
Desk-mates (Stable Matching) with Privacy of Preferences, and a new Distributed
CSP Framework

Marius C. Silaghi and Amit Abhyankar
Florida Institute of Technology, USA
{msilaghi,aabhyank}@fit.edu

Markus Zanker
Universität Klagenfurt, Austria

markus@ifit.uni-klu.ac.at

Roman Barták
Charles University, Czech Republic

bartak@kti.mff.cuni.cz

Abstract

The desk-mates matcher application places students in pairs
of two for working in projects (similar to the well known
problems of stable matchings or stable roommates). Each
of the students has a (hopefully stable) secret preference be-
tween every two colleagues. The participants want to find
an allocation satisfying their secret preferences and without
leaking any of these secret preferences, except for what a
participant can infer from the identity of the partner that was
recommended to her.
The peculiarities of the above problem require solvers based
on old distributed CSP frameworks to use models whose
search spaces are higher than those in centralized solvers,
with bad effects on efficiency. Therefore we introduce a new
distributed constraint satisfaction (DisCSP) framework where
the actual constraints are secrets that are not known by any
agent. They are defined by a set of functions on some secret
inputs from all agents. The solution is also kept secret and
each agent learns just the result of applying an agreed func-
tion on the solution. The expressiveness of the new frame-
work is shown to improve the efficiency (O(2m

3−log(m))
times) in modeling and solving the aforementioned problem
with m participants. We show how to extend our previous
techniques to solve securely problems modeled with the new
formalism, and exemplify with the problem in the title. An
experimental implementation in the form of an applet-based
solver is available.

Introduction
The desk-mates matcher application groups a set of students
in stable working teams of two, such that whenever one stu-
dent wants to change her partner for a third one, the third one
prefers her current partner to the change (similar to stable
matchings or stable roommates (Irving & Manlove 2002)).
It is desirable for these teams to be stable for the duration
of the project. Otherwise discontinuities and changes may
reduce the efficiency of the learning process. The students
have a preference between any pair of potential partners,
and between working with any given partner or working
alone. Some students insist to work alone, and it is typi-
cally difficult for students to refuse other’s offers of part-
nership. In fact students sometimes prefer to keep private

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

their preferences between colleagues, to avoid hurting oth-
ers. We decided that it is needed to provide students with
a support in solving these situations. We therefore built
a web-application that insures their privacy using crypto-
graphic solvers of distributed constraint satisfaction prob-
lems, as proposed in this paper. Note that our approach can
also be applied to combinatorial auctions or to the problem
of distributed configuration of products based on compo-
nents from several providers, with secret configuration re-
quirements, etc.

Versions of these problems, without privacy requirements,
have been long known and studied. It is an example of con-
straint satisfaction problem (CSP) (Gent & Prosser 2002).1

A CSP is described by a set of variables and a set of con-
straints on the possible values of those variables. The CSP
problem consists in finding assignments for those variables
with values from their domains such that all constraints
are satisfied. The centralized CSP techniques require every
eventual participant to reveal its preferences (e.g. to a trusted
server), to compute the solution. Therefore, they apply only
when the participants accept to reveal their preferences to
the trusted party.

There exist frameworks and techniques to model and
solve distributed CSPs (DisCSPs) with privacy require-
ments, namely when the domains of the variables are private
to agents (Yokoo et al. 1998; Meseguer & Jiménez 2000),
or when the constraints are private to agents (Silaghi, Sam-
Haroud, & Faltings 2000). However, the desk-mates prob-
lem seems not to be modeled efficiently (i.e. with a reduced
search space) with any of the two known types of distributed
CSP frameworks. This is because the private data of these
problems (the preferences) do not directly constrain the allo-
cation of the natural shared resources (the matching). An in-
direct relation exist with such a constraint. Aditional (redun-
dant) variables would need to be introduced in the system,
modeling the secret preferences, but reducing efficiency.

In this article we propose a new framework for the
distributed constraint satisfaction problems that avoids the
aforementioned redundant variables. It can model natu-
rally existing distributed constraint satisfaction problems,
and also the desk-mates (stable matchings problems) with

1Operations research has also provided very efficient solutions
to some instances without privacy.

−

x y z

+ +

f

g

*

*

*

Figure 1: An arithmetic circuit, g = yz + (x − z) and
f=(xz+yz)g. Each input can be the secret of some partici-
pant. The output may not be revealed to all participants. All
intermediary values remain secret to everybody.

private preferences. The new framework assumes that the
constraints are not known to absolutely any agent but they
are computable from secret inputs provided securely by the
different participants, by applying public functions on them.
Similarly, the final assignments are secret and each agent
can retrieve just the result of applying some agreed function
on the secret solution.

We also show how secure multi-party computation tech-
niques that we have recently developed for solving DisCSPs
with private constraints can be extended to solve problems
described in the new framework.

Background
The techniques proposed in this paper apply only to prob-
lems whose constraints and outputs can be represented as
first order logic expressions, or as arithmetic circuits on in-
puts. Actually, we propose a procedure to translate first or-
der logic definitions of constraints/outputs into arithmetic
circuits. In the following we introduce arithmetic circuits
and a short overview of the literature and techniques that
made them relevant.

Secure Arithmetic Circuit Evaluation
Secure multi-party computations can simulate any arith-
metic circuit or boolean circuit evaluation (Ben-Or, Gold-
wasser, & Widgerson 1988). An arithmetic circuit can be in-
tuitively imagined as a directed graph without cycles where
each node is described either by an addition/subtraction or
by a multiplication operator (see Figure 1). Each leaf is a
constant. In a secure arithmetic circuit evaluation, a set of
participants perform the operations of an arithmetic circuit
over some inputs, each input being either public or an (en-
crypted/shared) secret of one of them. The result of the arith-
metic circuit are the values of some predefined nodes. The
protocol can be designed to reveal the result to only a sub-
set of the agents, while none of them learns anything about
intermediary values. One says that the multi-party compu-
tation simulates the evaluation of the arithmetic circuit. A

boolean circuit is similar, just that the leafs are boolean truth
values, false or true, often represented as 0 and 1. The rest
of the nodes are boolean operators like AND or XOR. A
function does not have to be represented in this form to be
solvable using general secure arithmetic circuit evaluation.
It only needs to have such an equivalent representation. For
example, the operation

∑E
i=B f(i) is an arithmetic circuit if

B and E are public constants and f(i) is an arithmetic cir-
cuit. The same is true about

∏E
i=B f(i). Such constructs are

useful when designing arithmetic circuits.
There must be some machinery to compute the result of

the circuit from the inputs. However, existing techniques al-
low for the secret inputs not to be revealed to this machinery.
Namely the machinery works only with encrypted secrets
that it cannot decrypt.

Let us give a simple example of a secure computation.
Three faculty members, A0, A1, A2, want to compute the
average of their wages x0, x1, x2 without revealing any one
of them. Each professor Ai generates two random numbers,
ri,−1, ri,1. Ai sends each ri,j to A(i+j) mod 3 through a
secure channel. Each professor Ai computes now

ri = xi+r((i+1) mod 3),−1+r((i−1) mod 3),1−ri,−1−ri,1
and publishes ri. Their average wage is (r0+r1+r2)/3
and no particular wage is revealed except if communication
is intercepted, or if two professors collude. It was shown
in (Silaghi 2003) how such computations can be extended
to solve general CSPs. ri is what we call secret input in
the paper and (r0+r1+r2)/3 was here the equivalent to the
machinery proposed for computing the constraints.

In the simple example above, the secrets were shared
among participants in the computation by using random
numbers. A slightly more careful secret sharing technique
is famous due to its properties that allow easily for some
more general computations. This is Shamir’s secret sharing
that we will present later.

Distributed CSPs with constraints secret to
everybody

In this article we redefine the distributed CSP framework,
aiming to model efficiently (i.e. with a reduced search
space) the distribution of some famous CSP problems,
namely the stable matching problems (e.g. the desk-mates
problem). Let us now describe how the stable matching
problem can be modelled using a traditional CSP and a tra-
ditional DisCSP with secure constraints.

Modelling the desk-mates problem with a traditional
CSP The desk-mates problem consists in placing a set of
students A = {A1, ..., Am} in teams of two (or two-seats
desks), such that if any student Ai prefers a colleague Aj to
the desk-mate selected for her, then Aj prefers her current
desk-mate to Ai.

A way of modeling the desk-mates problem as a CSP is
to have one variable xi for each student Ai specifying the
index of the desk-mate assigned to her by the solution, or
specifying i, the index ofAi itself, if she remains alone. The

constraints are obtained by preprocessing the input from par-
ticipants about their preferences. The fact that a student Ai
prefers Au to Av is specified by the first order logic predi-
cate PAi(u, v). There is a constraint φij between every pair
of distinct variables xi and xj . In first order logic notation,
the constraint between each two variables xi and xj is:

∀xi, xj : φij(xi, xj)
def
= (PAi(xj , xi)⇒ PAxj (j, i))

∧(PAj (xi, xj)⇒ PAxi (i, j)) ∧
((xi = j)⇔ (xj = i)) (1)

Read: For each pair of participants Ai, Aj , (and corre-
sponding variables xi and xj) there is a constraint φij that
allows a pair of assignments to these variables only if:

• the fact that Ai prefers the participant assigned to Aj
(Axj) to her own match Axi implies that:

the agent assigned by these assignments to Aj (Axj),
prefers the agent Aj to the agent Ai.

• the fact that Aj prefers the participant assigned to Ai
(Axi) to her own match Axj implies that

the agent assigned by these assignments to Ai (Axi),
prefers the agent Ai to the agent Aj .

• Aj is the match of Ai only if Ai is the match of Aj .

Note that this model subsumes the constraints: ∀i, j :
xi 6= xj . The main complication with this kind of CSPs
is that the constraints are functions of secrets that cannot be
easily elicited from the participants. Distributed CSP frame-
works are meant to address such problems.

Modeling the desk-mates problem with DisCSPs with se-
cret constraints that are known to some agents. One
can model the desk-mates problem with secret constraints
known to some agents (Zhang & Mackworth 1991; Silaghi,
Sam-Haroud, & Faltings 2000) by choosing as variables,
x1, ..., xm, the index of the partner associated to each agent
(that has to be computed) and using one additional boolean
variable for each secret preference, PAi(u, v). The values
of variables PAi(u, v) are the secret unary constraints ofAi.
The total number of boolean variables ism3,m2 of them be-
ing actually fixed by public constraints (e.g. PAi(u, u) = 0).
However, also taking into account the variables x1, ..., xm,
the total search space becomesO(mm2m

3

). This is O(2m
3

)
times worse than the centralized CSP formalization whose
search space is only O(mm).

Example of a technique for DisCSPs with constraints
known to somebody One of the simplest and fastest tech-
niques for DisCSPs with constraints known to somebody is
the version for retrieving all solutions (Herlea et al. 2001).
Let us introduce one of its versions.

The agents share the secret values of their preferences.
Each tuple of assignments candidating as solution to the in-
put problem is refered by an index. They compute for each
such tuple εk, a shared secret whose unknown value is 1
when the tuple satisfies all agents and 0 otherwise. This is

done by securely simulating the evaluation of the arithmetic
circuit (Ben-Or, Goldwasser, & Widgerson 1988):

p(εk) =

|C|∏

i=1

φi(εk)

Simply reconstructing the obtained shared secrets reveals all
solutions, similarly to (Herlea et al. 2001). To be noted
that (Herlea et al. 2001) uses an equivalent boolean cir-
cuit evaluation instead of the arithmetic circuit evaluation
described here.

We propose now a distributed constraint satisfaction
framework that allows to model these problems with the
same search space size as the CSP framework, O(mm).

Redefining the Distributed Constraint Satisfaction
Framework
In the previous part of this section we have exemplified CSP
models for the stable matchings problem. We have seen that
it is difficult to model efficiently these problems using ex-
isting private variable-, or private constraint- oriented dis-
tributed constraint satisfaction frameworks.

Let us propose a framework for modeling distributed
CSPs, where a constraint is not (necessarily) a secret known
to an agent, or public, but can also be a secret unknown
to anybody. Any distributed problem is essentially (in our
view) described by a set of inputs and expected outputs
from/to each participant. A distributed CSP is a special-
ization in the sense that the inputs are used to specify con-
straints/domains of a CSP, and the outputs are derived from
the solution of that CSP. Therefore, we propose that prob-
lem descriptions must specify how to obtain the constraints
from the inputs of the agents (using functions) rather than
attributing constraints to agents.

Definition 1 A Distributed CSP (DisCSP) is defined by
six sets (A,X,D,C, I , O) and an algebraic structure F .
A={A1, ..., An} is a set of agents. X , D, and the solution
are defined like for CSPs.
I={I1, ..., In} is a set of secret inputs. Ii is a tuple of αi

secret inputs (defined on F) from the agent Ai. Each input
Ii belongs to Fαi .

Like for CSPs, C is a set of constraints. There may exist
a public constraint in C, φ0, defined by a predicate φ0(ε)
on tuples of assignments ε, known to everybody. However,
each constraint φi, i>0, in C is defined as a set of known
predicates φi(ε, I) over the secret inputs I , and the tuples ε
of assignments to all the variables in a set of variables Xi,
Xi ⊆ X .
O={o1, ..., on} is the set of outputs to the different agents.

Letm be the number of variables. oi : D1×...×Dm → Fωi

is a function receiving as parameter a solution and returning
ωi secret outputs (from F) that will be revealed only to the
agent Ai.

Theorem 1 The framework in the Definition 1 can model
any distributed constraint satisfaction problems with private
constraints.

Proof. The new DisCSP framework can be used to model any of
the DisCSP problems with constraints private to agents, by defin-
ing Ii as the extensional representation of the private constraint of
Ai (assuming the simple but sufficient case of one constraint per
agent). φi(ε, I) is then given by the corresponding value for ε in Ii
(true/1 or false/0). The outputs are going to be oi(ε) = ε for all i.

Theorem 2 The framework in the Definition 1 can model
distributed constraint satisfaction problems with private do-
mains (Yokoo et al. 1998).

Proof. A private domain of an agent can also be modeled as a
private unary constraint, in a DisCSP where each domain is the
maximum possible domain for the variable. Then, Theorem 1 ap-
plies.

We do not claim that the new framework is more gen-
eral than the existing frameworks. It enables us to model
naturally and efficiently the desk-mate (stable matchings)
problems. One can also model these problems with the
old frameworks, but they seem to yield much larger search
spaces, and therefore less efficient solutions. Let us now ex-
emplify how this framework can model the new problems.

Modeling the desk-mates problem as a DisCSP. A way
of modeling the desk-mates problem as a DisCSP is to have
one agent, Ai, and one variable, xi, for each participant in
the problem description. xi specifies the index of the desk-
mate assigned to Ai by the solution, or specifies i if she
remains alone. The inputs Ii of each agent are given by the
set of preferences PAi(u, v), specifying whether Ai prefers
Au to Av, for each u and v. The set F , to which belong the
inputs and the outputs, is {true, false}.

There is a constraint φij between every pair of variables
xi and xj , defined as in Equation 1. The output functions are

defined as: oi(ε)
def
= ε|{xi}. Namely, each agent learns only

the name of her desk-mate. There is a public constraint:

φ0
def
= ∀i, j, ((xi = j)⇔ (xj = i)) ∧ (xi 6= xj) (2)

Adapting existing secure solvers to the new
DisCSP framework

There exist several algorithms addressing distributed CSPs
with privacy of constraints (Herlea et al. 2001; Freuder,
Minca, & Wallace 2001; Wallace & Silaghi 2004; Yokoo,
Suzuki, & Hirayama 2002). Note that none of the recent
secure techniques involves propagation. The ones that we
succeed to extend to the new framework are:

• Finding the set of all solutions of a distributed constraint
problem with secret constraints (Herlea et al. 2001).

• Finding the first solution in a lexicographic order for a dis-
tributed constraint satisfaction problem with secret con-
straints that are known to some agents (Silaghi 2003).

• Finding a random solution for a DisCSP with secret con-
straints that are known to some agents (Silaghi 2003).

When a solution is returned to the desk-mates problem,
each agent Ai can infer that: any agent Ak preferred by Ai
to her current desk-mate Aj , prefers her current partner to
Ai. If only one solution is returned (picked randomly among
the existing solutions), then no other secret preference can
be inferred with certainty.

Theorem 3 The desk-mates problem can have several solu-
tions.

Proof. Consider a case with three agents, A1, A2, A3 where
PA1(2, 3), PA2(3, 1), PA3(1, 2). This is a loop of preferences,
and has three stable solutions, the sets of teams {(A1, A2), (A3)},
{(A2, A3), (A1)}, {(A3, A1), (A2)}. Such an example can be
constructed out of any similar loop of preferences, of any size.

If there exist several solutions, the agents will prefer not
to reveal more then one of them. The remaining solutions
would only reveal more secret preferences:
• Typically there is no other fair way, except randomness,

to break the tie between several solutions.
• If the single solution that is returned is selected as the first

one in some given lexicographic order on the variables
and domains of the problem, then additional information
is leaked concerning the fact that tuples placed lexico-
graphically before the suggested solution do not satisfy
the constraints (Silaghi 2003).

General Scheme
We will note that the main difference between the new
DisCSP framework, and the one with secret constraints that
are known to some agents, is that now the constraints need
to be computed dynamically from secrets inputs. All the
techniques we extend to the new framework contain a com-
ponent based on Shamir’s secret sharing, that we introduce
now. It is the achievement of this sharing which is most af-
fected by the change in framework. We will start by describ-
ing Shamir’s secret sharing, its importance in distributed
multi-party computations, and them we will introduce our
changes.

The secure multi-party simulation of arithmetic circuit
evaluation proposed in (Ben-Or, Goldwasser, & Widgerson
1988) exploits Shamir’s secret sharing. This sharing is based
on the fact that a polynomial f(x) of degree t−1 with un-
known parameters can be reconstructed given the evaluation
of f in at least t distinct values of x, using Lagrange in-
terpolation. Absolutely no information is given about the
value of f(0) by revealing the valuation of f in any at most
t−1 non-zero values of x. Therefore, in order to share a se-
cret number s to n participants A1, ..., An, one first selects
t−1 random numbers a1, ..., at−1 that will define the poly-
nomial f(x) = s+

∑t−1
i=1(aix

i). A distinct non-zero num-
ber τi is assigned to each participant Ai. The value of the
pair (τi, f(τi)) is sent over a secure channel (e.g. encrypted)
to each participant Ai. This is called a (t, n)-threshold
scheme. Once secret numbers are shared with a (t, n)-
threshold scheme, evaluation of an arbitrary arithmetic cir-
cuit can be performed over the shared secrets, in such a way
that all results remain shared secrets with the same security

properties (the number of supported colluders, t−1) (Ben-
Or, Goldwasser, & Widgerson 1988). For Shamir’s tech-
nique, one knows to perform additions and multiplications
when t ≤ (n+1)/2. Since any b(n−1)/2c participants can-
not find anything secret by colluding, such a technique is
called b(n−1)/2c-private (Ben-Or, Goldwasser, & Widger-
son 1988).

We do not try to encode functions, but only their inputs.
All functions (more exactly, arithmetic circuits) that will be
computed are public and known by all participants. Their
inputs, intermediary values, and outputs are shared secrets.
The techniques computing these functions do not reveal any
information to anybody and work by letting agents to pro-
cess the Shamir shares that they know, and by sharing addi-
tional secret values.

The techniques solving DisCSPs with private constraints
can be used as a black box, except for the secret con-
straint sharing. Namely, instead of simply sending encrypted
Shamir shares of one’s constraint, those shares of the con-
straints have to be computed from the secret inputs of the
agents. We therefore propose to replace the secret shar-
ing/reconstruction steps with simulations of arithmetic cir-
cuit evaluation which will compute each φk(ε, I) for each
tuple ε and for the actual inputs I . This step is called pre-
processing. Intuitively, preprocessing is the step of com-
puting the encrypted initial parameters of the CSP (i.e. ac-
ceptance/feasibility value of a tuple from the point of view
of each constraint), out of the provided secret inputs. Pre-
processing prepares “the pairs” (y,f(y)) that encode the 0/1
values of the constraints. It is done by evaluating arithmetic
circuits.

Similarly, instead of just reconstructing the assignments
to variables in a solution ε, one will have to design and ex-
ecute secure computations of the functions ok(ε). This step
is called post-processing. Intuitively, post-processing is the
step of computing the outputs to be revealed to agents, from
the obtained encrypted solution of the DisCSP and secret in-
puts. We show that in our cases this can also be done using
simulations of arithmetic circuit evaluations.

Assume A is some algorithm using Shamir’s secret shar-
ing for securely finding a solution of a distributed CSP (with
secret constraints known to some agents). The generic ex-
tension of the algorithm A to solve the DisCSP in the new
framework is:

• Preprocessing: Share the secrets in I with Shamir’s se-
cret sharing scheme. Compute each φk(ε|Xk , I) for each
tuple ε|Xk and for the actual inputs I by designing it as an
arithmetic circuit and simulating securely its evaluation.
The public constraint φ0 can be shared by any agent.

• Run the algorithm A as a black-box, for finding a solu-
tion ε∗ shared with Shamir’s secret sharing scheme, for
a DisCSP with parameters (i.e. constraints) shared with
Shamir’s secret sharing scheme.

• Post-processing: Compute each oi(ε∗) by designing it as
an arithmetic circuit and simulating securely its evalua-
tion. Reveal the result of oi(ε∗) only to Ai.

Pre- and post- processing for desk-mate problems
In the remaining part of the article we will prove that it
is possible to design the needed preprocessing and post-
processing to solve our example of DisCSPs, the desk-mates
problem, using the general scheme defined above.

Preprocessing for the desk-mates problem. We assume
the same choice of variables, as for the CSP formalization of
this problem above. Let us now show how simple arithmetic
circuits can implement the required preprocessing.

Each variable xi specifies the index of the desk-mate as-
sociated to Ai. The input of each agent Ai is a preference
value PAi(j, k) for each ordered pair of agents (Aj , Ak),
and specifying whether Ai prefers Aj to Ak. PAi(j, k)=1
if and only if Ai prefers Aj to Ak. Otherwise PAi(j, k)=0.
A constraint φij is defined between each two variables, xi
and xj . I.e. φij [u, v] is the acceptance value of the pair of
matches: (Ai, Au), (Aj , Av). One synthesizes m(m− 1)/2
such constraints:

φi,j [u, v] =





0 when u=v

(1−PAi(v, u) ∗ (1−PAv (j, i)))∗
(1−PAj (u, v) ∗ (1−PAu(i, j))) when u6=v

The public constraint φ0 (same as in Equation 2) restricts
each pair of assignments:

∀ε, ε=(〈xi, u〉, 〈xj , v)〉 : φ0(ε)
def
= ((u=j)⇔(v=i))∧(u 6= v)

φ0 is known by everybody, and therefore there is no need to
compute it with arithmetic circuits. The complexity of this
preprocessing is O(m4) multiplications of secrets (for m2

binary constraints with m2 tuples each).
The desk-mates problem does not require any arithmetic

circuit evaluation for the post-processing, as each agent Ai
learns a value existing in the solution, oi(ε) = ε|{xi}. The
participants just reveal to Ai their shares of xi in the solu-
tion.

Complexity
For a problem with size of the search space Θ and c con-
straints, the number of messages for finding all solutions
with secure techniques similar to the one in (Herlea et al.
2001) is given by (c − 1)Θ multiplications of shared se-
crets (n(n−1) messages for each such multiplication). For
the desk-mates problem modeled with the new framework,
Θ=mm and c=1 for the version with a single global con-
straint, or c=m2/2 for the version with binary constraints.
For the case with binary constraints, it yields a complexity
of O(mm+2). As mentioned before, the preprocessing has
complexity O(m4) multiplications between shared secrets,
resulting in a total complexity O(m2(mm +m2)).

Solving the same problem with the same algorithm but
modeled with the old DisCSP framework with private con-
straints, Θ = mm2m

3

and c = m, for one global constraint
from each agent. There is no preprocessing, but the total
complexity is O(mm+12m

3

). The new framework behaves
better sincem << 2m

3

. The comparison is similar for other

secure algorithms, like MPC-DisCSP1 (see (Silaghi 2003))
whose complexity is given by O(dm(c+m)Θ) multiplica-
tions between shared secrets.

The Desk-mates Matcher Application
We have implemented the proposed framework as an appli-
cation to Desk-mates Matcher. (Silaghi 2004).

Our web-application works as follows. An organizer of
the computation, e.g. an instructor or a student, uses a web
form to generate (for the included JAVA applets) parame-
ters that are customized for the computation at hand. This
process requires the organizer to input the size of the class,
the names of the students, and a cryptographic public Pail-
lier key provided by each student. Students can generate
Paillier key pairs using the corresponding applet linked from
the form, and keep the secret keys while handing the private
ones to the organizer.

When the customized problem description is generated, a
website is automatically built and provided for this problem
instance. The organizer is offered an opportunity to email its
URL to the students. The organizer can also specify which
algorithm to be used for the computation.

Each student browses the received URL, and downloads
the applet with customized parameters. The browser can
verify the integrity of the applet. Each student provides the
applet with his secret key, and inputs his secret preferences.
Then he launches his applet into the computation. The ap-
plets retrieve each-other’s network IP number and port by
using a directory server installed on the same host as the
web-application. The applets solve the problem securely,
and display for each student only the name of her/his part-
ner.

Conclusions
DisCSPs are a very active research area. Privacy has been
recently stressed in (Meseguer & Jiménez 2000; Freuder,
Minca, & Wallace 2001; Yokoo, Suzuki, & Hirayama 2002)
as an important goal in designing algorithms for solving
DisCSPs.

In this article we have investigated how versions of old
and famous problems, stable matchings problems, can be
solved such that the privacy of the participants is guaranteed
except for what is leaked by the selected solution. Our ap-
proach uses secure simulations of arithmetic circuit evalua-
tions and is therefore robust whenever no majority of the par-
ticipants colludes to find the secret of the others, and when
all agents follow the protocol.

We note that the desk-mates problems cannot be effi-
ciently modeled (at least not in an obvious way) with exist-
ing distributed constraint satisfaction frameworks. We have
therefore introduced a new distributed constraint satisfac-
tion framework that can model such problems with the same
search space size as the classic centralized CSP models. We
have shown how some techniques for the existing frame-
works can be adapted to problems modeled with the new
DisCSPs, and we exemplify the model with the desk-mates
problems. Form participants in the desk-mates problem, the
size of the search space in the DisCSP model achieved with

the new framework isO(mm) while the previous framework
with private constraints yields DisCSP instances with a size
of the search space of O(mm2m

3

). In existing secure algo-
rithms for solving DisCSPs, the number of exchanged mes-
sages is fix and directly proportional to the search space size,
making this property of a problem instance particularly rel-
evant.

References
Ben-Or, M.; Goldwasser, S.; and Widgerson, A.
1988. Completeness theorems for non-cryptographic fault-
tolerant distributed computating. In STOC, 1–10.
Freuder, E.; Minca, M.; and Wallace, R. 2001. Pri-
vacy/efficiency tradeoffs in distributed meeting scheduling
by constraint-based agents. In Proc. IJCAI DCR, 63–72.
Gent, I., and Prosser, P. 2002. An empirical study of the
stable marriage problem with ties and incomplete lists. In
ECAI 2002, 141–145.
Herlea, T.; Claessens, J.; Neven, G.; Piessens, F.; Preneel,
B.; and Decker, B. 2001. On securely scheduling a meet-
ing. In Proc. of IFIP SEC, 183–198.
Irving, R., and Manlove, D. 2002. The stable roommates
with ties. Journal of Algorithms 43(1):85–105.
Meseguer, P., and Jiménez, M. 2000. Distributed forward
checking. In CP’2000 Distributed Constraint Satisfaction
Workshop.
Silaghi, M.-C.; Sam-Haroud, D.; and Faltings, B. 2000.
Asynchronous search with private constraints. In Proc. of
AA2000, 177–178.
Silaghi, M.-C. 2003. Solving a distributed CSP with cryp-
tographic multi-party computations, without revealing con-
straints and without involving trusted servers. In IJCAI-
DCR.
Silaghi, M.-C. 2004. Secure distributed CSP solvers.
http://www.cs.fit.edu/ msilaghi/secure/.
Wallace, R., and Silaghi, M.-C. 2004. Using privacy loss to
guide decisions in distributed CSP search. In FLAIRS’04.
Yokoo, M.; Durfee, E. H.; Ishida, T.; and Kuwabara, K.
1998. The distributed constraint satisfaction problem: For-
malization and algorithms. IEEE TKDE 10(5):673–685.
Yokoo, M.; Suzuki, K.; and Hirayama, K. 2002. Se-
cure distributed constraint satisfaction: Reaching agree-
ment without revealing private information. In CP.
Zhang, Y., and Mackworth, A. K. 1991. Parallel and dis-
tributed algorithms for finite constraint satisfaction prob-
lems. In Proc. of Third IEEE Symposium on Parallel and
Distributed Processing, 394–397.

