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Abstract. Planning and scheduling attracts an unceasing attention of computer
science community. However, despite of similar character of both tasks, in most
current systems planning and scheduling problems are solved independently
using different methods. Recent development of Constraint Programming
brings a new breeze to these areas. It allows using the same techniques for
modelling planning and scheduling problems as well as exploiting successful
methods developed in Artificial Intelligence and Operations Research. In the
paper we analyse the problems behind planning and scheduling in complex
process environments and we propose to enhance the traditional schedulers by
planning capabilities to solve these problems. We argue for using dynamic
models to capture such mixed planning and scheduling environment. Despite of
studying the proposed framework using the complex process environment
background we believe that the results are applicable in general to other (non-
production) problem areas where mixed planning and scheduling capabilities
are desirable.

1 Introduction

The real-life applicability and challenging complexity of planning and scheduling
attract a high attention among researches in various areas of computer science.
Traditionally, the planning and scheduling tasks are solved independently using
different methods and technologies. The planning task deals with finding plans to
achieve some goal, i.e., finding a sequence of activities that will transfer the initial
world into one in which the goal description is true. Planning has been studied in
Artificial Intelligence (AI) for years and the methods developed there, like the
STRIPS representation [13] and Graphplan planning algorithm [6], are the core of
many planning systems. Opposite to planning, the scheduling task deals with the
exact allocation of activities to available resources over time respecting precedence,
duration, capacity, and incompatibility constraints [7]. Operations Research (OR) has
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a long tradition in studying scheduling problems and many successful methods to deal
with the problem were developed there.

Recently, Constraint Programming (CP) attracts a high interest among both
planning and scheduling community because of its potential for declarative
description of problems with various real-life constraints. Constraint programming
[2] is based on the idea of describing the problem declaratively by means of
constraints, logical relations among several unknowns (or variables), and,
consequently, finding a solution satisfying all the constraints, i.e., assigning a value to
each unknown from its respective domain. It is possible to state constraints over
various domains, however, currently probably more than 95% of all constraint
applications deal with finite domains [18].

At the present time, scheduling is probably the most successful application area of
CP [19] while application of CP to planning is not so spread [14]. The reason for this
disproportion can be found in the conventional formulation of the constraint
satisfaction problem that expects all the elements, i.e., all the variables and all the
constraints, to be specified in advance.  This is not an obstacle in scheduling tasks
where all the activities are known beforehand, however, the plans are highly variable
and it is impossible to predict which activities will be used in which combinations.
Also, in some problem areas like complex-process environments we do not know all
the activities in advance and the appearance of the activity depends on allocation of
other activities to resources. In such a case the scheduler needs to be enhanced by
some planning capabilities which complicate the constraint model.

In [4] we analysed the main features of static constraint models when applied to
problems in complex-process environments and in [5] we proposed the mixed
planning and scheduling framework that can be used to solve these problems. In this
paper we survey dynamic constraint models for solving mixed planning and
scheduling tasks. These models are applicable to scheduling tasks where generation of
new activities during scheduling is required. We study expressiveness and efficiency
of the models and we give a comparison of the models using the typical problems in
complex-process environment. The described models were studied in VisOpt
scheduling project [3] whose goal is to develop a generic scheduling engine for
complex-process environments. Nevertheless, we believe that the results are
applicable to other areas like transport problems and pure planning.

The paper is organised as follows. In Section 2, we specify the problem area and
we list the typical problems of complex-process environments there. In Section 3, we
explain the similarities and differences of planning and scheduling tasks and we
describe how to mix both planning and scheduling into a single framework. Section 4
is dedicated to the description of constraint modelling of scheduling problems. We
classify the scheduling constraints there, describe the models of time and sketch the
difference between representation of resources and tasks. In Section 5, we overview
three dynamic constraint models for solving mixed planning and scheduling
problems. The paper is concluded by some final remarks.



2 Problem Area

The problem area that we deal with can be characterised as a complex process
environment where a lot of complicated real-life constraints bind the problem
variables. Typical examples of such environments can be found in plastic,
petrochemical, chemical, pharmaceutical or food industries. The goal of the VisOpt
planning and scheduling project [3] is to develop a generic scheduling engine that can
be customised easily for a particular environment via the description of resources,
demands, initial situation and required future situations.

The problem domain can be described as a heterogeneous environment with
several resources interfering with each other. Currently we are working with
producers, movers and stores, later other resources like workers and tools will be
added. The task is to generate (to plan) the activities necessary to satisfy the custom
orders and other marketing requirements and to allocate (to schedule) the activities to
the resources over time.

There exist alternative resources for processing the activity and some resources can
handle several activities at a time; this is called batch processing. In case of batch
processing, we must consider compatibility and capacity constraints restricting which
products and in what quantities can be processed, i.e., produced, moved, or stored
together. Also the order of the activities processed by the resource is not arbitrary but
the currently processed activity influences what activities can follow. Consequently,
we must follow the transition patterns and assume the set-up times between the
activities as well. The processing time is usually variable and there is defined a
working time when the activities can be processed in the resources.

Alternative processing routes, alternative production formulas and alternative raw
materials are other typical features of the above mentioned industrial areas. In
addition to the core products it is possible to produce some low quality products
called by-products, typically during set-ups. The by-products can be used as a raw
material in further production and there is a push to use them this way because they
will fill-up the available storing capacity otherwise. Consequently we must schedule
processing of by-products. During production of the core product some co-products
may appear. The co-products can be used to satisfy other orders, they can be sold as
an alternative to the ordered item, or they can be processed further as a raw material.
Again, processing of the co-products must be scheduled because of the limited
capacity of the warehouses where all the products are stored. Last but not least there
is a possibility of cycling, i.e., processing the item for several times for example to
change features of the item or just to clean up the store, and re-cycling, i.e., re-using
of the by-products and the co-products as a raw material.

Typically, the production in complex process environments is not driven by the
custom orders only but it is necessary to schedule the production for store according
to the factory patterns and the forecast. It means that the scheduler should handle
some planning tasks as well.



Fig. 1. A complex-process environment with re-cycling

In scheduling projects the users deal with finding no arbitrary schedule but an optimal
schedule. Usually a makespan is used as the objective function [8,9,10]. The idea of
minimising the makespan, i.e., the maximum completion time of the activities,
follows the assumption that shorter production time implies lower cost and lower cost
implies higher profit. However, this is not necessarily true in many complex-process
environments where expensive set-ups must be considered. Also, makespan may be
used if all the activities are known in advance, but, again, this is not the case in many
complex-process environments due to set-ups and production for store. Therefore in
the VisOpt project the task is to schedule the most profitable production for fixed
period of time (more precisely, we are looking for a schedule with a good profit). The
profit is measured here by the overall production cost and by the price of selling the
products delivered according to the custom orders.

The solved problem hardly fits into any category of typical scheduling problems as
used by Operations Research (OR) because many complex constraints make it hard to
be tackled by pure OR methods. It also does not fit into any basic category of CP
scheduling problems due to the dynamic characteristic when new activities appear
during scheduling. Perhaps, it is closest to the group of resource constrained project
scheduling problems [10,11]. Resource constrained project scheduling problem
(RCPSP) is a generalisation of job shop scheduling [1] in which activities can use
multiple resources, and resources can have capacity greater than one (more activities
can be processed together). Nevertheless, the definition of RCPSP as well as of all
other scheduling problems in CP still expects the set of activities to be known before
the scheduling starts. Unfortunately, this is not necessarily true in the complex-
process environments where scheduling the activity to a particular resource or time
may introduce new activities to the system. Typically, using alternative processing
routes, by-products, co-products, and production for store cause such behaviour.
Using the foregoing planning phase provides a little help in such cases as we argue in
the next section.

3 Planning vs. Scheduling

Although, planning and scheduling tasks seem very similar, they are defined
differently and different solving technology is used. We first overview a conventional
definitions of planning and scheduling and survey the traditional solving technologies.
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Planning. The traditional AI planning tackles the problem of finding plans to achieve
some goal, i.e., finding a sequence of activities that will transfer the initial world into
one in which the goal description is true [16]. It means that a description of the initial
world, the (partial) specification of the desired world and the list of available
activities make the input of the planner. A solution is a sequence of activities that
leads from the initial world description to the goal world description and it is called a
plan.

Conventional AI planning techniques use highly specific representation and
algorithms but there is a pressure to use more general search frameworks like CP [14].
The advantage of such general framework is wider applicability and availability of
ready-to-use methods. The specific features of a particular problem are then reflected
at the modelling level only and not in the underlying search algorithms.

Scheduling. The traditional scheduling task deals with the exact allocation of
activities to resources (or resources to activities) over time respecting precedence,
duration, capacity, and incompatibility constraints [7]. The set of activities, the list of
resources, and the specification of the constraints make the input to the scheduler. The
output of the scheduler consists of the exact allocation of the activities to the
resources over time.

Scheduling tasks are usually solved using techniques from OR and CP. Both
frameworks expect the task to be specified fully in advance, i.e. all the problem
variables and constraints must be known beforehand. Recently, new problem areas
like complex-process environments use a partial specification of the problem that
requires adding new variables and constraints during scheduling.

In industrial life, the boundary between planning and scheduling is shifted and both
tasks are more similar that could be a source of confusion. There is a marketing
planning that has nothing in common with the above described AI planning. The task
of marketing planning is to prepare the demands for production using the information
about the custom orders and the market forecast. The output of the marketing
planning, the list of demands makes the input to the production planning. The
definition of the production planning is closer to AI planning, the task is to prepare a
plan of production using information like available stock, BOM (bill of materials),
and demands. The plan consists of the list of activities that are usually assigned to
factory departments. Finally, there is a production scheduling which allocates the
activities from the production plan to available resources over time. Nevertheless, it is
possible to introduce new activities during production scheduling if necessary.

As you see, the difference between production planning and production scheduling
is fuzzier now; both tasks include generating of activities and their allocation to
resources. The discrimination criterion is shifted to the resolution of resulting
plan/schedule and to the different time horizon. While the production planning uses
lower resolution (departments, days) and prepares plans for longer time period, the
production scheduling prepares short-term high-resolution schedules (machines,
minutes). The similarity of the production planning and the production scheduling
brings us to the idea of using unified solving framework for both tasks. Nevertheless,
there are other reasons to mix the planning and scheduling technologies.



Fig. 2. A traditional view of planning and scheduling in industry with separate modules

Opposite to [17] and according to our experience we argue that in many current
Advanced Planning and Scheduling (APS) systems the modules implementing the
planner and the scheduler are independent. The separation of planning and scheduling
is natural; the planner generates the activities and the scheduler allocates these
activities to available resources. However, there are also disadvantages of such
decomposition and these drawbacks become even more evident in some problem
areas like complex-process environments.

First, backtracking from the scheduler to the planner is required if the clash1 in the
plan is found during scheduling or if the plan does not utilise the resources fully. Such
backtracking is not desirable because it complicates the communication between the
modules (the scheduler should inform the planner about the reason of backtracking)
and it decreases the overall efficiency of the system. To restrict the number of
backtracks we need a more informed planner which means the planner that uses
similar information about the resources like the scheduler. However, this suppresses
the advantage of low-resolution of planning. Another possibility to avoid
backtracking is to postpone planning decisions until all necessary information is
available. Planning with active decision postponement was implemented in the system
Descartes [12] and we propose to postpone planning decisions even more to the
scheduling stage.

More informed planner can prevent clashes during scheduling but it is not able to
prepare plans in the problem area where the appearance of the activity depends on the
allocation of other activities to the resources. There are several examples of such
behaviour in complex-process environments. First, there are special set-up activities
that must be inserted between two production activities [15] to ensure set-up of the
machine. Second, there is a processing of the by-products that are produced typically
during the set-ups. Some schedulers omit handling of by-products but this could be
dangerous if the by-products may fill-up the stores used for regular products. Next,
there is a re-cycling that is usually applied to by-products but it could be used with
regular products as well, for example to clear the store. Finally, there is a non-ordered
production. In some sense, the production planner could generate activities for non-
ordered production but to prevent clashes it is more reasonable to postpone planning
of non-ordered production until the scheduler provides information about spare
capacity of the resources.

The discussions in the above paragraphs and sections justify our proposal of mixing
the traditional planning and scheduling tasks into a single framework. Briefly
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speaking, we suggest enhancing the traditional scheduler with some planning
capabilities; in particular, we allow generating of activities by the scheduler. We call
this enhanced scheduler simply a production scheduler. We expect to preserve the
separate marketing planner that generates the basic demands for the production but
the production scheduler is authorised to generate new activities for non-ordered
production too.

The production scheduler consists of an activity generator (former planner) that
generates the activities and an activity allocator (former scheduler) that allocates the
activities to the resources over time (almost) immediately. By attempting to allocate
the activity to the resource after its introduction we can detect the clashes sooner as
well as we can remove some alternatives via constraint propagation that restricts the
domains of activity parameters. See Figure 3 for proposed structure of the mixed
planning and scheduling system.

The communication between the generator and the allocator is simple via single
activities. The generator introduces an activity to the system and asks the allocator to
schedule it. The allocator influences the generation of further activities by restricting
the domains of parameters for already introduced activities. It can also ask the
generator to introduce new activities explicitly, e.g., to generate set-ups, transitions,
supplying or consuming activities, if the required activity is not present in the system.
The generator is driven by the set of initial activities that can describe the initial
situation as well as the future demands generated by the marketing planner. Also
notice that depending on the resolution of the scheduling we can use the same
production scheduler both for the production planning and for the production
scheduling as described above. Naturally a different type of activities and different
resources are used for production planning and for production scheduling but the
overall solving mechanism is the same.

Fig. 3.  A general framework for mixing planning and scheduling

4 Constraint Modelling

In general, it is a good design principle to create a declarative and thus transparent
model of the problem. All entities are described initially with the constraints that
define their nature and the relationships between them. The search code is kept
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separate from this declarative model. Constraint Programming has a big advantage
over other frameworks in declarative modelling capabilities. Some researches even
claim that “Constraint programming represents one of the closest approaches
computer science has yet made to the Holy Grail of programming: the user states the
problem, the computer solves it” [E. Freuder, Constraints, April 1997]. The modelling
capabilities of CP are really fascinating and the constraint models are very close to the
description of real-life problems. This simplifies the maintenance of the models as
well as the introduction of domain dependent heuristics necessary to solve large-scale
problems. However, designing a stable constraint model that can be used to solve
real-life large-scale problems is also the biggest challenge of current CP.

Scheduling is a typical application area of constraint programming and several
standard constraint models to tackle scheduling problems can be identified. In this
section we survey the features of these models that must be taken into account when
deciding about the model for a particular problem area.

4.1 Constraint Classification

The constraints appearing in scheduling applications can be classified into several
groups. We classify the constraints using their role in the scheduling problem into
three categories: resource, transition, and dependency constraints. Such categorisation
helps in choosing the right constraint model because different models handle better
the constraints from different categories. Thus, we may choose the appropriate model
more easily using the information about the spread of constraints in the proposed
categories.

We concentrate on solving scheduling problems in complex-process environments
here but we believe that such environments represent the typical problems in most
scheduling applications. Thus we suppose that the proposed classification can be
applied to other scheduling areas as well.

Resource constraints. The resource constraints describe the limits of the resource in
single time point. A typical example of the resource constraint is the capacity
constraint stating how many activities can be processed in parallel or how many items
can be stored together etc.:

Time)esource,capacity(RTime)Resource,ctivity,consumes(ATimeResource

ty)end(ActiviTimevity)start(Acti
Activity
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Compatibility (incompatibility) constraint is another example of the resource
constraint. The compatibility constraint states what activities can be processed
together, i.e., in other words what activities/items are compatible. For example, if the
Activity1 cannot be processed together with the Activity2 in the Resource, i.e., the
Activity1 is incompatible with the Activity2, then we can use the following
compatibility constraint:

0       =∨=∀ Time)Resource,2,ctivityconsumes(A0Time)Resource,1,ctivityconsumes(ATime



While the capacity constraint is a “quantity type” constraint (how many?), the
compatibility constraint can be seen as a “quality type” constraint (what?).

In many traditional scheduling problems the resource constraints are very simple,
e.g., single-capacity resources are used only. However, these constraints are important
when multiple-capacity resources like stores or batch processors are modelled. This is
the case of complex-process environments.

Transition constraints. The transition constraints also restrict variables describing a
single resource but opposite to the resource constraints they bind the variables from
different time points. Typically, these constraints specify what future situations may
follow the current situation. For example we may describe the transitions between the
activities (thus transition constraints). If a machine set-up time is modelled using a
special set-up activity (this is useful, if by-products are produced during the set-up)
then the transition constraints naturally describe the insertion of the set-up activity
between two production activities.

The transition constraints are typical for complex-process environments with many
set-ups but they do not appear in many other scheduling problems.

Dependency constraints: The resources in a typical scheduling problem are hardly
independent so we must also describe the relations between the resources in the
model. We call such relation a dependency constraint. The dependency constraints
bind variables describing different resources at perhaps different time points. A
typical example of the dependency in production scheduling is a supplier-consumer
dependency. It specifies the relation between the activity supplying an item and the
activity consuming the item. A special case of the dependency is the precedence
constraint in task-centric models (see below). In other problems we may require two
activities to be processed in parallel by two resources, for example two lecturers teach
two equivalent courses in parallel etc.

The dependency constraints are typical for many scheduling problems as they
describe the relations between the activities belonging to a single task. Nevertheless,
in problem areas like complex-process environments they may bind activities from
different tasks as well.

Naturally, the above presented constraint classification depends on what objects are
chosen as resources. In complex-process environments we use several resources like
producers, movers and stores but it is also possible to add other resource types like
workers and budget.



Fig. 4. Constraint categories in the Gantt chart

4.2 Modelling of Time

Both planning and scheduling tasks deal with time as one of the parameters.
Therefore modelling of time is necessary in most planning and scheduling
applications. In general we may distinguish between two different views of time:
discrete time and event-based time.

Discrete Time. Perhaps the easiest way of modelling time is to divide the time-line
into a sequence of discrete time intervals with the same duration. We call such
intervals time slices. The duration of the time slice defines the resolution of the
plan/schedule.

It is expected that the behaviour of the resource within the time slice is
homogenous, i.e., the important events like the change of activity appear at the time
point between two time slices only. Consequently, if we model activities using
discrete time then the duration of the time slice must respect the duration of all the
activities. More precisely, the duration of the time slice must be a common divisor of
the duration of all activities2. If we work with activities that have no restrictions about
their start and completion time then this requirement may lead to a huge number of
time slices (high resolution) even if the duration of the activities is long (low
resolution). Therefore, the discrete time model is used mostly in timetabling and in
personal management applications where the time slices are specified directly by the
problem area (like shifts in hospitals).

In the discrete time model the variables describe the situation either at the time
points or at the time slices.

Event-based Time.  Another view of the time line may capture only the important
time points, so called events, when there is some change. We may either say that the
duration between two consecutive events defines the activity or that the border
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between two consecutive activities is called an event. Therefore we speak about
event-based time or activity based models.

In models that use event-based time we describe the situation of the resource by the
processed activity. Each activity is characterised by a chunk of variables that should
include the start time and the completion time (or duration) of the activity as well as
the resource where the activity is processed.

Event-based view of time is preferable over discrete time when the density of
events is not very large in comparison with the density of time points, i.e. when the
ratio between the activity duration and the duration of time slice is large.

Fig. 5. Discrete time vs. event-based time in Gantt chart

4.3 Task vs. Resource Models

A final criterion that we use to distinguish between constraint models is the primary
organisation of elements in the model. In particular we mean organisation of activities
but we can organise time slices this way too. We distinguish between two main
categories: grouping of activities per task or per resource [7].

Task-centric models. In many scheduling problems the activities are organised into
tasks where the task is defined by a group of activities that must be processed to solve
the task. In production scheduling the task corresponds typically to a custom order. In
such case we speak about a production chain that defines the track of the items
through the factory starting from raw material and finishing with the final product.
Note that by the production chain we mean not only a sequence of activities but also a
tree of activities or other graph structure (typically with a partial order defined among
the activities using the precedence constraints). Generating the production chain is a
planning task while allocating the activities in the chain to available resources is a
scheduling task.

In the task-centric models, that are currently dominant in CP scheduling, the
dependency constraints are preferred to the resource and transition constraints. We
mean that it is easier to express the dependency constraints in such models as they
describe the timing between the activities from single task typically using the
precedence relation. It is more complicated to express the resource and transition
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constraints a priori because they are dependent on allocation of the activities to the
resources.

The task-centric model is appropriate for problem areas where we know all the
tasks in advance and we know how to decompose the tasks into activities. However,
in complex process environments, there exist problems like set-ups, re-cycling and
non-ordered production that make the task-centric model less applicable because it is
not clear what tasks will be present in the schedule (a non-ordered production) and
what activities will form the task (alternatives, set-ups, re-cycling).

Resource-centric models. Orthogonal to the task-centric model is the resource-
centric model where the activities are organised per resources. In this model, we do
not assign the activities to available resources but we order the activities in single
resource in such a way that all the constraints be satisfied. In this model we describe
the structure of the factory and the capabilities of the resources rather than particular
tasks. The activities belonging to the task are grouped implicitly during the scheduling
using the dependency constraints. Thus, the resource-centric model is re-usable for
different sets of tasks and the same model can be applied to various sets of demands
(tasks).

Resource-centric model concentrates more on expressing the resource and
transition constraints because we know which activities belong to a given resource.
The dependency constraints are used to synchronise the resources and their
appearance depends on the ordering of activities in the resources. Thus, these
constraints have a dynamic characteristic.

The resource-centric model is appropriate for problem areas like complex-process
environments because it allows modelling set-ups, re-cycling, and non-ordered
production. In this model it is natural to generate new activities during the scheduling
so it is appropriate for solving mixed planning and scheduling problems.

We described the classification of models via grouping activities per task or per
resource but the same classification can be applied to the time points/slices as well.
However, when the discrete time models are used, the task should be linear because
otherwise it is more complicated to model the task using a single time line.



Fig. 6. Gantt chart is closer to the resource-centric model but we can identify the grouping per
task there too

5 Dynamic Models

Conventional Constraint Satisfaction Problem (CSP) is defined statically; i.e., all the
variables and all the constraints are specified in advance. Most methods for solving
problems defined as CSP expect such static structure and they follow the schema:

1. Introduce variables.
2. Post constraints among the variables.
3. Label the variables respecting the constraints.

The main difference between the constraint satisfaction algorithms is in the labelling
method; either they are extending a partial consistent labelling to a complete
consistent labelling using constraint propagation or they are searching the space of
complete (but inconsistent) labellings till the consistent labelling is found.

Because of the static nature of the constraint models, the task-centric model is
usually preferred over the more dynamic resource-centric model. Unfortunately, as
we described in Sections 2 and 3, to model complex-process environments we need
some planning capabilities within the scheduler and this requires the dynamic
characteristic of the constraint model when new entities (activities, constraints) are
introduced during scheduling3. In the following paragraphs, we describe three main
constraint models used in scheduling and we propose how these models can be
extended to solve typical problems in complex-process environments.

5.1 Time-Line Model

The time-line model is a general method of describing dynamic processes using
discrete time intervals and grouping time slices per resource. As mentioned in the
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previous section, it is possible to combine discrete time with grouping slices per task
too. However, this combination is rarely used because it requires “linear tasks” only.
Therefore we use discrete time and grouping per resource only in the following
paragraphs. Such time-line model describes the factory in general because it
concentrates on the specification of resources and it is independent of a particular set
of tasks.

Variables. We describe the situation of the resources at each time slice (time point)
using a chunk of variables. These variables may specify the processed activity, the
quantity of stored items etc. We may use a unified description of each time slice for
the resource, i.e., each time slice for a given resource is described using the same set
of variables. Another possibility is to generate (some) variables in time slices
dynamically, e.g., in case of store we may introduce a variable for an item’s quantity
when we know that the item is stored in a given time slice. By distributing the
variables into static and dynamic groups we may preserve the propagation power of
constraints (see next paragraph) while keeping the memory consumption low. A good
strategy is to define variables present in all time slices for a given resource as static
(like the variable specifying the activity) while the variables whose appearance
depends on the value of other (static) variables as dynamic (like the quantity of a
processed item).

Remember that we are scheduling a fixed time period so we know the number of
time slices. Consequently we know all the static variables in advance and we can also
deduce their allocation in time. This simplifies capturing the initial situation of the
resources as well as capturing the required future situations via setting the value or
restricting the domains of variables.

Constraints. The knowledge about the structure of (static) variables enables us to
introduce resource and transition constraints in advance and to exploit the power of
constraint propagation. The resource constraints bind variables in single time slice
and transition constraints bind variables from consecutive time slices. If any dynamic
variable is included in the constraint then the constraint is posted as soon as all such
variables are introduced to the system.

There remain the dependency constraints that express the supplier-consumer
relations between the resources. These constraints bind variables from different time
slices of different resources so they have dynamic nature here as their appearance
depends on values of some variables. In particular, we can introduce the dependency
constraint when we know which items are processed in the time slices.

Planning. The role of the activity generator (the planning module) is shifted a bit in
the time-line model because, in fact, we do not generate activities here. The activity is
introduced simply by assigning a value to the activity variable at the time slice. The
planning module in the time-line model is responsible for the introduction of the
dynamic elements, in particular of the dependency constraints.



Complex-Process Environments. The time-line model is a very general model that
is able to capture all the problems in complex-process environments as presented in
Section 2. The problems like by-products, re-cycling, non-ordered production, or
alternatives are modelled naturally here. Unfortunately, the size of the model is very
large when applied to real-life large-scale problems. This is caused by the formula for
computing the slice duration using the duration of all the activities (see previous
section). In particular, even if the duration of the activities is, say 60 and 61 minutes
then the duration of the time slice is still 1 minute (the greatest common divisor of the
activities’ duration). Therefore many variables are redundant and, thus, we do not
expect very good efficiency from this model when applied to complex-process
environments.

5.2 Task-centric Model

A traditional constraint model for scheduling problems in the CP framework uses
event-based time with grouping of activities per task. We call this model simply a
task-centric model. This model is very popular among the scheduling community
because of its static nature; all the elements are known in advance. Also, typically the
resource constraints are very simple here and there are no transition constraints.
Unfortunately, this is not the case in the complex-process environments so we
propose here how to extend the conventional task-centric model to solve some of the
problems in such environments.

Activities and variables. In the task-centric model, activities are used to describe the
behaviour of the resources. Each activity is specified by a chunk of variables that
include the start and the completion time of the activity (or duration) and the variable
specifying the resource to which the activity is allocated.

In the static representation, we have the description of all the activities in advance,
but in complex-process environments we need to introduce activities during
scheduling. There are two ways how to establish such dynamic behaviour. First, we
may use a fully dynamic representation where the activities are generated by the
planning module. Second, we may estimate the maximal number of activities per task
and instead of using the fixed activities we propose to use a shell for activity, i.e., we
extend the variable set in the shell by the variable for the activity. By assigning a
value to this variable we fill the shell by the activity. We prefer this second
alternative, called semi-dynamic representation, because it preserves the advantages
of the static representation, i.e., constraint propagation, and it is almost as powerful as
the fully dynamic representation4.

                                                          
4 In the fully dynamic representation, the number of activities in the task is not restricted at all;

the decision about the activities is up to the planning module. In semi-dynamic representation
we must decide about the maximum number of activities per task in advance which may
complicate modelling of cycling and re-cycling.



Fig. 7. In the fully dynamic representation (left), the planning module generates activities using
the structure of all alternative production chains. In the semi-dynamic representation (right), the
task of the planning module is to fill the prepared shells by activities using the chaining
constraints (dotted lines).

Constraints. In the task-centric model it is easy to express the dependency constraints
between activities of a single task. Usually, these constraints express the precedence
relation between activities of the task, i.e., which activities must be completed before
another activity starts. Using fully dynamic or semi-dynamic representation
complicates a bit expressing these constraints because we do not know the activities
in shells. In such case, the constraints are posted as soon as the activity variable is
assigned.

In dynamic and semi-dynamic representations we may use another type of
dependency constraint that binds activity variables. These constraints define the
allowed production chains; in particular they are used to restrict the alternatives if
some activity is known. Let’s call these constraints chaining constraints.

Finally, there are resource and transition constraints that bind activities from
different tasks. Again, these constraints are dynamic; i.e. they are introduced during
scheduling when we know the allocation of activities to resources (when resource and
time variables are assigned).

Planning. The dynamic representation of the task-centric model is a nice example of
mixed planning and scheduling framework; the planning module introduces activities
that are allocated by the scheduling module. During planning we use the information
from the chaining constraints. The semi-dynamic representation can exploit the
chaining constraints even more because the constraints reduce the domains of the
activity variables automatically via constraint propagation.

The planning module is also responsible for the introduction of resource and
transition constraints. In particular, it must identify the activities from different tasks
that should be connected using these constraints. The planning module also decides
about inserting special set-up activities.

candidates to fill the shells

Fully dynamic representation Semi-dynamic representation

shells

generated

generated

filled

filled

chaining
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Complex-Process Environments. The semi-dynamic representation was proposed
with respect to solve typical problems in complex-process environments. There is no
problem with alternative production chains in single task; the planning module
chooses the alternative by filling the shells during scheduling.

As already mentioned, there is also no problem to use set-ups. We may simply
include a set-up activity among other activities in the production chain [15]. We must
just be careful to which production chain (task) the set-up activity is included.
Typically, the set-up is inserted between two activities from different tasks. If there
are no by-products then we may include it to the production chain of the second
activity (or the first one, it does not matter). However, if any by-product is produced
during the set-up then we recommend including the set-up activity to the production
chain where the by-product is consumed. In case of co-products, we need even more
advanced mechanism of sharing activities by two tasks. It is the responsibility of the
planning module to identify the shared activities.

Finally, there is a non-ordered production. Unfortunately, to schedule non-ordered
production we need to introduce new tasks during scheduling. This is not allowed in
the semi-dynamic representation or we must prepare “empty” tasks in advance to be
filled by activities of non-ordered production.

The task-centric model is perfect for environments driven by orders where the
tasks do not interleave too much. Also, the resource and transition constraints should
not be too complicated. Even after enhancing the model, the capabilities of the task-
centric model to solve problems in complex-process environments are limited.

5.3 Resource-centric Model

Like the task-centric model, the resource-centric model uses event-based time but
now the activities are grouped per resource. Therefore this model is closer to the
description of real factory and it is independent of particular set of tasks.

We may use a static representation of this model when all the activities in the
resource are known in advance. In such case the scheduling task is to order the
activities in the resource respecting all the constraints. Naturally, the expressiveness
of the static representation is not very high and a dynamic representation is more
natural for this model.

Resource-centric model is orthogonal to the task-centric model so many techniques
are shared between the models. However, we shall show that the resource-centric is
more appropriate for complex-process environments as it can solve the typical
problems in these environments more naturally.

Activities and variables. Again, we describe the behaviour of each resource using
activities and each activity is specified by a chunk of variables. These variables
include the start and the completion time (or duration), the process quantity and the
links to dependent activities. Notice that we do not need a variable for resource
because the activities are grouped per resource but we need links to supplying and
consuming activities for dependencies.

Like in the task-centric model we may use either a fully dynamic representation
where the activities are generated during scheduling by the planning module or a



semi-dynamic representation with shells. In the case of semi-dynamic representation,
the upper estimate of the number of activities per resource must be computed.
Remember that the scheduled period is fixed so we may compute this upper estimate
using the scheduled duration and the duration of the activities (the shortest activity).
Opposite to the task-centric model where this upper estimate may restrict the number
of cycles, there is no restriction when the semi-dynamic representation is used here.
Because the semi-dynamic representation exploits the power of constraint
propagation, we prefer this representation here.

Constraints. In the resource-centric model, it is easy to express the resource and the
transition constraints because we know which activities belong to the resource. In
fact, we have the sequence of shells per resource and the resource and transition
constraints are used to restrict the domains of activity variables.

There remain the dependency constraints that bind variables from the activities of
different resources. These constraints are dynamic; i.e. they can be introduced when
we know the allocation of the activities to the shells. Note that even if we know the
activity in the shell, it is not easy to identify the dependent activities because the
shells in other resources may not be filled yet and they may not be allocated in time.

Planning. In the semi-dynamic representation, the role of the planning module is
shifted from generating activities to introducing dynamic constraints. In particular, the
planning module is responsible for finding dependent activities, i.e., grouping
activities per task. We may post the dependency constraints early when the activities
in the shells are not known exactly and when the allocation of shells in the time is not
precise. In this case a lot of potential connections is generated but only one of them
will be selected later to form the dependency. This approach is close to the static
representation. Another approach is to identify the exact dependent activity by the
planning module. The disadvantage is that if we find later that the chosen activity is
wrong we must backtrack to find another dependent activity. We propose something
in-between; i.e. we post the dependency constraints when we know the activity in one
of the dependent shells.

During posting the dependency constraints, the planning module uses the
information about tasks to be scheduled. We mean, that the activities in the shells and
the dependencies are not chosen “randomly” to satisfy the constraints but the planner
prefers the activities to satisfy the demands.

Complex-Process Environments. The resource centric model has similar capabilities
like the presented time-line model in modelling problems of complex-process
environments. There is no difficulty to model set-ups and because the dependencies
are generated during scheduling, there is no problem with by-products or co-products.
Because the production chains (tasks) are not specified explicitly in advance we may
choose the alternatives during scheduling. Finally, the scheduling is driven by user
demands but we can introduce activities for non-ordered production without any
difficulty.

The resource-centric model exceeds the task-centric model in problem areas with
complicated resource and transition constraints and where scheduling of non-ordered



production is required. Depending on the resolution of the resulting schedule, it has
lower memory consumption than the time-line model but it is also a bit complicated
to express some constraints here. We believe that in general, the resource-centric
model is the best model for complex-process environments.

6 Conclusions

In the paper we gave a survey of constraint models for scheduling problems and we
proposed how to extend these models by adding some planning capabilities. This
extension was motivated by real-life problems in the area of complex-process
environments. We highlighted several such problems that are too complicated for
traditional methods and we showed that the mixed planning and scheduling
framework could capture these problems. We analyse the basic techniques of
constraint modelling in scheduling problems and we studied three different constraint
models. We argue for using a dynamic representation that prevails over the
conventional static representation in areas where appearance of the activity depends
on allocation of other activities to resources. Also, the dynamic representation makes
the model more transparent and simplifies the constraints. As a result, we choose the
resource-centric model that balances the efficiency and expressive power when
applied to large-scale problems in complex-process environments.

The methods proposed in the paper are currently verified in the implementation of
a generic scheduling engine for complex-process environments. This engine is being
developed within the VisOpt scheduling project for InSol Ltd.
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