
 1

A Constraint Model for State Transitions
in Disjunctive Resources

Roman Barták*, Ondřej Čepek*

* Charles University in Prague, Faculty of Mathematics and Physics
Malostranské nám. 2/25, 118 00 Praha 1, Czech Republic

roman.bartak@mff.cuni.cz, ondrej.cepek@mff.cuni.cz

 Institute of Finance and Administration
Estonská 500, 101 00 Praha 10, Czech Republic

Abstract. Traditional resources in scheduling are simple machines where a
capacity is the main restriction. However, in practice there frequently appear
resources with more complex behaviour that is described using state transition
diagrams. This paper presents new filtering rules for constraints modelling the
state transition diagrams. These rules are based on the idea of extending
traditional precedence graphs by direct precedence relations. The proposed
model also assumes optional activities and it can be used as an open model
accepting new activities during the solving process.

Introduction

Temporal networks play an important role in planning but they are not used as
frequently in scheduling where resource restrictions traditionally play a stronger role.
This is reflected in scheduling global constraints, where techniques like edge-finding
or not-first/not-last combine restrictions on time windows with a limited capacity of
the resource (Baptiste, Le Pape, Nuijten 2001). Recently, a new category of
propagation techniques combining information about relative position of activities
with capacity of resources appeared (Cesta and Stella 1997). Also techniques
combining information about precedence relations and time windows have been
proposed (Laborie 2003). We believe that integration of temporal networks with
reasoning on resources (Laborie 2003b; Moffit, Peintner, and Pollack 2005) will play
even more important role as planning and scheduling technologies are becoming
closer.
 In this paper we propose an extension of precedence graphs by direct precedence
relations (A can directly precede B if no activity must be allocated between A and B).
This extension is motivated by modelling complex behaviour of resources that is
described as a state transition diagram. Such a diagram is in fact a generalisation of
set-up times that play an important role in current real-life scheduling problems. As
factories are transforming from mass production to more customised production,
multi-purpose and hence more complicated machines are used and better handling of
setups is becoming important. Space applications are another example where a more
complex behaviour of resources is typical. Also over-subscribed problems are more

 2

frequent nowadays so the scheduling systems should be able to handle optional
activities, for example, to decide about rejection of activity that cannot be scheduled
feasibly together with other activities. Note also, that optional activities are useful for
modelling alternative resources (an optional activity is used for each alternative
resource) as well as alternative processes to accomplish a job (each process may
consist of one of several different sets of activities). Scheduling systems should also
be able to add activities to satisfy the transition scheme, for example to insert a setup
activity if necessary.

To summarise the contributions of this paper, we propose two extensions of
ordinary precedence graphs: adding direct precedence relations and using optional
activities. For such a graph which we call a double precedence graph we design
incremental filtering rules that keep a transitive closure of the graph and deduce new
precedences and (in)validity of activities. Moreover, in contrast to traditional global
constraints used in scheduling the proposed model is open, that is, it allows adding
new activities to the precedence graph during the solution process.

Motivation

In this paper we address the problem of modelling a disjunctive resource where
activities must be allocated in such a way that they do not overlap in time. We assume
that there are precedence constraints between the activities. The precedence constraint
A « B specifies that activity A must be before activity B in the schedule. Each activity
is annotated by a resource state requested for processing the activity and there is a
state transition diagram describing transitions between the states. State transition
diagram is a directed graph where nodes describe the states and arcs describe allowed
transitions between the states (Figure 1). The state transition diagram restricts
sequencing of activities in the following way: activity A can be scheduled directly
before activity B only if there is an arc from the state of A to the state of B in the state
transition diagram. To model over-subscribed problems and alternative
resources/processes, we assume optional activities. An optional activity has one of the
following three statuses. If the activity is not yet known to be or not to be included
then it is called undecided. If the activity is allocated to the resource then it is called
valid. If the activity is known not to be allocated to the resource then it is called
invalid. Regular activities correspond to valid activities. The scheduling task is to
decide about (in)validity of the undecided activities and to find a sequence of valid
activities satisfying the precedence constraints and restrictions imposed by the state
transition diagram.

Fig. 1. Example of a state transition diagram.

target location

take picture store picture

download picture

position antenna

 3

In real-life problems there are usually also time windows restricting position of
activity in time. In such a case, it is known that deciding about an existence of a
feasible schedule is NP-hard in the strong sense (Garey and Johnson 1979) so there is
a little hope even for a pseudo-polynomial solving algorithm. Hence using
propagation rules and constraint satisfaction techniques is justified here. The paper
(Barták 2006) shows how filtering of time windows can be combined with the
precedence graph so in this paper we focus merely on handling (direct) precedence
relations. Our goal is to propose filtering rules that remove inconsistencies from the
double precedence graph.

Related Works

Disjunctive temporal networks (Stergiou and Koubarakis 1998) can model disjunctive
resources. However, DTNs use more general disjunctions than necessary and hence
they achieve weaker pruning. Moreover, a qualitative approach to time seems more
appropriate to describe the problem of activity sequencing. Though we assume
durative activities, Interval Algebra is superfluous because disjunctive resources
discard most of the interval relations (like starts, during, overlaps etc.). From Point
Algebra we need only ‘before’ and ‘after’ relations and there is no support for direct
precedences there. The work by Laborie (2003b) studies a combination of resource
and temporal reasoning but no algorithm is presented (and a different type of
resources is assumed). Probably the closest approach to our problem is presented in
the paper (Focacci, Laborie, and Nuijten 2000) where alternative resources
correspond to paths in the global precedence graph. However, this approach is
proposed merely for cost-based filtering (optimization of makespan or setup times)
and it assumes all the activities to be present in the global precedence graph. The
paper (Beck and Fox 1999) presents an idea of a precedence graph with optional
activities. The authors use a so called PEX value to describe a probability of the
existence of the activity and their approach is based on updating this value. Instead of
that we use a Boolean variable to describe the presence of an activity and we focus
more on precedence and direct precedence relations. To summarise the above
discussion, none of the existing approaches to temporal and resource reasoning covers
fully state transition diagrams and optional activities.

Double Precedence Graphs

The precedence relations among activities define a precedence graph that is an
acyclic directed graph where nodes correspond to activities and there is an arc from A
to B if A « B. If access to all predecessors and successors of a given activity is
frequently requested, like in (Cesta and Stella 1997; Laborie 2003), then it is more
efficient to keep a transitive closure of the graph where this information is available in
time O(1) rather than to look for predecessors/successors on demand. We propose the
following definition of transitive closure of the precedence graph with optional
activities.

 4

Definition 1: We say that a precedence graph G with optional activities is transitively
closed if for any two arcs A to B and B to C such that B is a valid activity and A and
C are either valid or undecided activities there is also an arc A to C in G.

It is easy to prove that if there is a path from A to B such that A and B are either valid
or undecided and all inner nodes in the path are valid then there is also an arc from A
to B in a transitively closed graph (by induction on the path length). Hence, if no
optional activity is used (all activities are valid) then Definition 1 corresponds to a
standard definition of the transitive closure.
 To model restrictions imposed by the state transition diagram we propose to extend
the precedence graph by direct precedence relations between the activities.

Definition 2: We say that A can directly precede B if both A and B are either valid or
undecided activities, B is not before A (¬ B « A), the transition from A to B is
allowed by the state transition diagram, and there is no valid activity C such that A «
C and C « B (the relation « is from the transitive closure of the precedence graph with
optional activities).

The relation of direct precedence introduces a new type of arc, say «d, in the
precedence graph and hence we are speaking about the double precedence graph.
There is one significant difference between the arcs of type « and the arcs of type «d.
While the arcs « are added into the graph as problem solving proceeds, the arcs «d are
typically removed from the graph (note that «d means “can be directly before”, while
« means “must be before”). When all valid activities are linearly ordered, there is
exactly one arc of type «d going into each valid activity (with the exception of the
very first activity in the schedule) and one arc of type «d going from each valid
activity (with the exception of the very last activity in the schedule).

Constraint Model

We propose to realise a reasoning on precedence relations using constraint
satisfaction technology. This allows integration of our model with other constraint
reasoning techniques (Barták 2006). This integration requires the model to provide
full information about precedence relations to all other constraints. We index each
activity by a unique number from the set 1,..,n, where n is the number of activities.
For each activity we use a 0/1 variable Valid indicating whether the activity is valid
(1) or invalid (0). If the activity is undecided – not yet known to be valid or invalid –
then the domain of Valid is {0,1}. The precedence graph is encoded in two sets
attached to each activity. CanBeBefore(A) is a set of indices of activities that can be
before activity A. CanBeAfter(A) is a set of indices of activities that can be after
activity A. For simplicity reasons we will write A instead of the index of A. To
simplify description of the propagation rules we define for every activity A the
following derived sets:

MustBeAfter(A) = CanBeAfter(A) \ CanBeBefore(A)
MustBeBefore(A) = CanBeBefore(A) \ CanBeAfter(A)
Unknown(A) = CanBeBefore(A) ∩ CanBeAfter(A).

MustBeAfter(A) and MustBeBefore(A) are sets of those activities that must be after
and before the given activity A respectively. Unknown(A) is a set of activities that are
not yet known to be before or after activity A (Figure 2).

 5

 To model direct precedence relations and hence a double precedence graph, we add
two sets to each activity: CanBeRightBefore and CanBeRightAfter containing indexes
of activities that can be directly before and directly after a given activity. Naturally,
the following relation holds CanBeRightBefore(A) ⊆ CanBeBefore(A) at any time
and similarly CanBeRightAfter(A) ⊆ CanBeAfter(A).

Fig. 2. Representation of the precedence graph.

Note on representation. The main reason for using sets to model the
precedence graph is their possible representation as domains of variables in
constraint satisfaction packages. Recall that domains of variables can only
shrink as problem solving proceeds. The sets in our model are also shrinking as
new arcs « are added to the precedence graph. Hence a special data structure is
not necessary to describe the precedence graph in constraint satisfaction
packages. Moreover, these packages usually provide tools to manipulate the
domains, for example membership and deletion operations. In the subsequent
complexity analysis, we will assume that these operations require time O(1),
which can be realised for example by using a bitmap representation of the sets.
Note finally, that empty domain implies inconsistency that may be a problem
for the very first and very last activity which has no predecessors and
successors respectively. To solve the problem we can simply leave activity A
in both sets CanBeAfter(A) and CanBeBefore(A). Then no domain of
CanBeBefore and CanBeAfter will ever be empty but we can detect
inconsistency via the empty domain of Valid variables.

Propagation Rules for Simple Precedences

The goal of propagation rules is to remove inconsistent elements (activities) from the
above described sets – this is called domain filtering in constraint satisfaction. In the
first stage, we will focus on making a transitive closure of the precedence graph
according to Definition 1. Note that the transitive closure of the precedence graph also
simplifies detection of inconsistency of the graph. The precedence graph is
inconsistent if there is a cycle of valid activities. In a transitively closed graph, each
such cycle can be detected by finding two valid activities such that A « B and B « A.
Our propagation rules prevent cycles by making invalid the last undecided activity in
each cycle. This propagation is realised by using an exclusion constraint. When a
cycle A « B and B « A is detected, the following exclusion constraint can be posted:

Valid(A) = 0 ∨ Valid(B) = 0.

A

MustBeBefore(A)
MustBeAfter(A)

Unknown(A)

CanBeBefore(A)

CanBeAfter(A)

 6

This constraint ensures that each cycle is broken by making at least one activity in the
cycle invalid. Instead of posting the constraint directly to the constraint solver, we
propose keeping the set Ex of exclusions. The above exclusion constraint is modelled
as a set {A,B} ∈ Ex. Now, the propagation of exclusions is realised explicitly – if
activity A becomes valid then all activities C such that {A,C} ∈ Ex are made invalid.
 We initiate the precedence graph in the following way. First, the variables
Valid(A), CanBeBefore(A), CanBeRightBefore(A), CanBeAfter(A), and
CanBeRightAfter(A) with their domains are created for every activity A. Then the
known precedence relations in the form A « B are added by removing B from the sets
CanBeBefore(A) and CanBeRightBefore(A), and removing A from the sets
CanBeAfter(B) and CanBeRightAfter(B). Note, that because all activities are still
undecided at this stage, domain change is not propagated to other variables. Finally,
the Valid(A) variable for every valid activity A is set to 1 (and similarly Valid
variables of invalid activities are set to 0). By instantiating the Valid(A) variable, the
propagation rule /1/ is invoked. “Valid(A) is instantiated” is its trigger. The part after

 is a propagator describing pruning of domains. “exit” means that the constraint
represented by the propagation rule is entailed so the propagator is not further invoked
(its invocation does not cause further domain pruning). We will use the same notation
in all rules. The propagation rule /1/ realises the above described exclusion constraints
as well as adding new arcs according to Definition 1.

Valid(A) is instantiated /1/
if Valid(A) = 0 then
 Ex := Ex \ {{A,X} | X is an activity}
 for each B do // disconnect A from B
 CanBeBefore(B) ← CanBeBefore(B) \ {A}
 CanBeAfter(B) ← CanBeAfter(B) \ {A}
 CanBeRightBefore(B) ← CanBeRightBefore(B) \ {A}
 CanBeRightAfter(B) ← CanBeRightAfter(B) \ {A}
else // Valid(A)=1
 for each C s.t. {A,C}∈Ex do Valid(C) ← 0
 for each B∈MustBeBefore(A) s.t. Valid(B)≠0 do
 for each C∈MustBeAfter(A) s.t. Valid(C)≠0 do
 CanBeRightAfter(B) ← CanBeRightAfter(B) \ {C}
 CanBeRightBefore(C) ← CanBeRightBefore(C) \ {B}
 if C∉MustBeAfter(B) then //add arc from B to C
 CanBeAfter(C) ← CanBeAfter(C) \ {B}
 CanBeBefore(B) ← CanBeBefore(B) \ {C}
 CanBeRightAfter(C) ← CanBeRightAfter(C) \ {B}
 CanBeRightBefore(B) ← CanBeRightBefore(B) \ {C}

 if C∉CanBeAfter(B) then // break the cycle
 if Valid(B)=1 then Valid(C) ← 0
 // Valid(C)=1 leads to fail
 else if Valid(C)=1 then Valid(B) ← 0
 else Ex ← Ex ∪ {{B,C}}
exit

Note that rule /1/ maintains symmetry of sets modelling the double precedence graph
for all valid and undecided activities because the domains are pruned symmetrically
in pairs. We shall show now, that if the entire precedence graph is known in advance
(no arcs are added during the solving procedure), then rule /1/ is sufficient for keeping
the transitive closure according to Definition 1.

 7

Proposition 1: Let A0, A1, … , Am be a path in the precedence graph such that
Valid(Aj)=1 for all 1≤j≤m-1 and Valid(A0)≠0 and Valid(Am)≠0 (that is, the endpoints
of the path are not invalid and all inner points of the path are valid). Then A0 « Am,
that is, A0∉CanBeAfter(Am) and Am∉CanBeBefore(A0).

Proof: We shall proceed by induction on m. The base case m=1 is trivially true after
initialisation (we assume that for every arc (X,Y) in the precedence graph X is
removed from CanBeBefore(Y) and Y is removed from CanBeAfter(X) in the
initialisation phase). For the induction step let us assume that the statement of the
lemma holds for all paths (satisfying the assumptions of the lemma) of length at most
m-1. Let 1≤j≤m-1 be an index such that Valid(ij)←1 was set last among all inner
points i1, … , im-1 on the path. By the induction hypothesis we get

• i0∉CanBeAfter(ij) and ij∉CanBeBefore(i0) using the path i0, … , ij
• ij∉CanBeAfter(im) and im∉CanBeBefore(ij) using the path ij, … , im

We shall distinguish two cases. If im∈MustBeAfter(i0) (and thus by symmetry also
i0∈MustBeBefore(im)) then by definition im∉CanBeBefore(i0) and i0∉CanBeAfter(im)
and so the claim is true trivially. Thus let us in the remainder of the proof assume that
im∉MustBeAfter(i0).
 Now let us show that i0∈CanBeBefore(ij) must hold, which in turn (together with
i0∉CanBeAfter(ij)) implies i0∈MustBeBefore(ij). Let us assume by contradiction that
i0∉CanBeBefore(ij). However, at the time when both i0∉CanBeAfter(ij) and
i0∉CanBeBefore(ij) became true, that is, when the second of these conditions was
made satisfied by rule /1/, rule /1/ must have posted the constraint (Valid(i0)=0 ∨
Valid(ij)=0) which contradicts the assumptions of the lemma. By a symmetric
argument we can prove that im∈MustBeAfter(ij). Thus when rule /1/ is triggered by
setting Valid(ij)←1 both i0∈MustBeBefore(ij) and im∈MustBeAfter(ij) hold (and
im∉MustBeAfter(i0) is assumed), and therefore rule /1/ removes im from the set
CanBeBefore(i0) as well as i0 from the set CanBeAfter(im), which finishes the proof.

Q.E.D.

Proposition 2: The worst-case time complexity of the propagation rule /1/
(instantiation of the Valid variable) including all possible recursive calls is O(n2),
where n is the number of activities.

Proof: If activity A is made invalid then all exclusion pairs that include A are
removed from set Ex which could be done in time O(n), if the set is properly
implemented (for example as a symmetric n × n matrix). Moreover, activity A is
removed from the sets CanBeBefore, CanBeAfter, CanBeRightBefore, and
CanBeRightAfter of all other activities which takes the total time O(n).
 If activity A becomes valid then some activities are made invalid and some new
arcs may be added to the graph. At most n activities can be invalidated which takes a
total time O(n2). The maximal number of added arcs is Θ(n2). It may also happen that
some other activities (at most O(n)) become invalid to break cycles. However, we
already know that the time complexity of making an activity invalid is O(n).
Together, the worst-case time complexity to make an activity valid is O(n2).

Q.E.D.

In some situations arcs may be added to the double precedence graph during the
solving procedure, either by the user, by the scheduler/planner, or by other filtering
algorithms (Barták 2006). The following rule /2/ updates the double precedence graph
to keep transitive closure when an arc is added to the double precedence graph. If a

 8

new arc A«B is added then we first check whether the arc is not already present in the
graph. If it is a new arc then the corresponding sets are updated and a possible cycle is
detected (we use the same reasoning as in rule /1/). Finally, if any end point of the
arcs is valid, then necessary arcs are added to update the transitive closure according
to Definition 1. In such a case, some direct precedence relations are removed
according to Definition 2. Note that the propagators for new arcs are evoked after the
propagator of the current rule finishes.

A«B is added /2/
 if A∈MustBeBefore(B) then exit // the arc is already present
 CanBeAfter(B) ← CanBeAfter(B) \ {A}

 CanBeBefore(A) ← CanBeBefore(A) \ {B}
 CanBeRightAfter(B) ← CanBeRightAfter(B) \ {A}

 CanBeRightBefore(A) ← CanBeRightBefore(A) \ {B}
 if A∉CanBeBefore(B) then // break the cycle

 if Valid(A)=1 then Valid(B) // Valid(B)=1 leads to fail
 else if Valid(B)=1 then Valid(A) ← 0
 // Valid(A)=1 leads to fail
 else Ex ← Ex ∪ {{A,B}}
 else // transitive closure
 if Valid(A)=1 then
 for each C∈MustBeBefore(A) s.t. Valid(C)≠0 do

 CanBeRightAfter(C) ← CanBeRightAfter(C) \ {B}
 CanBeRightBefore(B) ← CanBeRightBefore(B) \ {C}
 if C∉MustBeBefore(B) then
 add C«B
 if Valid(B)=1 then
 for each C∈MustBeAfter(B) s.t. Valid(C)≠0 do

 CanBeRightAfter(A) ← CanBeRightAfter(A) \ {C}
 CanBeRightBefore(C) ← CanBeRightBefore(C) \ {A}
 if C∉MustBeAfter(A) then

 add A«C
 exit

Again, it is possible to show that if the precedence graph G is transitively closed (in
the sense specified by Definition 1) and arc A « B is added to G then rule /2/ updates
the precedence graph G to be transitively closed again. Note also, that propagation
rules /1/ and /2/ achieve global consistency concerning the precedence constraint.
This is a direct consequence of keeping a transitive closure of the precedence graph.

Proposition 3: If the precedence graph G is transitively closed (in the sense specified
by Definition 1) and arc A « B is added to G then rule /2/ updates the precedence
graph G to be transitively closed again.

Proof: Assume that arc A « B is added into G at a moment when arc B « C is already
present in G. Moreover assume that Valid(A)≠0, Valid(B)=1, and Valid(C)≠0. We
want to show that A « C is in G after rule /2/ is fired by the addition of A « B. The
presence of arc B « C implies that C∈MustBeAfter(B) (and by symmetry also
B∈MustBeBefore(C)). Now there are two possibilities. Either C∉MustBeAfter(A) in
which case rule /2/ adds the arc A « C into G, or C∈MustBeAfter(A) (and by
symmetry also A∈MustBeBefore(C)) which means that arc A « C was already
present in G when arc A « B was added.

 9

 The case when arc A « B is added into G at a moment when arc C « A is already
present in G and Valid(C)≠0, Valid(A)=1, Valid(B)≠0 holds can be handled similarly.
Thus when an arc is added into G, all paths of length two with a valid midpoint which
include this new arc are either already spanned by a transitive arc, or the transitive arc
is added by rule /2/. In the latter case this may invoke adding more and more arcs.
However, this process is obviously finite (cannot cycle) as an arc is added into G only
if it is not present in G, and no arc is ever removed from G. More on the time
complexity of arc additions follows in Proposition 4.
 Therefore, it is easy to see, that when the process of recursive arc additions
terminates, the graph G is transitively closed. Indeed, for every path of length two in
G with a valid midpoint one of the arcs on the path is added later than the other, and
we have already seen that at a moment of such an addition the transitive arc is either
already in G or is added by rule /2/ in the next step.

Q.E.D.

Proposition 4: The worst-case time complexity of the propagation rule /2/ (adding a
new arc) including all recursive calls to rules /1/ and /2/ is O(n3), where n is the
number of activities.

Proof: If arc A«B is added and B must also be before A then one of the activities A or
B may become immediately invalid which takes time O(n) (see Proof of Proposition
2). If both A and B are undecided then the rule prunes sets CanBeAfter(B) and
CanBeBefore(A) and exits without further propagation. If A is valid and B is
undecided (or vice versa) then all predecessors of A are connected to B. There are at
most O(n) such predecessors and the new arcs are added by recursive invocation of
rule /2/. The recursion stops at this level because every predecessor X of a valid
predecessor C of A is also a predecessor of A (due to the transitive closure) and hence
the arc X«B has already been enqueued for propagation when addition of A«B was
processed. Moreover, any duplicate copy of the same arc in the queue will be
processed in time O(1) (see the first line of rule /2/). The “worst” situation happens
when both A and B are valid. Then all predecessors of A are recursively connected to
all successors of B. There are at most O(n2) such connections and processing each
connection takes time O(n) – see the for loops in rule /2/, so the worst-case time
complexity is O(n3).

Q.E.D.

Proposition 5: The rules /1/ and /2/ ensure that if B « A or there is a valid activity C
between A and B (that is, A « C and C « B) then A∉CanBeRightBefore(B) and
B∉CanBeRightAfter(A).

Proof: We will prove the proposition for the set CanBeRightBefore only, the set
CanBeRightAfter is maintained symmetrically. At the beginning, the set
CanBeRightBefore(B) contains all activities which is all right, because all activities
are undecided. If A is deleted from CanBeBefore(B) (due to adding B « A), A is also
deleted from CanBeRightBefore(B) in both rules /1/ and /2/. If any C becomes valid,
A∈MustBeBefore(C), and B∈MustBeAfter(C) then A is deleted from
CanBeRightBefore(B) in rule /1/. If a new arc A«C is added, C is valid, and
B∈MustBeAfter(C) then A is deleted from CanBeRightBefore(B) in rule /2/.
Similarly, if a new arc C«B is added, C is valid, and A∈MustBeBefore(C) then A is
deleted from CanBeRightBefore(B) in rule /2/.

Q.E.D.

 10

A Propagation Rule for Direct Precedences

So far we more or less ignored the restrictions imposed by the state transition
diagram. The reason is that these restrictions can be easily encoded by removing
explicitly direct precedence relations from the double precedence graph. In particular,
if transition from A to B is forbidden by the state transition diagram then arc A «d B is
removed from the double precedence graph. In a totally ordered set of activities it
implies there must be some valid activity C between A and B or B must be after A.
Actually a stronger requirement can be imposed: if A is before B (and A cannot be
directly before B) then there must be some valid activity directly before B that is also
after A and some valid activity directly after A that is before B. This observation can
be transformed into the following implications:

CanBeRightAfter(A) ∩ CanBeBefore(B) = ∅ ⇒ B « A
CanBeAfter(A) ∩ CanBeRightBefore(B) = ∅ ⇒ B « A.

The above reasoning can be used to deduce a new precedence constraint B « A and,
vice versa, if A « B then we can actively look for activities between A and B,
especially, if there is only one candidate for such activity. This reasoning is realised
using two propagation rules. First, the direct precedence is removed using rule /3/ and
rule /4/ is activated. Rule /4/ is then called whenever there are some changes related to
activities A or B. This rule tries to deduce that B must be before A or if A « B then
the rule looks for some activity C between A and B.

A«dB is deleted /3/
 CanBeRightAfter(A) ← CanBeRightAfter(A) \ {B}

 CanBeRightBefore(B) ← CanBeRightBefore(B) \ {A}
 activate rule /4/ for A and B
 exit

CanBeRightAfter(A) or CanBeAfter(A) or CanBeBefore(A) or
CanBeRightBefore(B) or CanBeBefore(B) or CanBeAfter(B) is changed, or
Valid(A) or Valid(B) is instantiated /4/
if Valid(A)=0 or Valid(B)=0 or A∈MustBeAfter(B) then exit
 if CanBeRightAfter(A)∩CanBeBefore(B)=∅
 or CanBeAfter(A)∩CanBeRightBefore(B)=∅ then
 add B«A
 exit
 if A∈MustBeBefore(B) & Valid(A)=1 & Valid(B)=1 then
 if {C}=CanBeRightAfter(A)∩CanBeBefore(B) then
 // C is the only possible direct successor of A
 add A«C
 add C«B
 Valid(C) = 1
 exit
 if {C}= CanBeAfter(A)∩CanBeRightBefore(B) then
 // C is the only possible direct predecessor of B
 add A«C
 add C«B
 Valid(C) = 1
 exit

 11

If there are no explicit direct precedence relations like those imposed by the state
transition diagram, then we already proved that propagation rules /1/-/2/ achieve
global consistency. Unfortunately, global consistency cannot be achieved for rules
/3/-/4/, that is, for explicitly removed direct precedence relations. Nevertheless, we
can show that the constraint realised by rules /3/-/4/ is complete.

Proposition 6: If all activities are either valid or invalid and the set of valid activities
is totally ordered then this order satisfies the restrictions imposed by the state
transition diagram.

Proof: Assume for contradiction that there are valid activities A and B such that A is
directly before B in the sequence but the state transition diagram forbids A to be
directly before B. In such a case, rule /3/ has been called so B∉CanBeRightAfter(A)
and rule /4/ is active. There is no invalid activity in CanBeRightAfter(A) due to rule
/1/. For every valid activity C, either C « A or B « C and hence
C∉CanBeRightAfter(A) due to rules /1/ or /2/. Recall that rule /4/ is called every time
the set CanBeRightAfter(A) is changed. We just showed that CanBeRightAfter(A)=∅
and therefore also CanBeRightAfter(A)∩CanBeBefore(B)=∅. Therefore the second
condition in rule /4/ is true and hence B « A is deduced which leads to failure. The
rule /4/ cannot exit using the first condition because A and B are valid and A « B. The
rule also cannot exit using the third condition because then there is a valid activity C
such that A « C and C « B which is in contradiction with the order if activities. In any
case, rule /4/ deduces failure so A cannot be right before B in any solution.

Q.E.D.

Proposition 7: The worst-case time complexity of the propagation rule /4/ including
all recursive calls to rules /1/ and /2/ is O(n3), where n is a number of activities.

Proof: The time complexity of propagation rule /4/ alone is O(n) because the
intersection operations may require this time. The rule can add at most four arcs and it
can make two activities valid. According to Proposition 2, making activity valid
requires time O(n2). According to Proposition 4 adding an arc (including all recursive
calls) requires time O(n3). Hence the total worst-case time complexity is O(n3).

Q.E.D.

A Note on Open Graphs

The double precedence graphs studied in previous sections assume that the number of
activities or at least its upper estimate is known. We use optional activities to
deactivate activities that will not be part of the solution. This technique is appropriate
in scheduling applications where most activities are known and optional activities are
used to model alternatives to be decided during scheduling. However, in planning this
technique is less convenient because the number of activities is unknown. It is still
possible to use optional activities but in this case, the total number of activities will be
probably too large which will decrease overall efficiency.
 Our constraint model can be used directly to include new activities that will appear
during problem solving. Recall, that we model the double precedence graph using
difference sets, in particular the set CanBeBefore(A)\CanBeAfer(A) describes the
activities that must be before A. We assumed that these sets are subsets of {1,…, n},
where n is the number of activities. To model problems where the number of activities

 12

is unknown in advance, we can use an infinite set {1,…,sup}, where sup is a
computer representation of “plus infinity”. The activities, that are already known, are
represented using the variable Valid and sets CanBeBefore and CanBeAfter. The
other activities are represented just by their indices in these sets. Hence, these
activities behave like optional undecided activities with no precedence relations to
activities already in the graph. Therefore, there is no propagation related to these
activities so sets representing these activities are not changing and hence it is not
necessary to keep them in memory (only indices of invalid activities may be deleted
from these sets, but it does not play any role). As soon as a new activity is included in
the precedence graph then an index is assigned to the activity and its set
representation is created. At this time all invalid activities should be removed from
the sets of the new activity. We only need to keep the number of activities already
included in the precedence graph to know which index can be used. Note finally, that
we can still use optional activities to model alternatives to be decided later.
In addition to adding activities from outside, it is possible to use the double
precedence graph to deduce that a new activity must be added to the graph. In
particular, if A « B but A cannot be directly before B and no existing activity is
between A and B then we can deduce that a new activity C must be added together
with the precedence relations A « C and C « B. This might be useful especially to
resolve flaws in plan-space planning.

Experimental Results

We are currently working on implementation of the proposed filtering algorithms. We
have already implemented the model of the precedence graph with optional activities
in SICStus Prolog 3.12.3 using the standard interface for the definition of global
constraints. In this section, we present some preliminary experimental results
comparing our approach with the constraints model from (Fages 2001) using min-
cutset problems. The min-cutset problem consists of precedence relations and the task
is to find the largest set of vertices such that the sub-graph induced by these vertices
does not contain any cycle (or symmetrically to find the smallest set of vertices such
that all cycles are broken if these vertices are removed from the graph). This problem
is known to be NP-hard (Garey and Johnson 1979).
 We use the data set from (Pardalos, Qian, and Resende 1999) to compare our
approach based on the precedence graph with the CLP model from (Fages 2001)
based on absolute positioning in the sequence of activities (Original). All the
problems in the data set consist of 50 activities while the number of precedence
constraints varies. Table 1 shows the specification of problems used in our experiment
and the best solutions obtained. Note that the solutions obtained by our approach
(Precedence) are optimal. The experiments run under Windows XP Professional on
1.1 GHz Pentium-M processor with 1280 MB RAM.

 13

Table 1. Min-cutset problems.

Bench Activities Precedences Original Precedence

P50-100 50 100 47 47

P50-150 50 150 41 41

P50-200 50 200 35 37

P50-250 50 250 31 33

P50-300 50 300 28 31

P50-500 50 500 21 22

P50-600 50 600 17 19

P50-700 50 700 16 17

P50-800 50 800 16 16

P50-900 50 900 14 14

Figure 3 shows the comparison of runtimes and the number of backtracks for both
approaches. Our approach requires more than an order of magnitude less backtracks
and less runtime to find the optimal solution. In fact, with the exception of problems
with 50 and 100 precedence constraints, the original CLP model was not able to find
the optimal solution (or to prove optimality) within the time limit of 50 minutes. Note
finally, that concerning the runtime we cannot compete with the GRASP heuristic
proposed in (Pardalos, Qian, and Resende 1999), but this was not our original
ambition as we tackle different problems. Moreover, opposite to the GRASP approach
our technique is complete and, indeed, for some problems we have found better
solutions than reported in (Pardalos, Qian, and Resende 1999).

100

1000

10000

100000

1000000

10000000

0 200 400 600 800 1000

Number of precedences

R
un

tim
e

(m
s)

Original

Precedence

10

100

1000

10000

100000

1000000

10000000

0 200 400 600 800 1000

Number of precedences

B
ac

kt
ra

ck
s

Original

Precedence

Fig. 3. Computation results on min-cutset problems

 14

Conclusions

We introduced a new constraint model describing precedence graphs with optional
activities and direct precedence relations. For this model we proposed propagation
rules that keep a transitive closure of the graph and remove inconsistencies caused by
forbidden direct precedence relations. If explicit direct precedences are not present
then the proposed rules achieve global consistency. We also experimentally showed
that this model of the precedence graph is more efficient than a straightforward
implementation of precedence relations. If explicit direct precedences, for example
modelling state transition diagram, are present then the proposed rules realise a
complete constraint model though the domain filtering is not complete. Rather than
proposing a monolithic algorithm, we focused on incremental propagation of changes
and on implementation-friendly architecture that is easy to translate into propagation
rules usable in existing constraint solvers. Moreover this approach is extendable to
problems where the number of activities in unknown in advance. Because the
proposed technology is designed for resources with more complex behaviour, we
believe that it might be appropriate for space applications like scheduling earth
observations.

Acknowledgements

The research is supported by the Czech Science Foundation under the contract no.
201/04/1102.

References

Baptiste, P.; Le Pape, C.; and Nuijten, W. 2001. Constraint-Based Scheduling:
Applying Constraint Programming to Scheduling Problems. Kluwer Academic
Publisher.
Barták, R. 2006. Incremental Propagation of Time Windows on Disjunctive
Resources. In Proceedings of the Nineteenth International Florida Artificial
Intelligence Research Society Conference (FLAIRS 2006), pp. 25-30.
Beck, J.Ch. and Fox, M.S. 1999. Scheduling Alternative Activities. Proceedings of
AAAI-99, USA, pp. 680-687.
Cesta, A. and Stella, C. 1997. A Time and Resource Problem for Planning
Architectures, Recent Advances in AI Planning, LNAI 1348, Springer Verlag, pp.
117-129.
Fages, F. 2001. CLP versus LS on log-based reconciliation problems for nomadic
applications. In Proceedings of ERCIM/CompulogNet Workshop on Constraints,
Praha.
Focacci, F.; Laborie, P.; and Nuijten, W. 2000. Solving Scheduling Problems with
Setup Times and Alternative Resources. In Proceedings of AIPS 2000.

 15

Garey, M. R. and Johnson, D. S. 1979 Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, San Francisco.
Laborie, P. 2003. Algorithms for propagating resource constraints in AI planning and
scheduling: Existing approaches and new results. Artificial Intelligence 143: 151-188.
Laborie, P. 2003b. Resource temporal networks: Definition and complexity. In
Proceedings of the 18th International Joint Conference on Artificial Intelligence, pp.
948-953.
Moffitt, M. D.; Peintner, B.; and Pollack, M. E. 2005. Augmenting Disjunctive
Temporal Problems with Finite-Domain Constraints. In Proceedings of the 20th
National Conference on Artificial Intelligence (AAAI-2005), pp. 1187-1192. AAAI
Press.
Stergiou, K., and Koubarakis, M. 1998. Backtracking algorithms for disjunctions of
temporal constraints. In Proceedings of the 15th National Conference on Artificial
Intelligence (AAAI-98), pp. 248-253. AAAI Press.
Pardalos, P.M.; Qian, T.; Resende, M.G. 1999. A greedy randomized adaptive search
procedure for the feedback vertex set problem. Journal of Combinatorial
Optimization, 2:399-412.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BC03B5002003C503C803B703BB03CC03C403B503C103B7002003B103BD03AC03BB03C503C303B7002003B503B903BA03CC03BD03C903BD002003B303B903B1002003B203B503BB03C403B903C903BC03AD03BD03B7002003C003BF03B903CC03C403B703C403B1002003B503BA03C403CD03C003C903C303B703C2002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002E0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020062806230639064406490020062F06420629002006440644063506480631062900200645064600200623062C06440020062A062D0633064A06460020062C0648062F062900200627064406370628062706390629002E0020064A064506430646002006440648062B06270626064200200050004400460020062306460020064A062A064500200641062A062D064706270020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000610062007900730074006500200064006F007300E10068006C00690020007600790161016100ED0020006B00760061006C0069007400790020007400690073006B0075002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006A006F006200620020006E0079006F006D00740061007400E1007300690020006D0069006E0151007300E90067002000E9007200640065006B00E900620065006E0020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A002000770079017C0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F30077002C0020007A0061007000650077006E00690061006A0105006301050020006C006500700073007A01050020006A0061006B006F015B0107002000770079006400720075006B00F30077002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200431043E043B0435043500200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F0020043B04430447044804350433043E0020043A04300447043504410442043204300020043F04350447043004420438002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF004400610068006100200069007900690020006200610073006B01310020006B0061006C006900740065007300690020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /HEB (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

