Consider the following jobs to be scheduled

```
D J K G C N A B E M F H L I
```

Let the move operator be a "shift operator".
Pick a job to move.
Pick a location after some other job.

EXAMPLE: Move K After B

$$
\begin{aligned}
& \text { D J K G C N A B E M F H L I } \\
& \text { - <-------- } \\
& \text { D J G C N AB K E M F H L I } \\
& \text { <-------- - }
\end{aligned}
$$

EXAMPLE: Move B After K

D J K G C N A B E M F H L I ------> -

D J K B G C N A E M F H L I - ------>

Complexity of 1-move is $O\left(N^{2}\right)$

TABU SEARCH

Brute Force: the last $|T|$ solutions are tabu. prevents cycles of $|T|$ or less.

Assume we ... Move B ... After K

TABU: B cannot be moved again for 5 steps

TABU: Nothing can move after K for 5 steps

TABU-LIST:

Tabu Locations: $\mathrm{K}>\mathrm{D}>\mathrm{I}>\mathrm{J}$		

CPAIOR 2005-64

REACTIVE TABU SEARCH

Adapts search parameters based on recent history.

1. ADAPTIVE PROHIBITION:

The length of the tabu list (i.e., the prohibition time, T) is determined through feedback mechanisms during the search.

T is increased when diversification is needed;
(repetition of previously-visited points)
it decreases when this need disappears.
2. ESCAPE:

A number of random moves away from the current point.
3. FAST MEMORY (HISTORY):

To store previous-visited points.
An online tutorial and key papers can be found at http:rtm.science.unitn.it/~battiti/tutorial/tutorial.html

TABU SEARCH often does not work well for parameter optimzation problems.

Is also doesn't seem to help (much) with classic problems like MAXSAT.

Works extremely well for some scheduling application.

Why?

CPAIOR 2005-67

KEY ISSUES:

1. Good local minima are very near other good local minima
2. The neighborhood size must be pruned.

Complexity of $O\left(N^{2}\right)$ is too much.
A critical path neighborhood is used for Job Shop Scheduling.

SO:
Tabu Search works well when the neigborhood is restricted AND

Short uphill moves finds new basins of attraction.

On some scheduling problems where these things are not true, Genetic Algorithms out-performs Tabu Search.

Examples:
Warehouse Scheduling and Satellite Scheduling

Syswerda's Order Crossover

```
Parent 1: A B C D E F G H I J K
Parent 2: C F H A K B E J D I G
    Parent 1 chosen
Offspring: A C F D H B G E I J K
```

Order Crossover was used in the GENITOR algorithm.

Customer Priority Queue: A, B, C, D, E, F, G, H, I, ..., Z

The Objective Function

- mean-time-at-dock
- average-inventory
- Combination of mean-time-at-dock and average-inventory ${ }^{a}$

$$
o b j=\frac{\left(a i-\mu_{a i}\right)}{\sigma_{a i}}+\frac{\left(m t-\mu_{m t}\right)}{\sigma_{m t}}
$$

[^0]Job2

The PERMUTATION FLOWSHOP SCHEDULING PROBLEM.

Benchmark are typically generated randomly. Real-world problems may have correlated structure. Job could be machine correlated or job correlated.

The BIG VALLEY effect

CPAIOR 2005-76

For Correlated Problems, the "Big Valley" looks different.

JOB CORRELATED PROBLEMS. Performance of optimization algorithms. The degree of randomness is indicated along the x -axis, while the deviation from the best-known solution is indicated along the y-axis.

MACHINE CORRELATED PROBLEMS. Performance of optimization algorithms. The degree of randomness is indicated along the x -axis, while the deviation from the best-known solution is indicated along the y-axis.

[^0]: ${ }^{a}$ Bresina, Drummond and Swanson, "Expected Solution Quality", IJCAI 1995

