
A Slot Representation of the Resource-Centric Models
for Scheduling Problems

Roman Barták*

Charles University, Faculty of Mathematics and Physics
Department of Theoretical Computer Science

Malostranské námestí 2/25, 118 00 Praha 1, Czech Republic

bartak@kti.mff.cuni.cz
http://kti.mff.cuni.cz/~bartak

Abstract. Conventional approach to solving scheduling problems using
constraint technology is based on a static formulation of the problem; in
particular all the scheduled activities are expected to be known in advance.
Such static formulation is not capable to solve many real-life planning and
scheduling problems where the appearance of the activity depends on allocation
of other activities during scheduling. In the paper we propose a slot
representation of the scheduling problems that allows introduction of new
activities during scheduling while preserving the advantages of constraint
propagation. The research is motivated by real-life problems in complex
process environments like alternative production formulas, transition patterns
and non-ordered production.

1 Introduction

The conventional formulation of the scheduling problem is static; the scheduling task
deals with allocation of the known activities to available resources over time
respecting capacity, precedence and similar constraints. It is also a known wisdom to
model the scheduling problem using CP framework in the same way as a constraint
satisfaction problem is defined, i.e., first introduce all the variables, then post all the
constraints, and finally label the variables respecting the constraints. However, there
exist many scheduling problems that do not fit into this static framework because the
appearance of the activity in the schedule depends on appearance or allocation of
other activities. Consequently new variables describing newly introduced activities
are generated and new constraints binding these variables are posted during the course
of scheduling.

There exist several problem areas where a dynamic formulation of the model helps
to solve the problem. Typically, for many synthesis tasks such as configuration,
design, and model composition, the elements of the constraint problem (i.e., variables,

* Supported by the Grant Agency of the Czech Republic under the contract no 201/99/D057

and by InSol Ltd.

2

domains, and constraints) might change as the search progresses. This was reflected
in the formulation of Dynamic Constraint Satisfaction Problem [6] where it is
possible to activate/deactivate variables during the course of problem solving. Similar
approach to model alternatives in the schedule via deactivating activities in the
activity network was proposed in [9]. However, these methods still require all the
variables and the constraints to be posted in advance so they are less useful if the
number of alternatives is big, i.e., if the ratio between the active variables in the
solution and the deactivated variables is low. Therefore, structural constraint
satisfaction was proposed in [7] to solve the problems mainly in AI planning [8]
where it is not clear in advance what a solution’s graph will look like.

In the paper we describe an approach for solving the scheduling problems that need
not the full capabilities of AI planning but still it is not possible to generate all the
alternatives in advance due to memory consumption. In these problems we know the
overall structure of the resulting schedule via estimating the maximal number of
activities but we cannot post all the variables and constraints in advance because of
large number of alternatives. Therefore we are speaking about scheduling enhanced
by planning capabilities.

The research is motivated by real-life problems of industrial scheduling like
alternative processing formulas, transition patterns, processing of by-products and
non-ordered production. The problem area and the conceptual model to cope with it
are overviewed in Section 2, details can be found in [2]. In Section 3, we describe an
implementation of the resource-centric conceptual model using slots. Slots, which are
well known in timetabling applications, are generalised here so they are not fixed to a
particular time but they can be allocated to resources over time during scheduling.
The slot behaves like a shell to be filled by an activity during scheduling and it takes
over activity’s attributes like the start time and duration. This gives us the flexibility
of choosing the activities during scheduling while preserving the constraint
propagation. In Section 4 we sketch how to do scheduling with such dynamic slots
models and we describe the first experience with the implementation. We conclude
with outline of future research.

2 Problem Area and Resource-Centric Models

In complex process environments like (petro)chemical, pharmaceutical, or food
industries there exist many problems that cannot be tackled by conventional
scheduling techniques to full extend. For example there are alternative resources to
process given activity and there are even alternative processing formulas to produce
the same item. Consequently, we get many alternative production sequences to satisfy
given demand. This complicates modelling using traditional task-centric approach [4]
where we need a list of activities to satisfy given demand. Moreover, the activities
cannot be allocated to the resources in arbitrary order but they must follow user-
defined transition patterns. Typically expensive set-up activities inserted between
production activities must be assumed or appearance of the activity depends on
previous activities processed by the resource, e.g., a cleaning activity every ten hours.
Typically, set-ups are modelled using special set-up duration or simple set-up activity

3

like in [9] but the problem is when some low quality products, so called by-products,
are produced during set-ups. In many real-life scheduling projects the by-products are
neglected but many customers require processing of the by-products to be included in
the schedule because the by-products can be used as a raw material (re-cycling) to
decrease the overall production cost and they must be stored somewhere. Last but not
least there is a non-ordered production, i.e., the production driven by marketing
forecast rather than by the real custom orders. It is possible to use some low-
preference tasks to model marketing forecast but we think that it is more appropriate
to actively postpone the decision [5] about such production to the scheduling stage
when more information is available, e.g. about load of resources.

The details of the problem area may be found in [2] where we also give a
comparison of constraint models for solving such problems. The result of discussions
there is that the resource-centric model is preferable in areas where all above
described problems should be modelled. The resource-centric model is activity-based
model where the activities are grouped per resources rather than per tasks. This
simplifies expressing of the transition constraints that describe the sound order of
activities in the resource. Moreover it allows strengthening the planning role of the
scheduler necessary for modelling non-ordered production which may achieve about
90% of the overall production in some plants. Last but not least, the resource-centric
model is easier to maintain because it may be implemented as a plug-in system where
we can simply plug a new resource if necessary. Thus, the scheduling engine has a
modular architecture and it can be easily ported to various production environments.

3 Slots in Scheduling

Our first implementation of the resource-centric model was purely dynamic, i.e., all
the activities were generated dynamically during scheduling. This corresponds
directly to the mixed planning and scheduling framework proposed in [1] that uses
separate activity generator (planner) and activity allocator (scheduler). The dynamic
implementation simplifies expressing of the constraints because the constraints are
posted among known activities (no complicated constraint triggers are necessary).
However, such fully dynamic environment has also drawbacks. Probably the main
one is suppressing the role of constraint propagation. Because the constraints are
posted among already generated activities only, the look-ahead techniques cannot be
exploited to full extent and a special mechanism for deciding about new activities is
necessary. Moreover, some activities may be generated twice or more times, e.g., a
supplier generates consuming activity that is found later to be already present in the
system. Thus, a mechanism for merging corresponding activities is necessary.

Because of above described difficulties with fully dynamic representation we
turned our attention to a semi-dynamic representation that combines advantages of
constraint propagation while still keeping the constraints in a relatively simple form.
We generalise the slot representation for this purpose. Slot representation is not new
to the scheduling community, however it is used mainly in timetabling and personal
management applications where the slots are part of the original problem formulation.
In [2] we also studied a time-line model with fixed slots but we argued against it

4

because it leads to huge, i.e., intractable models. However, if slots are generated per
activities rather than per time slices with fixed duration then the memory consumption
is comparable to the fully dynamic model.

We use slot as a shell to be filled by an activity during scheduling. Because we are
generating schedules for a fixed period of time (rather than minimising makespan) we
can estimate the number of activities processed by the resource. More precisely, we
can compute the maximal number of the activities processed by the resource in given
time period (by dividing the duration of the scheduled period by the duration of the
shortest activity). Currently we are not using overlapping activities but we are still
able to schedule cumulative resources by allowing single activity to process different
quantities of items. To summarise it, we may generate a chain of consecutive slots for
each resource and these slots will be filled by activities during scheduling. Moreover,
we usually know the activity in the first slot that corresponds to the initial situation of
the resource so by using the constraint propagation via transition constraints among
consecutive slots (see later) we may further decrease the maximal number of slots.

Fig. 1. In the slot representation, the slots in the chain are being filled by the alternative
activities during scheduling.

Naturally, because the slots are introduced in advance it may happen that some slots
are pushed after the schedule end during scheduling. In the resource-centric model
this is not a problem because we may expect that the production continue after the
schedule end. So, these superfluous slots describe the possible future production and
we need not care about them during scheduling (even if the constraint propagation
still reduces their domains).

3.1 Attributes and Constraints

Slots are not just empty shells but we propose to move attributes of the activities to
the slots. Typically, all the activities use start time, duration, and completion time
attributes so we may shift these attributes to slot. Because these attributes are used by
all the activities in all the slots we can introduce them when the slot is generated, i.e.,
before the scheduling starts. Therefore we call them static attributes. There is one
more static slot attribute common to all the slots and this is an activity attribute whose
domain specifies which activities can be filled in the slot.

Naturally, the activity attribute is connected with other attributes via constraints,
for example the constraint between the activity and the start time attributes may
express the time windows for the activity, the constraint between the activity and the

Slot chain (per resource)

Alternative activities to
be filled in the slots

time

5

duration attributes describe the duration of particular activity etc. We call these
constraints that bind single slot attributes the slot constraints and they correspond to
what we call resource constraints in [2].

By binding the activity attributes of the consecutive slots we can naturally describe
the transition patterns. We call the constraints binding attributes of different slots of
single chain the chain constraints and they correspond to what we call transition
constraints in [2].

In some problem areas, the activities may use different sets of attributes, for
example each activity may process different sets of items and we need a special
attribute describing the quantity of each item. Because such attributes are specific for
given activity we cannot introduce them before we know the activity in the slot.
Therefore we call these attributes dynamic and they are introduced as soon as the
activity in the slot is known, i.e., when the activity attribute becomes ground.

Fig. 2. Static slot attributes and constraints are generated in advance before the search starts.
Thus, it is possible to exploit the power of constraint propagation.

A nice feature of the slot model is that it preserves the advantages of the constraint
propagation because many constraints may be posted in advance. Moreover, by
connecting the activity attributes to the constraint network we have planning
capabilities for free. We mean that the decision about which activities are filled in the
slots is automatic by means of standard constraint programming technology without
necessity to use a dedicated planning module.

3.2 Posting Dynamic Constraints

The existence of dynamic slot attributes implies the existence of dynamic constraints,
i.e., the constraints that are posted during the scheduling. It is clear that if there is a
dynamic attribute among the constrained variables then the constraint cannot be
posted before all the dynamic attributes in the constraint are generated. Nevertheless,
there is no big problem with such dynamic constraints because they can be posted
immediately after all the dynamic attributes in the constraint are generated.

Unfortunately, there exists another form of dynamic constraints when all the
constraint variables are present in the constraint network but it is not known which
variables should be connected by the constraint. This is the case of so called inter-
chain constraints that bind attributes of slots in different slot chains. These constraints
typically bind supplying and consuming activities in different resources, in [2] we call
them dependencies. The main problem here is that neither the slots are fixed in time
nor the activities in the slots are known. Therefore until we restrict “enough” the

Start
Duration
End
…

ActivitySlot Constraints:

Activity=a1 => Duration=10
Activity=a2 => Duration=5
…
Activity=a1 => Start in 1..100
…
Start+Duration=End

Start
Duration
End
…

Activity
Chain Constraints:

Slot(I).Activity=a1 =>
Slot(I+1).Activity in {a1,a2}

…
Slot(I).End = Slot(I+1).Start

I I+1

6

domains of slot attributes we do not know which slots are connected and, thus, we
cannot post the inter-chain constraints. We call the method of posting inter-chain
constraints after filling and allocations of the slots in time the lazy method. The
advantage of the lazy method is that only the necessary constraints are introduced,
however, these constraints serve as tests only and there is no constraint propagation
through them. Therefore, we propose to utilise more eager method of posting inter-
chain constraints that uses a disjunctive expression of the conditional constraints.
More precisely, instead of posting a single constraint connecting two slots we post the
disjunction of similar conditional constraints binding several pairs of slots. The right
constraint is selected (activated) during the search stage when conditional part of the
constraint is satisfied. The big advantage of this method is that we can exploit the
constraint propagation if the disjunctive constraint is implemented as a global
constraint (the constraint propagation is weak in pure disjunction of constraints).

Fig. 3. The eager method of posting inter-chain constraints uses the disjunction of conditional
constraints. When the domains of slot attributes are restricted “enough” the right constraint
from this disjunction is selected.

4 Algorithm and Implementation

We have implemented the slot model in a CLP framework that provides a natural
environment for posting the constraints during search. To post the dynamic
constraints we use the same event mechanism that initiates the constraint propagation
after the change of the attribute’s domain. The overall structure of the program is as
follows:

GENERATE ALL THE SLOTS
in left to right order including all the static slot
and chain constraints

ACTIVATE THE TRIGGERS
for generating the dynamic attributes and posting
the dynamic constraints including the inter-chain
constraints

SEARCH THE SCHEDULE
i.e. label the slot attributes in left to right order

Even if the above-described structure of the program is similar to the conventional
method of solving CSP problems, it should be noted that we do not post all the
constraints in advance but we allow introduction of new constraints during search
(using the trigger mechanism).

or

the candidates for a customer

the supplier

7

We use left to right ordering both for generation of slots and for labelling. This
allows us to decrease further the upper estimate of the number of slots1 and it prevents
“deep” backtracking as well2.

5 Conclusions and Open Problems

In the paper we presented a slot representation for scheduling problems requiring
some planning capabilities. The implementation of the proposed model prove itself to
be enough general to cover most industrial scheduling problems. Probably the main
difficulty of the current implementation is still big memory consumption. This is
partly caused by using Prolog as an underlying solving platform, which saves all the
data (including attributes’ domains) for possible future backtracking. We are studying
using of cuts to free the memory. Another reason for big memory consumption is
using large disjunctive representation of the dynamic constraints. Our current research
is oriented to design of more sophisticated triggers that postpone a bit the posting of
the dynamic constraints and thus it decreases the size of the disjunctive expression.

References

1. Barták, R.: On the Boundary of Planning and Scheduling: A Study. Proceedings of the
Eighteenth Workshop of the UK Planning and Scheduling Special Interest Group,
Manchester, UK (1999) 28-39.

2. Barták, R.: Dynamic Constraint Models for Planning and Scheduling Problems.
Proceedings of the ERCIM/CompulogNet Workshop on Constraint Programming, LNAI
Series, Springer Verlag (2000), to appear.

3. Beck, J.Ch. and Fox, M.S.: Scheduling Alternative Activities. Proceedings of AAAI-99,
USA (1999) 680-687.

4. Brusoni, V., Console, L., Lamma. E., Mello, P., Milano, M., Terenziani, P.: Resource-
based vs. Task-based Approaches for Scheduling Problems. Proceedings of the 9th

ISMIS96, LNCS Series, Springer Verlag (1996).
5. Joslin, D. and Pollack M.E.: Passive and Active Decision Postponement in Plan

Generation. Proceedings of the Third European Conference on Planning (1995)
6. Mittal, S. and Falkenhainer, B.: Dynamic Constraint Satisfaction Problems. Proceedings

of AAAI-90, USA (1990), 25-32.
7. Nareyek, A.: Structural Constraint Satisfaction. Proceedings of AAAI-99 Workshop on

Configuration, 1999.
8. Nareyek, A.: AI Planning in a Constraint Programming Framework. Proceedings of the

Third International Workshop on Communication-Based Systems (2000), to appear.
9. Pegman, M.: Short Term Liquid Metal Scheduling. Proceedings of PAPPACT98

Conference, London (1998), 91-99.

1 The information about the initial activity can be propagated in the slot chain. This reduces

the domains of the activity variables and, thus, it increases the minimal slot duration.
2 We may expect that the time distance between the dependent slots is not very large and that

there is a good propagation between close slots.

