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GENETIC RECOMBINATION

Let the following two binary strings represent an encoding of 5 parameters
that are used in some optimization problems.

01011          100111101011011          011010001010101

10010          101101100011101          010100101000010

0101110      0111101      0110110      1101000      1010101

10010                              010100101000010100111101011011  

Which Produces the Offspring

01011                              011010001010101101101100011101

1001010      1101100      0111010      1010010      1000010
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THE SCHEMA THEOREM

Selection Only: P (H, t + intermediate) = P (H, t) f(H)

f̄
.

An Exact Calculation:

P (H, t + 1) = (1 − pc)P (H, t) f(H)

f̄
+ pc

[

P (H, t) f(H)

f̄
(1 − losses) + gains

]

P (H, t + 1) = P (H, t)
f(H)

f̄
(1 − pc losses) + pcgains

A Common Version of the “Schema Theorem”:

P (H, t + 1) ≥ P (H, t) f(H)

f̄

[

1 − pc
∆(H)
L−1

(1 − P (H, t) f(H)

f̄
)
]

(1 − pm)o(H)
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The Vose and Liepins Model

The i th component of vector st is the probability that the string i is selected
for the gene pool.

st
i = P (i, t)f(i)/f̄

Construct a mixing matrix M where the i, jth entry mi,j = ri,j(0). This
matrix gives the probabilities that crossing strings i and j will produce the
string i = 0. Then the proportional representation for string 0 at time t+1 is
given by:

p0 = sT Ms

Matrix F stores the fitness values along the diagonal.

st+1 =
Fpt+1

1T Fpt+1
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MUTATION

Let M1 be the recombination matrix.

Define Q as the mutation matrix.

Mutation can be done after crossover: pTQ

Mutation can be done before crossover: sTQ or QT s

p0
t+1 = (QT s)T M1(QT s)

p0
t+1 = sT (QM1QT )s

p0
t+1 = sT (QM1QT )s

p0
t+1 = sT Ms where M = (QM1QT )
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A Transform Function using bit-wise exclusive-or: ⊕

000 ⊕ 010 ⇒ 010

001 ⊕ 010 ⇒ 011

010 ⊕ 010 ⇒ 000

011 ⊕ 010 ⇒ 001

100 ⊕ 010 ⇒ 110

101 ⊕ 010 ⇒ 111

110 ⊕ 010 ⇒ 100

111 ⊕ 010 ⇒ 101

Let ri,j(k) be the probability that k results from the recombination of strings i
and j. If recombination is a combination of crossover and mutation then

ri,j(k ⊕ q) = ri⊕k,j⊕k(q) which implies ri,j(k) = ri⊕k,j⊕k(0).

We use this to construct G(pt) which is the exact trajectory of an infinite
population: pt+1 = G(pt)
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MARKOV MODELS

The Markov Model is an N X N transition matrix Q, where Qi,j is the
probability that the kth generation is population Pj given that the (k − 1)th

population is Pi.

Let < Z0, Z1, Z2, ..., Zr − 1 > represent a population, where Zk represents
the number of copies of string k in population and r = 2L.

Vector p vector represents the distribution of an infinite population, and the
probability distribution for generating any single string.

Qi,j = K!
r−1
∏

y=0

(G(pt)y)Zy

Zy!
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EVOLUTION STRATEGIES

• Uses Real-Valued Parameter Representation

• (µ, λ)-selection:
λ Offspring replace µ Parents

• (µ + λ)-selection:
Truncation Selection

• Self Adaptive Mutation and Rotation

• Blending Recombination

Note when λ > µ we generate extra offspring, then reduce back to µ.
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Simple Mutations Correlated Mutation via Rotation
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N(0, 1) normally distributed 1-D random variable, zero mean σ = 1.0.
Ni(0, 1) the same function, a new sample for each i.
τ, τ ′ and β denote constants that control step sizes.

Mutation acts on a chromosome < ~x, ~σ, ~α >

to creat a new chomosome < ~x′, ~σ′, ~α′ >

The new step size: σ′
i = σi exp(τ ′N(0, 1) + τNi(0, 1))

The new rotations: α′
j = αj + βNj(0, 1)

The new object parameters: ~x′ = ~x + ~N(~0,C(~σ′, ~α′))

where C
−1 is a covariance matrix constructed from ~σ′ and ~α′.
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The 1/5 rule for the Sphere Function.

When the step size is adapted so that 1 mutation in 5 is an improving move,
the speed to the optimum is (approximately) maximized.
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A Sample Set of Evolutionary Algorithms

• Simple Genetic Algorithm: Holland/Goldberg

• Evolution Strategies: Schwefel/Rechenburg

• Genitor, Steady-State GAs: Whitley

• CHC: Eshelman

• CMA Evolution Strategies:Hansen, Ostermeier

• Parallel Genetic Algorithms

– Island Model Genetic Algorithms

– Cellular Genetic Algorithms
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The Simple Genetic Algorithm (with Elitism)

• Roulette Wheel Selection

• One Point Crossover

• Mutation

• Elitism
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SIMPLE GENETIC ALGORITHM MODEL
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A Less Noisy Form of Tournament Selection

Assume a population of size K

For i = 1 to K

Compare the ith member of the population
against a random member of the population.
Keep the best.
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Genitor: A “Steady State” GA

• Rank Based Selection

• Two Point Crossover with Reduced Surrogates

• Randomly Choose One Offspring

• Mutate

• Insert and Displace Worst
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CHC

• Population-elitist selection: Truncation Selection

• Incest Prevention

• HUX

• Restarts
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Parallel Genetic Algorithms

• Island Model Genetic Algorithm
– Coarse Grained

• Cellular Genetic Algorithm
– Fine Grained
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ISLAND MODEL WITH MIGRATION
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CELLULAR GENETIC ALGORITHM MODEL
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Some No Free Lunch Results

For ANY measure of algorithm performance:

The aggregate behavior of any two search algorithms is equivalent when
compared all possible discrete functions.

The aggregate behavior of
ALL possible search algorithms is equivalent

when compared over any two discrete functions.

All search algorithms are equivalent when compared over all possible

representations.
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Variations on No Free Lunch

Consider any algorithm Ai applied to function fj .

On(Ai, fj) outputs the order in which Ai visits the elements in the codomain
of fj . For every pair of algorithms Ak and Ai and for any function fj , there

exist a function fl such that

On(Ai, fj) ≡ On(Ak, fl)

Consider a “BestFirst” local search with restarts.

Consider a “WorstFirst” local search with restarts.

For every j there exists an l such that

On(BestF irst, fj) ≡ On(WorstF irst, fl)
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POSSIBLE POSSIBLE

ALGORITHMS FUNCTIONS

A1: 1 2 3 F1: A B C

A2: 1 3 2 F2: A C B

A3: 2 1 3 F3: B A C

A4: 2 3 1 F4: B C A

A5: 3 1 2 F5: C A B

A6: 3 2 1 F6: C B A
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Theorem:
NFL holds for a set of functions IFF

the set of functions form a permutation set.

The “Permutation Set” is the closure of a set
of functions with respect to a permutation operator.

(Schmacher, Vose and Whitley–GECCO 2001).

F1: A B C F1: 0 0 0 1

F2: A C B F2: 0 0 1 0

F3: B A C F3: 0 1 0 0

F4: B C A F4: 1 0 0 0

F5: C A B

F6: C B A
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Theorem:
Given a finite set of N unique co-domain values, NFL hold over a set of N!
functions where the average description length is O(N log N).

Sketch of Proof:
Construction a Binary Tree with N! leaves. Each leaf represents one of the N!
functions. To just label each function requires log(N!) bits. Each label has
average length log(N!) = O(N log N).

Note enumeration also has cost O(N log N).

Corollary:
If a fixed fraction of the co-domain values are unique, the set of N! functions
where NFL holds has average description length O(N log N).
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QUESTION:

How should we evaluate search algorithms?

Let β represent a set of benchmarks.

P (β) is the permutation closure over β.

If algorithm S is better than algorithm T on β THEN T is better than S on

P (β) − β.
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S. Christensen and F. Oppacher
What can we learn from No Free Lunch? GECCO 2001

CPAIOR 2005 –40



Gray vs Binary vs Real

There are good arguments for Gray codes. The number of optima in Gray
space are less than or equal to the number of optima in the “defining
neighborhood” of Real Space.

The number of local optima are important for local search methods.

Comparisons that compare only Real and Binary
are less common (But still happen.)

Comparisons that involve different levels of bit precision are very common.
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But Gray codes are “blind” to ridges.

CPAIOR 2005 –43



Ruffled by Ridges:
How Evolutionary Algorithms Can Fail

• Direction – coordinate search cannot see improving points that fall
between axis.

• Precision – increasing precision generally decreases the number of false
optima.
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The Temperature Inversion Problem

Researchers have created a forward model that relates 43 vertical temperature
profiles (~x) to 2,000 observed measurements (~y).

• model(~x) −→ ~y

• An analytical inversion of this model is impossible.

• Formulate as an optimization problem:

f(~x) = (~yobs − model(~x))T (~yobs − model(~x))

• Sometimes first order derivatives can be calculated analytically.
In the general case, this is impossible.
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Empirical Results
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Why is the temperature problem so hard?

• Ridges in search space.
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CMA Covariance Matrix Adaptation

Let Z(g+1) be the covariance of the µ best individuals.

Let P(g+1) be the covariance of the evolution path.

The new covariance matrix is:

C(g+1) = (1 − ccov)C
(g) + ccov

(

αcovP(g+1) + (1 − αcov)Z(g+1)
)

Where ccov and αcov are constants that weight each input.
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There is a fundamental tension is search between:

• Following the gradient to locate an optima

• Exploring as many optima as possible

“Exploration versus Exploitation”

“Intensification versus Diversification”

PRECISION plays a key role in this trade-off
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Comparing “Real-Valued” and “Bit” representation is much more complex
than most of the literature suggests.

Genetic algorithms at 20 bits of precision can be 10 to 100 times slower to
converge using 20 versus 10 bits of precision.

Low Precision might ”miss” good solutions.
But it aids exploration.

High Precision can result in low/slow exploration.
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Local Quad Search

N P N’a b c c’ b’ a’ x Y            z

Q1 Q2 Q3 Q4

“Quad Search” uses only 4 neighbors, and evaluates 2.
On unimodal functions it is proven to converge to optimal

in less than 2L evaluations.
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The Sphere Function

Algorithm 20-Dimension 30-D
Sol Evals Sol Evals

Quad Search 30 1240 30 1890
Next Ascent 30 12115 30 18420
Steepest Asc 30 208198 30 458078
(50+50) ES 30 130571 28 500807

All searches at 32 bits of precision.
BUT did we use the right Evolution Strategy?? The 1/5 rule.
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A Hybrid: Genetic Quad Search

We used GENITOR, a steady-state GA, as the genetic algorithm.

We also tested CHC and SGA .... not as good.

We used 3 forms of local search:

1. Quad Search
2. Local Search Bit Climbing (RBC, next ascent)
3. Steepest Ascent Bit Climbing (SABC)

We ran RBC (and Steepest Ascent) in three modes:

1. Full (F): all strings improved with local search.
2. Stochastic (S): a string is improved with 5% probability.
3. Restricted (R): improve each string until 1 improvement is found.
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Powell (x1+10x2)
2+(

√
5(x3−x4))

2+((x2−2x3)
2)2+(

√
10(x1−x4)

2)2
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Rana’s Function F (x, y) = xsin(
√

|y + 1 − x|)cos(
√

|x + y + 1|)
+ (y + 1)cos(

√

|y + 1 − x|)sin(
√

|x + y + 1|)
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How do the hybrids do?

Function ALG Mean σ Sol Evals

Powell CHC 0 0.0 30 200K

Powell Quad-F 3e-9 9e-9 22 262K
Powell RBC-F 2e-4 8e-5 0 —
Powell RBC-S 1e-7 7e-7 5 351K

Rana CHC -495.5 5.5 0 —

Rana Quad-F -510.2 2.5 26 267K
Rana RBC-F -471.4 7.0 0 —
Rana RBC-S -484.0 7.6 0 —
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Function Algorithm Mean σ Solved Evals

CMA-ES -388.0 15.0 0 500K

Quad -434.8 8.4 0 500K

Rana 10-D RBC -446.4 9.9 0 500K

Genitor -443.4 17.8 0 500K

CHC -495.5 5.5 0 500K

Hybrid Quad -510.3 2.5 26 268K
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NO FREE LUNCH is not proven to hold over the class of problems in NP
unless we prove that P 6= NP . If P = NP then there are more efficient
algorithms than RANDOM SEARCH.

NO FREE LUNCH does not hold over the class of problems in NP that have
ratio bounds which can be exploited by branch and bound algorithms.
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Local Search for Permutations

Consider the following jobs to be scheduled

D J K G C N A B E M F H L I

Let the move operator be a “shift operator”.

Pick a job to move.

Pick a location after some other job.
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EXAMPLE: Move K After B

D J K G C N A B E M F H L I

- <--------

D J G C N A B K E M F H L I

<-------- -

EXAMPLE: Move B After K

D J K G C N A B E M F H L I

------> -

D J K B G C N A E M F H L I

- ------>

Complexity of 1-move is O(N 2)
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TABU SEARCH

Brute Force: the last |T | solutions are tabu.
prevents cycles of |T | or less.

Assume we ... Move B ... After K

TABU: B cannot be moved again for 5 steps

TABU: Nothing can move after K for 5 steps

TABU-LIST: Tabu Moves: B > F > M > G > L

Tabu Locations: K > D > I > J > C
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REACTIVE TABU SEARCH
Adapts search parameters based on recent history.

1. ADAPTIVE PROHIBITION:

The length of the tabu list (i.e., the prohibition time, T) is determined
through feedback mechanisms during the search.
T is increased when diversification is needed;
(repetition of previously-visited points)
it decreases when this need disappears.

2. ESCAPE:

A number of random moves away from the current point.

3. FAST MEMORY (HISTORY):

To store previous-visited points.

An online tutorial and key papers can be found at
http:rtm.science.unitn.it/∼battiti/tutorial/tutorial.html
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TABU SEARCH often does not work well
for parameter optimzation problems.

Is also doesn’t seem to help (much)
with classic problems like MAXSAT.

Works extremely well for some scheduling application.

Why?
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KEY ISSUES:

1. Good local minima are very near other good local minima

2. The neighborhood size must be pruned.

Complexity of O(N2) is too much.
A critical path neighborhood is used for Job Shop Scheduling.
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SO:

Tabu Search works well when the neigborhood is restricted

AND

Short uphill moves finds new basins of attraction.

On some scheduling problems where these things are not true,
Genetic Algorithms out-performs Tabu Search.

Examples:

Warehouse Scheduling and Satellite Scheduling
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Syswerda’s Order Crossover

Parent 1: A B C D E F G H I J K

* * * * *

Parent 2: C F H A K B E J D I G

Parent 1 chosen

Offspring: A C F D H B G E I J K

Order Crossover was used in the GENITOR algorithm.
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Customer Priority Queue:   A, B, C, D, E, F, G, H, I, ..., Z
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The Objective Function

• mean-time-at-dock

• average-inventory

• Combination of mean-time-at-dock and average-inventory a

obj =
(ai−µai)

σai
+

(mt−µmt)
σmt

aBresina, Drummond and Swanson, “Expected Solution Quality”, IJCAI 1995

CPAIOR 2005 –74



� � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �� � � � � � � �

� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �� � � �� � � �� � � �

� � � �� � � �� � � �

� � � �� � � �� � � �

	 	 	 		 	 	 		 	 	 	


 
 

 
 

 
 

 
 


� � �� � �� � �� � �

� � �� � �� � �


 
 

 
 

 
 


Machine Correlated Jobs

Job Correlated Jobs

Job 1 Job2 Job3

The PERMUTATION FLOWSHOP SCHEDULING PROBLEM.

Benchmark are typically generated randomly.
Real-world problems may have correlated structure.
Job could be machine correlated or job correlated.
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For Correlated Problems, the “Big Valley” looks different.
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JOB CORRELATED PROBLEMS. Performance of optimization algorithms.
The degree of randomness is indicated along the x-axis, while the deviation
from the best-known solution is indicated along the y-axis.
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MACHINE CORRELATED PROBLEMS. Performance of optimization
algorithms. The degree of randomness is indicated along the x-axis, while the
deviation from the best-known solution is indicated along the y-axis.
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