H.P. WILLIAMS

LONDON SCHOOL OF ECONOMICS

MODELS FOR SOLVING THE TRAVELLING SALESMAN PROBLEM

h.p.williams@lse.ac.uk

STANDARD FORMULATION OF THE (ASYMMETRIC) TRAVELLING SALESMAN PROBLEM

Conventional Formulation:

(cities 1,2, ..., n) (Dantzig, Fulkerson, Johnson) (1954). x_{ij} is a link in tour

Minimise:

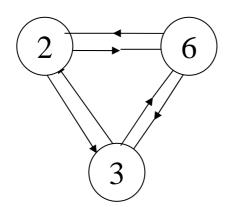
$$\sum_{i,j} oldsymbol{C}_{ij} oldsymbol{\mathcal{X}}_{ij}$$

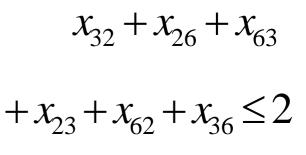
subject to:

$$\sum_{i} x_{ij} = 1 \quad \text{all } j$$
$$\sum_{j} x_{ij} = 1 \quad \text{all } i$$

 $\sum_{i,j\in S} x_{ij} \leq |S| - 1 \text{ all } S \subset \{2...,n\}$

e.g.





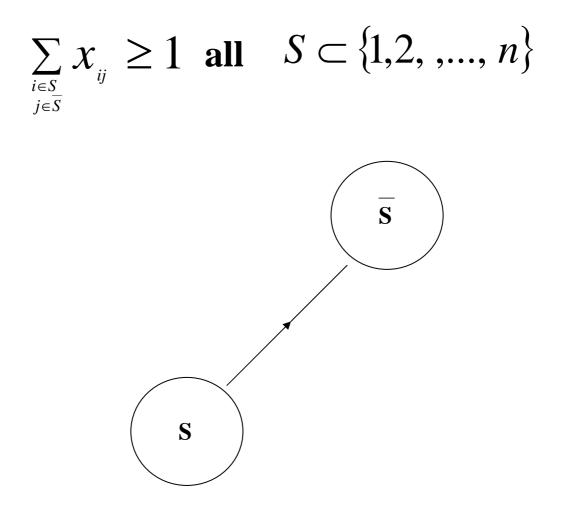
 $0(2^n)$ Constraints

 $= (2^{n-1} + n - 2)$ = n(n - 1)

 $0(n^2)$ Variables

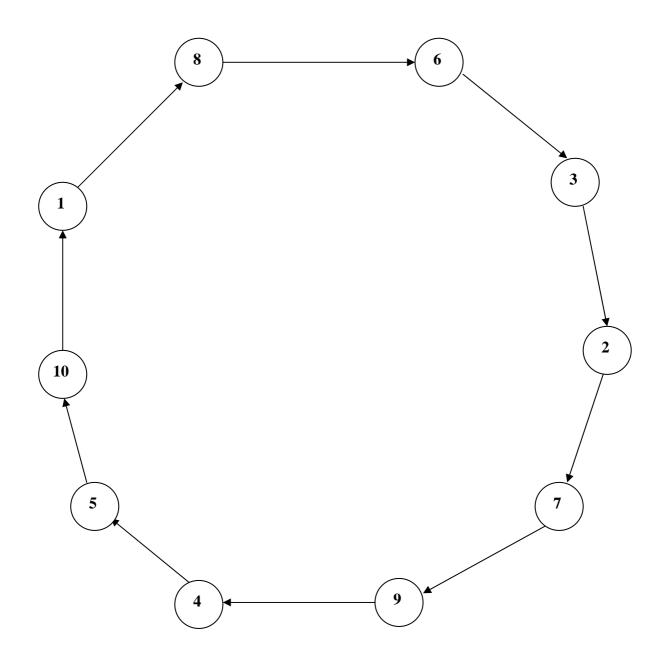
EQUIVALENT FORMULATION

Replace subtour elimination constraints with



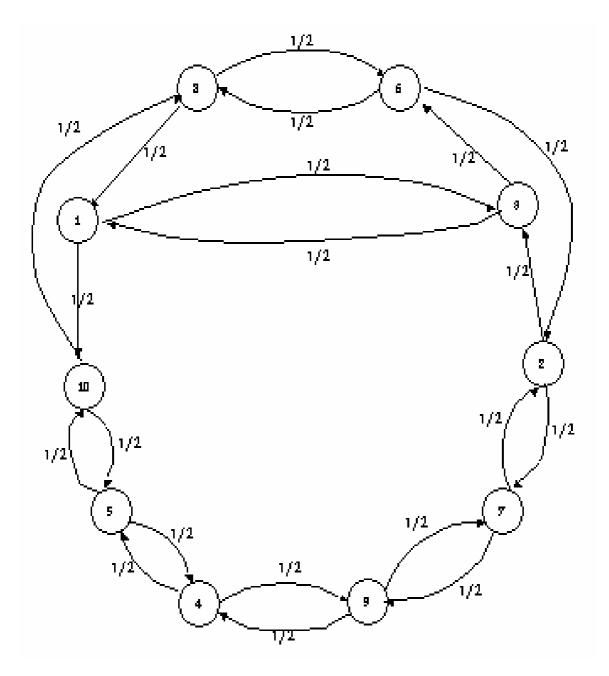
Add second set of constraints for all *i* in S and subtract from subtour elimination constraints for S

OPTIMAL SOLUTON TO A 10 CITY TRAVELLING SALESMAN PROBLEM



Cost = 881

FRACTIONAL SOLUTION FROM CONVENTIONAL (EXPONENTIAL) FORMULATION)



Cost = 878 (Optimal Cost = 881)

Sequential Formulation (Miller, Tucker, Zemlin (1960))

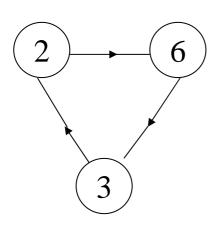
 u_i = Sequence Number in which city *i* visited

Defined for *i* = 2,3, ..., *n*

Subtour elimination constraints replaced by

S:
$$u_i - u_j + nx_{ij} \le n - 1$$
 $i, j = 2, 3, ..., n$

Avoids subtours but allows total tours (containing city 1)



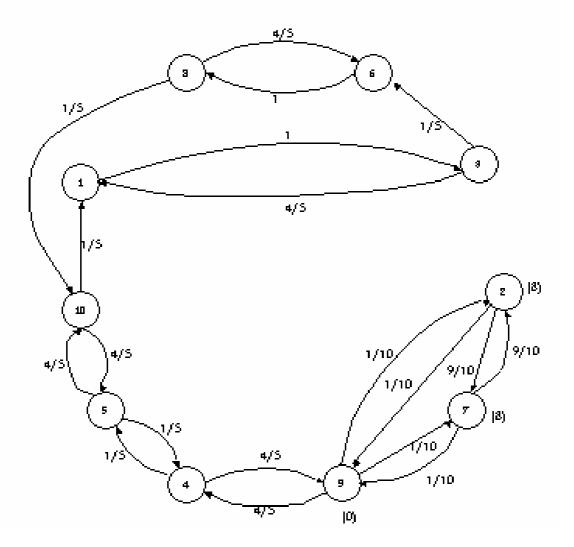
 $u_{2} - u_{6} + nx_{26} \le n-1$ $u_{6} - u_{3} + nx_{63} \le n-1$ $u_{3} - u_{2} + nx_{32} \le n-1$ \downarrow $3n \le 3(n-1)$

$0(n^2)$ Constraints		=	$(n^2 - n + 2)$		
$0(n^2)$	Variables	=	(n-1)(n+1)		

Weak but can add 'Logic Cuts'

e.g. $u_k \ge 1 + x_{ij} + x_{jk} - x_{1j}$

FRACTIONAL SOLUTION FROM SEQUENTIAL FORMULATION



Subtour Constraints Violated : e.g. $x_{27} + x_{72} \leq 1$ Logic Cuts Violated: e.g. $u_9 \geq 1 + x_{27} + x_{79} - x_{17}$ Cost = 773 $\frac{3}{5}$ (Optimal Cost = 881)

Flow Formulations

Single Commodity (Gavish & Graves (1978)) Introduce extra variables ('Flow' in an arc) Replace subtour elimination constraints by

F1:

$$y_{ij} \le (n-1)x_{ij} \text{ all } i, j$$

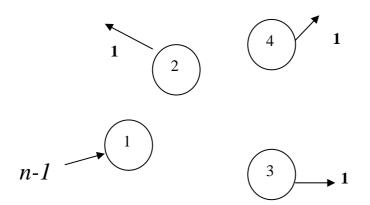
$$\sum_{j} y_{ij} = n-1$$

$$\sum_{i} y_{ij} - \sum_{k} y_{jk} = 1 \text{ all } j \ne 1$$

Can improve (F1') by amended constraints:

$$\mathbf{y}_{ij} \leq (\mathbf{n} - 2)\mathbf{x}_{ij}$$
 all $i, j \neq 1$

Network Flow formulation in y_{ij} variables over complete graph

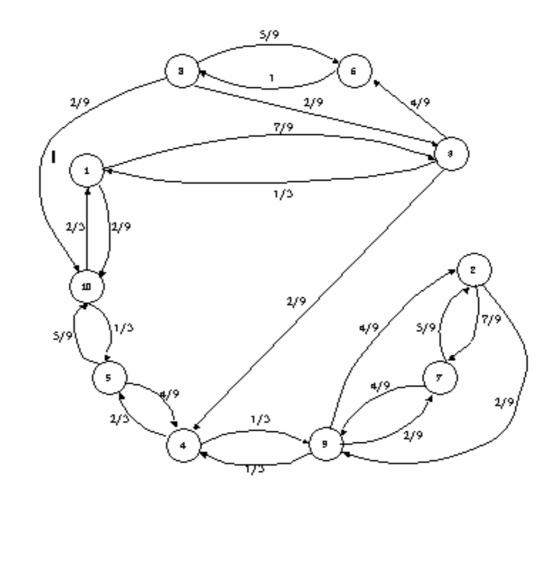


Graph must be connected. Hence no subtours possible.

$0(n^{2})$	Constraints	= n(n+2)

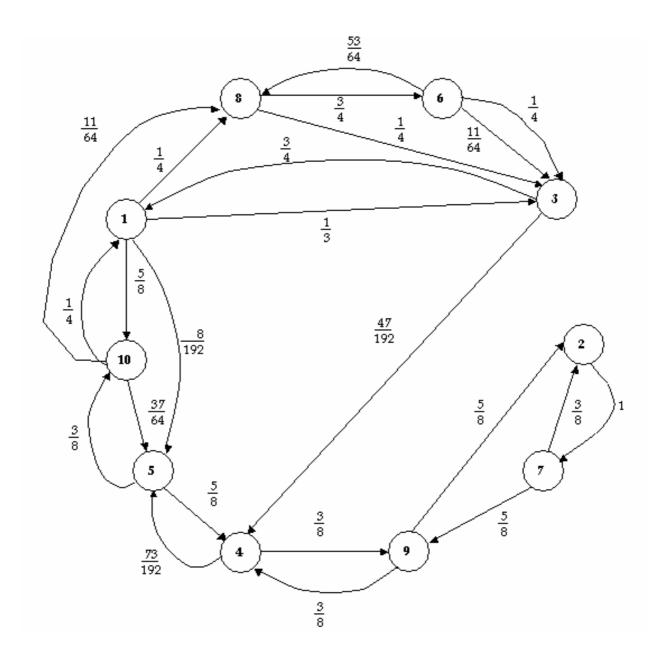
 $0(\mathbf{n}^2)$ Variables $= 2\mathbf{n}(\mathbf{n}-1)$

FRACTIONAL SOLUTION FROM SINGLE COMMODITY FLOW FORMULATION



Cost =
$$794 \frac{2}{9}$$
 (Optimal solution = 881)

FRACTIONAL SOLUTION FROM MODIFIED SINGLE COMMODITY FLOW FORMULATION



Cost =
$$794\frac{43}{48}$$
 (Optimal solution = 881) (192=3x64)

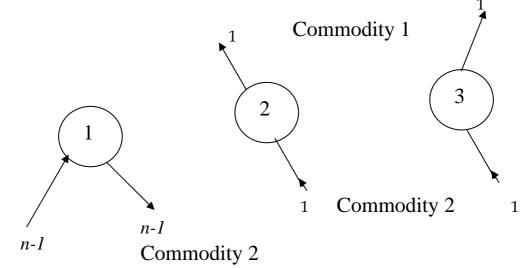
Two Commodity Flow (Finke, Claus Gunn (1983))

 y_{ij} is flow of commodity 1 in arc $i \rightarrow j$ z_{ij} is flow of commodity 2 in arc $i \rightarrow j$

$$\sum_{j} y_{ij} - \sum_{j} y_{ji} \qquad = -1 \quad i \neq 1$$
$$= n - 1 \quad i = 1$$

F2: $\sum_{j} z_{ij} - \sum_{j} z_{ji} = 1 \quad i \neq 1$ = $-(n-1) \quad i = 1$

 $\sum_{j} z_{ij} - \sum_{j} z_{ji} = n - 1 \text{ all } i$ $y_{ij} + z_{ij} = (n - 1) x_{ij} \text{ all } i, j$



Commodity 1

 $0(n^2)$ Constraints = n(n + 4) $0(n^2)$ Variables = 3n(n - 1) $\begin{array}{ll}
 \underline{Multi-Commodity} & (Wong (1980) \ Claus (1984)) \\
 "Dissaggregate" variables \\
 & y_{ij}^{k} & \text{ is flow in arc destined for } k \\
 & y_{ij}^{k} \leq x_{ij} & \text{ all } i, j, k \\
\end{array}$ $\begin{array}{ll}
 \mathbf{F3} & \sum_{i} y_{ik}^{k} = 1 & \sum_{i} y_{ii}^{k} = 1 & \sum_{i} y_{ii}^{k} = 0 & \sum_{j} y_{kj}^{k} = 0 & \text{ all } k \\
 & \sum_{i} y_{ij}^{k} = \sum_{i} y_{ji}^{k} & \text{ all } j, k, j \neq 1, j \neq k. \\
\end{array}$

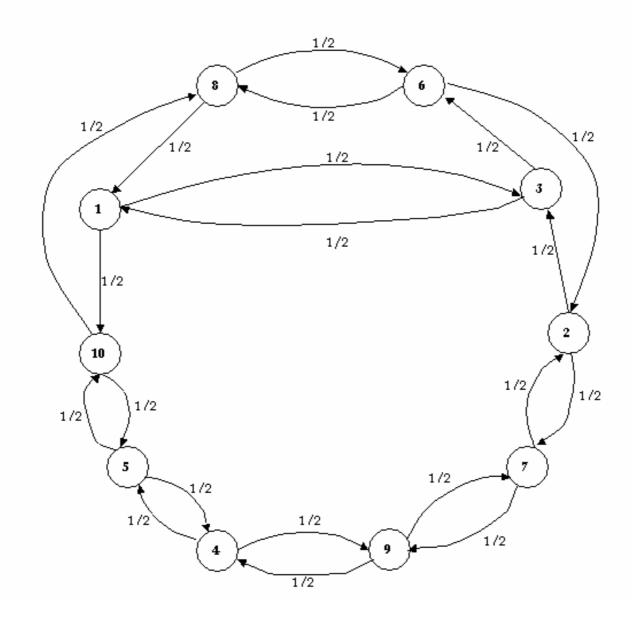
0(n^{3}) Constraints = $n^{3} - 2n^{2} + 6n - 3$ 0(n^{3}) Variables = $n^{2}(n-1)$

LP Relaxation of equal strength to Conventional Formulation.

But of polynomial size.

Tight Formulation of Min Cost Spanning Tree + (Tight) Assignment Problem

FRACTIONAL SOLUTION FROM MULTI COMMODITY FLOW FORMULATION (= FRACTIONAL SOLUTION FROM CONVENTIONAL (EXPONENTIAL) FORMULATION)



Cost = 878 (Optimal Cost = 881)

Stage Dependent Formulations

First (Fox, Gavish, Graves (1980))

= 1 if arc $i \rightarrow j$ traversed at stage *t*

= 0 otherwise

T1:

$$\sum_{i,j,t} y_{ij}^{t} = n$$

$$\sum_{j=1}^{n} \sum_{t=2}^{n} t y_{ij}^{t} - \sum_{j=1}^{n} \sum_{t=1}^{n} t y_{ji}^{t} = 1 \ i = 2, 3...n$$

(Stage at which *i* left 1 more than stage at which entered)

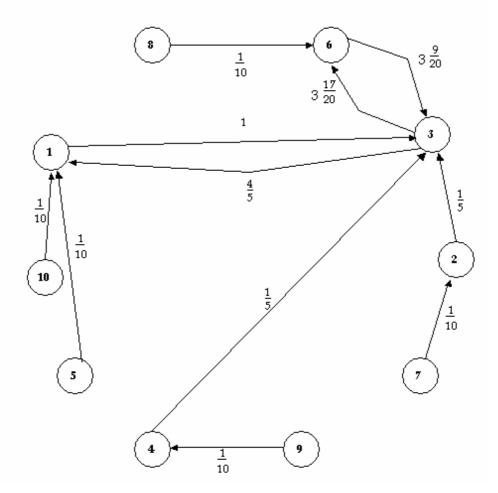
$$y_{i1}^{t} = 0, t \neq n$$
$$y_{1j}^{t} = 0, t \neq 1$$
$$y_{ij}^{t} = 0, t \neq 1$$

$$0(n)$$
 Constraints = n
 $0(n^3)$ Variables = $n^2(n-1)$

Also convenient to introduce x_{ij} variables with constraints

$$\boldsymbol{x}_{ij} = \sum_{t} \boldsymbol{y}_{ij}^{t}$$

FRACTIONAL SOLUTION FROM 1ST (AGGREGATED) TIME-STAGED FORMULATION



Cost = 364.5 (Optimal solution = 881) NB 'Lengths' of Arcs can be > 1

Second (Fox, Gavish, Graves (1980))

T2: Disaggregate to give

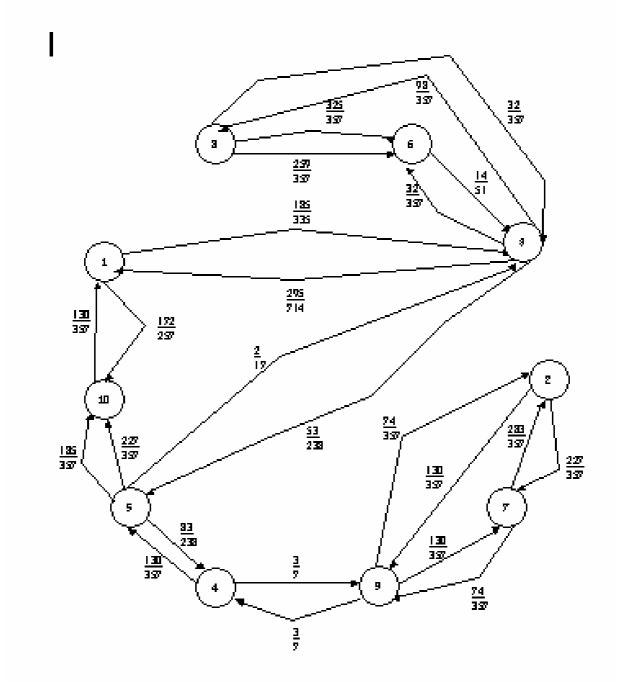
$$\sum_{\substack{i \neq j,t \\ j \neq i,t}} y_{ij}^{t} = 1 \quad \text{all } j$$
$$\sum_{\substack{j \neq i,t \\ i,j,i \neq j}} y_{ij}^{t} = 1 \quad \text{all } i$$

$$\sum_{j=1}^{n} \sum_{t=2}^{n} ty_{ij}^{t} - \sum_{j=1}^{n} \sum_{t=1}^{n} ty_{ji}^{t} = 1 \ i = 2, 3, \dots n$$

Initial conditions no longer necessary

$$0(n) Constraints = 4 n - 1$$
$$0(n^3) Variables = n^2 (n - 1)$$

FRACTIONAL SOLUTION FROM 2nd TIME-STAGED FORMULATION



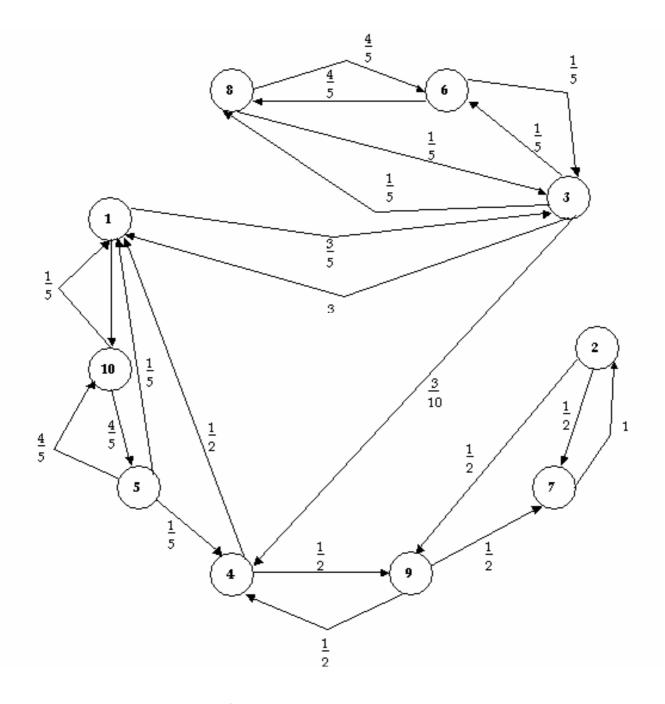
Cost = $799\frac{164}{357}$ (optimal solution = 881) (714 = 2 x 3 x 7 x 17)

Third (Vajda/Hadley (1960))

T3: y_{ij}^{t} interpreted as before $\sum_{i \neq j} y_{ij}^{t} = 1 \quad \text{all } j$ $\sum_{j \neq i} y_{ij}^{t} = 1 \quad \text{all } i$ $\sum_{j \neq i} y_{ij}^{t} = 1 \quad \text{all } t$ $\sum_{i \neq j} y_{ij}^{t} - \sum_{k \neq j} y_{jk}^{t+1} = 0 \quad \text{all } j, t$ $\sum_{j \neq 1} y_{1j}^{1} = 1$ $\sum_{i \neq 1} y_{i1}^{n} = 1$

> 0 (n^2) Constraints = ($2n^2+3$) 0 (n^3) Variables = $n^2(n-1)$

FRACTIONAL SOLUTION FROM 2nd TIME 2nd TIME-STAGED FORMULATION



Cost = $804\frac{1}{2}$ Optimal solution = 881

OBSERVATION

Multicommodity Flow Formulation

$$\sum_{i} \mathbf{y}_{ij}^{t} - \sum_{k} \mathbf{y}_{jk}^{t} = 0$$

 \mathbf{y}_{ij}^{t} is flow $i \rightarrow j$ destined for node t

Time Staged Formulation

$$\sum_{i} \mathbf{y}_{ij}^{t} - \sum_{k} \mathbf{y}_{jk}^{t+1} = \mathbf{0}$$

$$y_{ij}^{\prime} = 1$$
 iff go $i \rightarrow j$ at stage t

Are these formulations related?

Can extra variables (y_{ij}) , introduced *syntactically*, be given different *semantic* interpretations?

COMPARING FORMULATIONS

Minimise: c xSubject to: $Ax + By \le b$ $\underline{x}, \underline{y} \ge 0, x$ integer $W = \{w \mid wB \ge 0, w \ge 0\}$

W forms a cone which can be characterised by its extreme rays giving matrix Q such that

 $QB \ge 0$

Hence $QAx \le Qb$

This is the projection of formulation into space of original variables x_{ij}

COMPARING FORMULATIONS

Project out variables by Fourier-Motzkin elimination to reduce to space of conventional formulation.

P (r) is polytope of LP relaxation of projection of formulation r.

Formulation S (Sequential)

Project out around each directed cycle S by summing

$$u_{i} - u_{j} + nx_{ij} \le n - 1$$

$$\downarrow$$

$$n\sum_{i,j \in S} x_{ij} \le (n - 1)|S|$$

ie $\sum_{i,j\in S} x_{ij} \le |S| - \frac{|S|}{n}$ weaker than |S| - 1 (for S a subset of nodes) subset of nodes)

Hence $P(S) \supset P(C)$

Formulation F1 (1 Commodity Network Flow)

Projects to
$$\sum_{ij \in S} x_{ij} \le |S| - \frac{|S|}{n-1}$$
 stronger than $|S| - \frac{|S|}{n}$

Hence $P(S) \supset P(F1) \supset P(C)$

Formulation F1' (Amended 1 Commodity Network Flow)

Projects to
$$\frac{1}{n-1} \sum_{\substack{j \in \overline{S} \to \{1\}\\j \in S}} x_{ij} + \sum_{i,j \in S} x_{ij} \leq S |-\frac{|S|}{n-1}$$

Hence $P(S) \supset P(F1) \supset F(F1') \supset P(C)$

Formulation F2 (2 Commodity Network Flow)

Projects to
$$\sum_{i,j} x_{ij} \le |S| - \frac{|S|}{n-1}$$

Hence P(F2) = P(F1)

Formulation F3 (Multi Commodity Network Flow)

Projects to

$$\sum_{\substack{i,j\\ \in S}} x_{ij} \leq |S| - 1$$

Hence
$$P(F3) = P(C)$$

<u>Formulation T1</u> (First Stage Dependant)

Projects to

$$\sum_{\substack{i \in S \\ j \in \overline{S} - \{1\}}} x_{ij} \geq \frac{|S|}{n-1}$$
$$\sum_{i,j \in N} x_{ij} = n$$

(Cannot convert 1st constraint to $\sum_{i,j\in S} x_{ij} \leq form$ since Assignment Constraints not present)

Formulation T2 (Second Stage Dependant)

Projects to

$$\frac{1}{n-1} \sum_{\substack{i \in S \\ j \in \overline{S}-\{1\}}} x_{ij} + \frac{1}{n-1} \sum_{\substack{i \in \overline{S}-\{1\} \\ j \in S}} x_{ij} + \sum_{\substack{i j \in S \\ i \in S}} x_{ij} \le |S| - \frac{|S|}{n-1} + \text{others}$$

Hence $P(T2) \subset P(F1')$

Formulation T3 (Third Stage Dependant)

Projects to

$$\frac{1}{n-1} \sum_{\substack{i \in S \\ j \in \overline{S} - \{1\}}} x_{ij} + \frac{1}{n-1} \sum_{\substack{i \in \overline{S} - \{1\} \\ j \in S}} x_{ij} + \sum_{n, j \in S} x_{ij} \le |S| - \frac{|S|}{n-1}$$

+ others

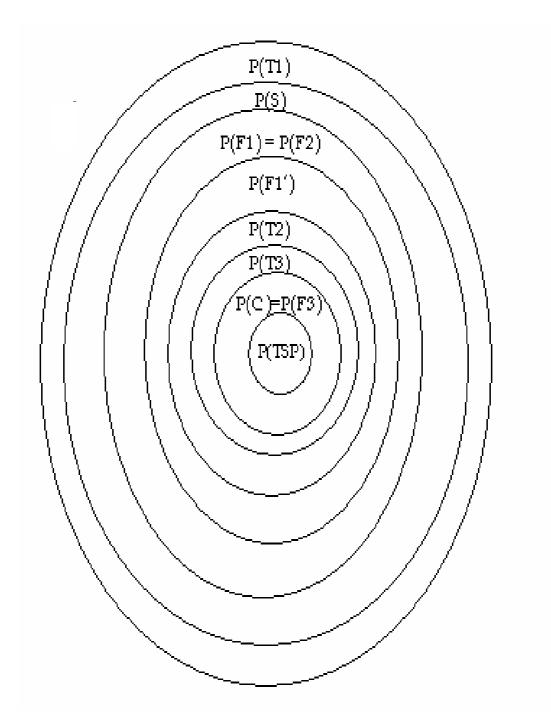
Can show stronger than T2

Hence $P(T3) \subset P(T2)$

Computational Results of a 10-City TSP in order to compare sizes and strengths of LP Relaxations

Model	Size	LP Obj	Its	Secs	IP Obj	Nodes	Secs
С	502x90						
(Conventional							
	(Ass. Relax	766	37	1	766	0	1
	+Subtours (5)	804	40	1	804	0	1
	+Subtours (3)	835	43	1	835	0	1
	+Subtours (2)	878	48	1	881	9	1
S (Sequential)	92x99	773.6	77	3	881	665	16
F1 (Commodity Flow	120x180	794.22	148	1	881	449	13
F' (F1 Modified)	120x180	794.89	142	1	881	369	11
F2 (2 Commodity Flow)	140x270	794.22	229	2	881	373	12
F3 (Multi Commodity Flow)	857x900	878	1024	7	881	9	13
T1 (1 st Stage Dependent)	90x990 (10)x(900)	364.5	63	4	881	∞	8
T2 (2 nd Stage Dependent)	120x990 (39) x (900)	799.46	246	18	881	483	36
T3 (3 rd Stage Dependent)	193x990 (102)x(900)	804.5	307	5	881	145	27

Solutions obtained using NEW MAGIC and EMSOL



- P(TSP) TSP Polytope not fully known
- P(X) Polytope of Projected LP relaxations