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Abstract. Traditional resources in scheduling are simple machines where a 
capacity is the main restriction. However, in practice there frequently appear 
resources with more complex behaviour that is described using state transition 
diagrams. This paper presents new filtering rules for constraints modelling the 
state transition diagrams. These rules are based on the idea of extending 
traditional precedence graphs by direct precedence relations. The proposed 
model also assumes optional activities and it can be used as an open model 
accepting new activities during the solving process. 

Introduction 

Temporal networks play an important role in planning but they are not used as 
frequently in scheduling where resource restrictions traditionally play a stronger role. 
This is reflected in scheduling global constraints, where techniques like edge-finding 
or not-first/not-last combine restrictions on time windows with a limited capacity of 
the resource (Baptiste, Le Pape, Nuijten 2001). Recently, a new category of 
propagation techniques combining information about relative position of activities 
with capacity of resources appeared (Cesta and Stella 1997). Also techniques 
combining information about precedence relations and time windows have been 
proposed (Laborie 2003). We believe that integration of temporal networks with 
reasoning on resources (Laborie 2003b; Moffit, Peintner, and Pollack 2005) will play 
even more important role as planning and scheduling technologies are becoming 
closer. 
 In this paper we propose an extension of precedence graphs by direct precedence 
relations (A can directly precede B if no activity must be allocated between A and B). 
This extension is motivated by modelling complex behaviour of resources that is 
described as a state transition diagram. Such a diagram is in fact a generalisation of 
set-up times that play an important role in current real-life scheduling problems. As 
factories are transforming from mass production to more customised production, 
multi-purpose and hence more complicated machines are used and better handling of 
setups is becoming important. Space applications are another example where a more 
complex behaviour of resources is typical. Also over-subscribed problems are more 
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frequent nowadays so the scheduling systems should be able to handle optional 
activities, for example, to decide about rejection of activity that cannot be scheduled 
feasibly together with other activities. Note also, that optional activities are useful for 
modelling alternative resources (an optional activity is used for each alternative 
resource) as well as alternative processes to accomplish a job (each process may 
consist of one of several different sets of activities). Scheduling systems should also 
be able to add activities to satisfy the transition scheme, for example to insert a setup 
activity if necessary. 

To summarise the contributions of this paper, we propose two extensions of 
ordinary precedence graphs: adding direct precedence relations and using optional 
activities. For such a graph which we call a double precedence graph we design 
incremental filtering rules that keep a transitive closure of the graph and deduce new 
precedences and (in)validity of activities. Moreover, in contrast to traditional global 
constraints used in scheduling the proposed model is open, that is, it allows adding 
new activities to the precedence graph during the solution process. 

Motivation 

In this paper we address the problem of modelling a disjunctive resource where 
activities must be allocated in such a way that they do not overlap in time. We assume 
that there are precedence constraints between the activities. The precedence constraint 
A « B specifies that activity A must be before activity B in the schedule. Each activity 
is annotated by a resource state requested for processing the activity and there is a 
state transition diagram describing transitions between the states. State transition 
diagram is a directed graph where nodes describe the states and arcs describe allowed 
transitions between the states (Figure 1). The state transition diagram restricts 
sequencing of activities in the following way: activity A can be scheduled directly 
before activity B only if there is an arc from the state of A to the state of B in the state 
transition diagram. To model over-subscribed problems and alternative 
resources/processes, we assume optional activities. An optional activity has one of the 
following three statuses. If the activity is not yet known to be or not to be included 
then it is called undecided. If the activity is allocated to the resource then it is called 
valid. If the activity is known not to be allocated to the resource then it is called 
invalid. Regular activities correspond to valid activities. The scheduling task is to 
decide about (in)validity of the undecided activities and to find a sequence of valid 
activities satisfying the precedence constraints and restrictions imposed by the state 
transition diagram. 
 
 
 
 
 
 
 
 

Fig. 1. Example of a state transition diagram. 
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In real-life problems there are usually also time windows restricting position of 
activity in time. In such a case, it is known that deciding about an existence of a 
feasible schedule is NP-hard in the strong sense (Garey and Johnson 1979) so there is 
a little hope even for a pseudo-polynomial solving algorithm. Hence using 
propagation rules and constraint satisfaction techniques is justified here. The paper 
(Barták 2006) shows how filtering of time windows can be combined with the 
precedence graph so in this paper we focus merely on handling (direct) precedence 
relations. Our goal is to propose filtering rules that remove inconsistencies from the 
double precedence graph. 

Related Works 

Disjunctive temporal networks (Stergiou and Koubarakis 1998) can model disjunctive 
resources. However, DTNs use more general disjunctions than necessary and hence 
they achieve weaker pruning. Moreover, a qualitative approach to time seems more 
appropriate to describe the problem of activity sequencing. Though we assume 
durative activities, Interval Algebra is superfluous because disjunctive resources 
discard most of the interval relations (like starts, during, overlaps etc.). From Point 
Algebra we need only ‘before’ and ‘after’ relations and there is no support for direct 
precedences there. The work by Laborie (2003b) studies a combination of resource 
and temporal reasoning but no algorithm is presented (and a different type of 
resources is assumed). Probably the closest approach to our problem is presented in 
the paper (Focacci, Laborie, and Nuijten 2000) where alternative resources 
correspond to paths in the global precedence graph. However, this approach is 
proposed merely for cost-based filtering (optimization of makespan or setup times) 
and it assumes all the activities to be present in the global precedence graph. The 
paper (Beck and Fox 1999) presents an idea of a precedence graph with optional 
activities. The authors use a so called PEX value to describe a probability of the 
existence of the activity and their approach is based on updating this value. Instead of 
that we use a Boolean variable to describe the presence of an activity and we focus 
more on precedence and direct precedence relations. To summarise the above 
discussion, none of the existing approaches to temporal and resource reasoning covers 
fully state transition diagrams and optional activities. 

Double Precedence Graphs 

The precedence relations among activities define a precedence graph that is an 
acyclic directed graph where nodes correspond to activities and there is an arc from A 
to B if A « B. If access to all predecessors and successors of a given activity is 
frequently requested, like in (Cesta and Stella 1997; Laborie 2003), then it is more 
efficient to keep a transitive closure of the graph where this information is available in 
time O(1) rather than to look for predecessors/successors on demand. We propose the 
following definition of transitive closure of the precedence graph with optional 
activities.  
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Definition 1: We say that a precedence graph G with optional activities is transitively 
closed if for any two arcs A to B and B to C such that B is a valid activity and A and 
C are either valid or undecided activities there is also an arc A to C in G. 

It is easy to prove that if there is a path from A to B such that A and B are either valid 
or undecided and all inner nodes in the path are valid then there is also an arc from A 
to B in a transitively closed graph (by induction on the path length). Hence, if no 
optional activity is used (all activities are valid) then Definition 1 corresponds to a 
standard definition of the transitive closure. 
 To model restrictions imposed by the state transition diagram we propose to extend 
the precedence graph by direct precedence relations between the activities. 

Definition 2: We say that A can directly precede B if both A and B are either valid or 
undecided activities, B is not before A (¬ B « A), the transition from A to B is 
allowed by the state transition diagram, and there is no valid activity C such that A « 
C and C « B (the relation « is from the transitive closure of the precedence graph with 
optional activities). 

The relation of direct precedence introduces a new type of arc, say «d, in the 
precedence graph and hence we are speaking about the double precedence graph. 
There is one significant difference between the arcs of type « and the arcs of type «d. 
While the arcs « are added into the graph as problem solving proceeds, the arcs «d are 
typically removed from the graph (note that «d means “can be directly before”, while 
« means “must be before”). When all valid activities are linearly ordered, there is 
exactly one arc of type «d going into each valid activity (with the exception of the 
very first activity in the schedule) and one arc of type «d going from each valid 
activity (with the exception of the very last activity in the schedule). 

Constraint Model 

We propose to realise a reasoning on precedence relations using constraint 
satisfaction technology. This allows integration of our model with other constraint 
reasoning techniques (Barták 2006). This integration requires the model to provide 
full information about precedence relations to all other constraints. We index each 
activity by a unique number from the set 1,..,n, where n is the number of activities. 
For each activity we use a 0/1 variable Valid indicating whether the activity is valid 
(1) or invalid (0). If the activity is undecided – not yet known to be valid or invalid – 
then the domain of Valid is {0,1}. The precedence graph is encoded in two sets 
attached to each activity. CanBeBefore(A) is a set of indices of activities that can be 
before activity A. CanBeAfter(A) is a set of indices of activities that can be after 
activity A. For simplicity reasons we will write A instead of the index of A. To 
simplify description of the propagation rules we define for every activity A the 
following derived sets: 

MustBeAfter(A) = CanBeAfter(A)  \  CanBeBefore(A) 
MustBeBefore(A)  = CanBeBefore(A)  \  CanBeAfter(A) 
Unknown(A)  = CanBeBefore(A)  ∩  CanBeAfter(A). 

MustBeAfter(A) and MustBeBefore(A) are sets of those activities that must be after 
and before the given activity A respectively. Unknown(A) is a set of activities that are 
not yet known to be before or after activity A (Figure 2). 
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 To model direct precedence relations and hence a double precedence graph, we add 
two sets to each activity: CanBeRightBefore and CanBeRightAfter containing indexes 
of activities that can be directly before and directly after a given activity. Naturally, 
the following relation holds CanBeRightBefore(A) ⊆ CanBeBefore(A) at any time 
and similarly CanBeRightAfter(A) ⊆ CanBeAfter(A). 
 
 
 
 
 

 
 
 

 
Fig. 2. Representation of the precedence graph. 

Note on representation. The main reason for using sets to model the 
precedence graph is their possible representation as domains of variables in 
constraint satisfaction packages. Recall that domains of variables can only 
shrink as problem solving proceeds. The sets in our model are also shrinking as 
new arcs « are added to the precedence graph. Hence a special data structure is 
not necessary to describe the precedence graph in constraint satisfaction 
packages. Moreover, these packages usually provide tools to manipulate the 
domains, for example membership and deletion operations. In the subsequent 
complexity analysis, we will assume that these operations require time O(1), 
which can be realised for example by using a bitmap representation of the sets. 
Note finally, that empty domain implies inconsistency that may be a problem 
for the very first and very last activity which has no predecessors and 
successors respectively. To solve the problem we can simply leave activity A 
in both sets CanBeAfter(A) and CanBeBefore(A). Then no domain of 
CanBeBefore and CanBeAfter will ever be empty but we can detect 
inconsistency via the empty domain of Valid variables. 

Propagation Rules for Simple Precedences 

The goal of propagation rules is to remove inconsistent elements (activities) from the 
above described sets – this is called domain filtering in constraint satisfaction. In the 
first stage, we will focus on making a transitive closure of the precedence graph 
according to Definition 1. Note that the transitive closure of the precedence graph also 
simplifies detection of inconsistency of the graph. The precedence graph is 
inconsistent if there is a cycle of valid activities. In a transitively closed graph, each 
such cycle can be detected by finding two valid activities such that A « B and B « A. 
Our propagation rules prevent cycles by making invalid the last undecided activity in 
each cycle. This propagation is realised by using an exclusion constraint. When a 
cycle A « B and B « A is detected, the following exclusion constraint can be posted: 

Valid(A) = 0 ∨ Valid(B) = 0. 

A 

MustBeBefore(A) 
MustBeAfter(A) 

Unknown(A) 

CanBeBefore(A) 

CanBeAfter(A) 



 6

This constraint ensures that each cycle is broken by making at least one activity in the 
cycle invalid. Instead of posting the constraint directly to the constraint solver, we 
propose keeping the set Ex of exclusions. The above exclusion constraint is modelled 
as a set {A,B} ∈ Ex. Now, the propagation of exclusions is realised explicitly – if 
activity A becomes valid then all activities C such that {A,C} ∈ Ex are made invalid. 
 We initiate the precedence graph in the following way. First, the variables 
Valid(A), CanBeBefore(A), CanBeRightBefore(A), CanBeAfter(A), and 
CanBeRightAfter(A) with their domains are created for every activity A. Then the 
known precedence relations in the form A « B are added by removing B from the sets 
CanBeBefore(A) and CanBeRightBefore(A), and removing A from the sets 
CanBeAfter(B) and CanBeRightAfter(B). Note, that because all activities are still 
undecided at this stage, domain change is not propagated to other variables. Finally, 
the Valid(A) variable for every valid activity A is set to 1 (and similarly Valid 
variables of invalid activities are set to 0). By instantiating the Valid(A) variable, the 
propagation rule /1/ is invoked. “Valid(A) is instantiated” is its trigger. The part after 

 is a propagator describing pruning of domains. “exit” means that the constraint 
represented by the propagation rule is entailed so the propagator is not further invoked 
(its invocation does not cause further domain pruning). We will use the same notation 
in all rules. The propagation rule /1/ realises the above described exclusion constraints 
as well as adding new arcs according to Definition 1. 

Valid(A) is instantiated  /1/ 
if Valid(A) = 0 then 
 Ex := Ex \ {{A,X} | X is an activity} 
   for each B do        // disconnect A from B 
   CanBeBefore(B) ← CanBeBefore(B) \ {A} 
   CanBeAfter(B) ← CanBeAfter(B) \ {A} 
  CanBeRightBefore(B) ← CanBeRightBefore(B) \ {A} 
   CanBeRightAfter(B) ← CanBeRightAfter(B) \ {A} 
else  // Valid(A)=1 
 for each C s.t. {A,C}∈Ex do Valid(C) ← 0 
  for each B∈MustBeBefore(A) s.t. Valid(B)≠0 do 
   for each C∈MustBeAfter(A) s.t. Valid(C)≠0 do 
   CanBeRightAfter(B) ← CanBeRightAfter(B) \ {C} 
   CanBeRightBefore(C) ← CanBeRightBefore(C) \ {B} 
    if C∉MustBeAfter(B) then //add arc from B to C 
      CanBeAfter(C) ← CanBeAfter(C) \ {B} 
    CanBeBefore(B) ← CanBeBefore(B) \ {C} 
        CanBeRightAfter(C) ← CanBeRightAfter(C) \ {B} 
    CanBeRightBefore(B) ← CanBeRightBefore(B) \ {C} 

       if C∉CanBeAfter(B) then    // break the cycle 
       if Valid(B)=1 then Valid(C) ← 0 
               // Valid(C)=1 leads to fail 
       else if Valid(C)=1 then Valid(B) ← 0 
          else Ex ← Ex ∪ {{B,C}} 
exit 

Note that rule /1/ maintains symmetry of sets modelling the double precedence graph 
for all valid and undecided activities because the domains are pruned symmetrically 
in pairs. We shall show now, that if the entire precedence graph is known in advance 
(no arcs are added during the solving procedure), then rule /1/ is sufficient for keeping 
the transitive closure according to Definition 1. 
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Proposition 1: Let A0, A1, … , Am be a path in the precedence graph such that 
Valid(Aj)=1 for all 1≤j≤m-1 and Valid(A0)≠0 and Valid(Am)≠0 (that is, the endpoints 
of the path are not invalid and all inner points of the path are valid). Then A0 « Am, 
that is, A0∉CanBeAfter(Am) and Am∉CanBeBefore(A0). 

Proof: We shall proceed by induction on m. The base case m=1 is trivially true after 
initialisation (we assume that for every arc (X,Y) in the precedence graph X is 
removed from CanBeBefore(Y) and Y is removed from CanBeAfter(X) in the 
initialisation phase). For the induction step let us assume that the statement of the 
lemma holds for all paths (satisfying the assumptions of the lemma) of length at most 
m-1. Let 1≤j≤m-1 be an index such that Valid(ij)←1 was set last among all inner 
points i1, … , im-1 on the path. By the induction hypothesis we get  

• i0∉CanBeAfter(ij) and ij∉CanBeBefore(i0) using the path i0, … , ij 
• ij∉CanBeAfter(im) and im∉CanBeBefore(ij) using the path ij, … , im 

We shall distinguish two cases. If im∈MustBeAfter(i0) (and thus by symmetry also 
i0∈MustBeBefore(im)) then by definition im∉CanBeBefore(i0) and i0∉CanBeAfter(im) 
and so the claim is true trivially. Thus let us in the remainder of the proof assume that 
im∉MustBeAfter(i0). 
 Now let us show that i0∈CanBeBefore(ij) must hold, which in turn  (together with 
i0∉CanBeAfter(ij)) implies i0∈MustBeBefore(ij). Let us assume by contradiction that 
i0∉CanBeBefore(ij). However, at the time when both i0∉CanBeAfter(ij) and 
i0∉CanBeBefore(ij) became true, that is, when the second of these conditions was 
made satisfied by rule /1/, rule /1/ must have posted the constraint (Valid(i0)=0 ∨ 
Valid(ij)=0) which contradicts the assumptions of the lemma. By a symmetric 
argument we can prove that im∈MustBeAfter(ij). Thus when rule /1/ is triggered by 
setting Valid(ij)←1 both i0∈MustBeBefore(ij) and im∈MustBeAfter(ij) hold (and 
im∉MustBeAfter(i0) is assumed), and therefore rule /1/ removes im from the set 
CanBeBefore(i0) as well as  i0 from the set CanBeAfter(im), which finishes the proof. 

Q.E.D. 

Proposition 2: The worst-case time complexity of the propagation rule /1/ 
(instantiation of the Valid variable) including all possible recursive calls is O(n2), 
where n is the number of activities. 

Proof: If activity A is made invalid then all exclusion pairs that include A are 
removed from set Ex which could be done in time O(n), if the set is properly 
implemented (for example as a symmetric n × n matrix). Moreover, activity A is 
removed from the sets CanBeBefore, CanBeAfter, CanBeRightBefore, and 
CanBeRightAfter of all other activities which takes the total time O(n). 
 If activity A becomes valid then some activities are made invalid and some new 
arcs may be added to the graph. At most n activities can be invalidated which takes a 
total time O(n2). The maximal number of added arcs is Θ(n2). It may also happen that 
some other activities (at most O(n)) become invalid to break cycles. However, we 
already know that the time complexity of making an activity invalid is O(n). 
Together, the worst-case time complexity to make an activity valid is O(n2). 

Q.E.D. 
 
In some situations arcs may be added to the double precedence graph during the 
solving procedure, either by the user, by the scheduler/planner, or by other filtering 
algorithms (Barták 2006). The following rule /2/ updates the double precedence graph 
to keep transitive closure when an arc is added to the double precedence graph. If a 
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new arc A«B is added then we first check whether the arc is not already present in the 
graph. If it is a new arc then the corresponding sets are updated and a possible cycle is 
detected (we use the same reasoning as in rule /1/). Finally, if any end point of the 
arcs is valid, then necessary arcs are added to update the transitive closure according 
to Definition 1. In such a case, some direct precedence relations are removed 
according to Definition 2. Note that the propagators for new arcs are evoked after the 
propagator of the current rule finishes. 

A«B is added  /2/ 
 if A∈MustBeBefore(B) then exit      // the arc is already present 
 CanBeAfter(B) ← CanBeAfter(B) \ {A} 

  CanBeBefore(A) ← CanBeBefore(A) \ {B} 
 CanBeRightAfter(B) ← CanBeRightAfter(B) \ {A} 

  CanBeRightBefore(A) ← CanBeRightBefore(A) \ {B} 
 if A∉CanBeBefore(B) then    // break the cycle 

    if Valid(A)=1 then Valid(B)        // Valid(B)=1 leads to fail 
   else if Valid(B)=1 then Valid(A) ← 0 
             // Valid(A)=1 leads to fail 
       else Ex ← Ex ∪ {{A,B}} 
 else      // transitive closure 
  if Valid(A)=1 then 
   for each C∈MustBeBefore(A) s.t. Valid(C)≠0 do 

      CanBeRightAfter(C) ← CanBeRightAfter(C) \ {B} 
       CanBeRightBefore(B) ← CanBeRightBefore(B) \ {C} 
       if C∉MustBeBefore(B) then 
       add C«B 
  if Valid(B)=1 then 
   for each C∈MustBeAfter(B) s.t. Valid(C)≠0 do 

      CanBeRightAfter(A) ← CanBeRightAfter(A) \ {C} 
       CanBeRightBefore(C) ← CanBeRightBefore(C) \ {A} 
       if C∉MustBeAfter(A) then 

          add A«C 
 exit 

Again, it is possible to show that if the precedence graph G is transitively closed (in 
the sense specified by Definition 1) and arc A « B is added to G then rule /2/ updates 
the precedence graph G to be transitively closed again. Note also, that propagation 
rules /1/ and /2/ achieve global consistency concerning the precedence constraint. 
This is a direct consequence of keeping a transitive closure of the precedence graph. 

Proposition 3: If the precedence graph G is transitively closed (in the sense specified 
by Definition 1) and arc A « B is added to G then rule /2/ updates the precedence 
graph G to be transitively closed again. 

Proof: Assume that arc A « B is added into G at a moment when arc B « C is already 
present in G. Moreover assume that Valid(A)≠0, Valid(B)=1, and Valid(C)≠0. We 
want to show that A « C is in G after rule /2/ is fired by the addition of A « B. The 
presence of arc B « C implies that C∈MustBeAfter(B) (and by symmetry also 
B∈MustBeBefore(C)). Now there are two possibilities. Either C∉MustBeAfter(A) in 
which case rule /2/ adds the arc A « C into G, or C∈MustBeAfter(A) (and by 
symmetry also A∈MustBeBefore(C)) which means that arc A « C was already 
present in G when arc A « B was added. 
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 The case when arc A « B is added into G at a moment when arc C « A is already 
present in G and Valid(C)≠0, Valid(A)=1, Valid(B)≠0 holds can be handled similarly. 
Thus when an arc is added into G, all paths of length two with a valid midpoint which 
include this new arc are either already spanned by a transitive arc, or the transitive arc 
is added by rule /2/. In the latter case this may invoke adding more and more arcs. 
However, this process is obviously finite (cannot cycle) as an arc is added into G only 
if it is not present in G, and no arc is ever removed from G. More on the time 
complexity of arc additions follows in Proposition 4. 
 Therefore, it is easy to see, that when the process of recursive arc additions 
terminates, the graph G is transitively closed. Indeed, for every path of length two in 
G with a valid midpoint one of the arcs on the path is added later than the other, and 
we have already seen that at a moment of such an addition the transitive arc is either 
already in G or is added by rule /2/ in the next step. 

Q.E.D. 

Proposition 4: The worst-case time complexity of the propagation rule /2/ (adding a 
new arc) including all recursive calls to rules /1/ and /2/ is O(n3), where n is the 
number of activities. 

Proof: If arc A«B is added and B must also be before A then one of the activities A or 
B may become immediately invalid which takes time O(n) (see Proof of Proposition 
2). If both A and B are undecided then the rule prunes sets CanBeAfter(B) and 
CanBeBefore(A) and exits without further propagation. If A is valid and B is 
undecided (or vice versa) then all predecessors of A are connected to B. There are at 
most O(n) such predecessors and the new arcs are added by recursive invocation of 
rule /2/. The recursion stops at this level because every predecessor X of a valid 
predecessor C of A is also a predecessor of A (due to the transitive closure) and hence 
the arc X«B has already been enqueued for propagation when addition of A«B was 
processed. Moreover, any duplicate copy of the same arc in the queue will be 
processed in time O(1) (see the first line of rule /2/). The “worst” situation happens 
when both A and B are valid. Then all predecessors of A are recursively connected to 
all successors of B. There are at most O(n2) such connections and processing each 
connection takes time O(n) – see the for loops in rule /2/, so the worst-case time 
complexity is O(n3). 

Q.E.D. 

Proposition 5: The rules /1/ and /2/ ensure that if B « A or there is a valid activity C 
between A and B (that is, A « C and C « B) then A∉CanBeRightBefore(B) and 
B∉CanBeRightAfter(A). 

Proof: We will prove the proposition for the set CanBeRightBefore only, the set 
CanBeRightAfter is maintained symmetrically. At the beginning, the set 
CanBeRightBefore(B) contains all activities which is all right, because all activities 
are undecided. If A is deleted from CanBeBefore(B) (due to adding B « A), A is also 
deleted from CanBeRightBefore(B) in both rules /1/ and /2/. If any C becomes valid, 
A∈MustBeBefore(C), and B∈MustBeAfter(C) then A is deleted from 
CanBeRightBefore(B) in rule /1/. If a new arc A«C is added, C is valid, and 
B∈MustBeAfter(C) then A is deleted from CanBeRightBefore(B) in rule /2/. 
Similarly, if a new arc C«B is added, C is valid, and A∈MustBeBefore(C) then A is 
deleted from CanBeRightBefore(B) in rule /2/. 

Q.E.D. 



 10

A Propagation Rule for Direct Precedences 

So far we more or less ignored the restrictions imposed by the state transition 
diagram. The reason is that these restrictions can be easily encoded by removing 
explicitly direct precedence relations from the double precedence graph. In particular, 
if transition from A to B is forbidden by the state transition diagram then arc A «d B is 
removed from the double precedence graph. In a totally ordered set of activities it 
implies there must be some valid activity C between A and B or B must be after A. 
Actually a stronger requirement can be imposed: if A is before B (and A cannot be 
directly before B) then there must be some valid activity directly before B that is also 
after A and some valid activity directly after A that is before B. This observation can 
be transformed into the following implications: 

CanBeRightAfter(A) ∩ CanBeBefore(B) = ∅  ⇒   B « A 
CanBeAfter(A) ∩ CanBeRightBefore(B) = ∅  ⇒  B « A. 

The above reasoning can be used to deduce a new precedence constraint B « A and, 
vice versa, if A « B then we can actively look for activities between A and B, 
especially, if there is only one candidate for such activity. This reasoning is realised 
using two propagation rules. First, the direct precedence is removed using rule /3/ and 
rule /4/ is activated. Rule /4/ is then called whenever there are some changes related to 
activities A or B. This rule tries to deduce that B must be before A or if A « B then 
the rule looks for some activity C between A and B. 

A«dB is deleted  /3/ 
 CanBeRightAfter(A) ← CanBeRightAfter(A) \ {B} 

   CanBeRightBefore(B) ← CanBeRightBefore(B) \ {A} 
 activate rule /4/ for A and B 
 exit 

CanBeRightAfter(A) or CanBeAfter(A) or CanBeBefore(A) or 
CanBeRightBefore(B) or CanBeBefore(B) or CanBeAfter(B) is changed, or 
Valid(A) or Valid(B) is instantiated  /4/ 
if Valid(A)=0 or Valid(B)=0 or A∈MustBeAfter(B) then exit 
 if CanBeRightAfter(A)∩CanBeBefore(B)=∅  
   or CanBeAfter(A)∩CanBeRightBefore(B)=∅ then 
   add B«A 
   exit 
 if A∈MustBeBefore(B) & Valid(A)=1 & Valid(B)=1 then 
  if {C}=CanBeRightAfter(A)∩CanBeBefore(B) then 
    // C is the only possible direct successor of A 
    add A«C 
    add C«B 
    Valid(C) = 1 
    exit 
  if {C}= CanBeAfter(A)∩CanBeRightBefore(B) then 
    // C is the only possible direct predecessor of B 
    add A«C 
    add C«B 
    Valid(C) = 1 
    exit 
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If there are no explicit direct precedence relations like those imposed by the state 
transition diagram, then we already proved that propagation rules /1/-/2/ achieve 
global consistency. Unfortunately, global consistency cannot be achieved for rules 
/3/-/4/, that is, for explicitly removed direct precedence relations. Nevertheless, we 
can show that the constraint realised by rules /3/-/4/ is complete. 

Proposition 6: If all activities are either valid or invalid and the set of valid activities 
is totally ordered then this order satisfies the restrictions imposed by the state 
transition diagram. 

Proof: Assume for contradiction that there are valid activities A and B such that A is 
directly before B in the sequence but the state transition diagram forbids A to be 
directly before B. In such a case, rule /3/ has been called so B∉CanBeRightAfter(A) 
and rule /4/ is active. There is no invalid activity in CanBeRightAfter(A) due to rule 
/1/. For every valid activity C, either C « A or B « C and hence 
C∉CanBeRightAfter(A) due to rules /1/ or /2/. Recall that rule /4/ is called every time 
the set CanBeRightAfter(A) is changed. We just showed that CanBeRightAfter(A)=∅ 
and therefore also CanBeRightAfter(A)∩CanBeBefore(B)=∅. Therefore the second 
condition in rule /4/ is true and hence B « A is deduced which leads to failure. The 
rule /4/ cannot exit using the first condition because A and B are valid and A « B. The 
rule also cannot exit using the third condition because then there is a valid activity C 
such that A « C and C « B which is in contradiction with the order if activities. In any 
case, rule /4/ deduces failure so A cannot be right before B in any solution. 

Q.E.D. 

Proposition 7: The worst-case time complexity of the propagation rule /4/ including 
all recursive calls to rules /1/ and /2/ is O(n3), where n is a number of activities. 

Proof: The time complexity of propagation rule /4/ alone is O(n) because the 
intersection operations may require this time. The rule can add at most four arcs and it 
can make two activities valid. According to Proposition 2, making activity valid 
requires time O(n2). According to Proposition 4 adding an arc (including all recursive 
calls) requires time O(n3). Hence the total worst-case time complexity is O(n3). 

Q.E.D. 

A Note on Open Graphs 

The double precedence graphs studied in previous sections assume that the number of 
activities or at least its upper estimate is known. We use optional activities to 
deactivate activities that will not be part of the solution. This technique is appropriate 
in scheduling applications where most activities are known and optional activities are 
used to model alternatives to be decided during scheduling. However, in planning this 
technique is less convenient because the number of activities is unknown. It is still 
possible to use optional activities but in this case, the total number of activities will be 
probably too large which will decrease overall efficiency. 
 Our constraint model can be used directly to include new activities that will appear 
during problem solving. Recall, that we model the double precedence graph using 
difference sets, in particular the set CanBeBefore(A)\CanBeAfer(A) describes the 
activities that must be before A. We assumed that these sets are subsets of {1,…, n}, 
where n is the number of activities. To model problems where the number of activities 
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is unknown in advance, we can use an infinite set {1,…,sup}, where sup is a 
computer representation of  “plus infinity”. The activities, that are already known, are 
represented using the variable Valid and sets CanBeBefore and CanBeAfter. The 
other activities are represented just by their indices in these sets. Hence, these 
activities behave like optional undecided activities with no precedence relations to 
activities already in the graph. Therefore, there is no propagation related to these 
activities so sets representing these activities are not changing and hence it is not 
necessary to keep them in memory (only indices of invalid activities may be deleted 
from these sets, but it does not play any role). As soon as a new activity is included in 
the precedence graph then an index is assigned to the activity and its set 
representation is created. At this time all invalid activities should be removed from 
the sets of the new activity. We only need to keep the number of activities already 
included in the precedence graph to know which index can be used. Note finally, that 
we can still use optional activities to model alternatives to be decided later. 
In addition to adding activities from outside, it is possible to use the double 
precedence graph to deduce that a new activity must be added to the graph. In 
particular, if A « B but A cannot be directly before B and no existing activity is 
between A and B then we can deduce that a new activity C must be added together 
with the precedence relations A « C and C « B. This might be useful especially to 
resolve flaws in plan-space planning. 

Experimental Results 

We are currently working on implementation of the proposed filtering algorithms. We 
have already implemented the model of the precedence graph with optional activities 
in SICStus Prolog 3.12.3 using the standard interface for the definition of global 
constraints. In this section, we present some preliminary experimental results 
comparing our approach with the constraints model from (Fages 2001) using min-
cutset problems. The min-cutset problem consists of precedence relations and the task 
is to find the largest set of vertices such that the sub-graph induced by these vertices 
does not contain any cycle (or symmetrically to find the smallest set of vertices such 
that all cycles are broken if these vertices are removed from the graph). This problem 
is known to be NP-hard (Garey and Johnson 1979). 
 We use the data set from (Pardalos, Qian, and Resende 1999) to compare our 
approach based on the precedence graph with the CLP model from (Fages 2001) 
based on absolute positioning in the sequence of activities (Original). All the 
problems in the data set consist of 50 activities while the number of precedence 
constraints varies. Table 1 shows the specification of problems used in our experiment 
and the best solutions obtained. Note that the solutions obtained by our approach 
(Precedence) are optimal. The experiments run under Windows XP Professional on 
1.1 GHz Pentium-M processor with 1280 MB RAM. 
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Table 1. Min-cutset problems. 

Bench Activities Precedences Original Precedence

P50-100 50 100 47 47 

P50-150 50 150 41 41 

P50-200 50 200 35 37 

P50-250 50 250 31 33 

P50-300 50 300 28 31 

P50-500 50 500 21 22 

P50-600 50 600 17 19 

P50-700 50 700 16 17 

P50-800 50 800 16 16 

P50-900 50 900 14 14 

 
Figure 3 shows the comparison of runtimes and the number of backtracks for both 
approaches. Our approach requires more than an order of magnitude less backtracks 
and less runtime to find the optimal solution. In fact, with the exception of problems 
with 50 and 100 precedence constraints, the original CLP model was not able to find 
the optimal solution (or to prove optimality) within the time limit of 50 minutes. Note 
finally, that concerning the runtime we cannot compete with the GRASP heuristic 
proposed in  (Pardalos, Qian, and Resende 1999), but this was not our original 
ambition as we tackle different problems. Moreover, opposite to the GRASP approach 
our technique is complete and, indeed, for some problems we have found better 
solutions than reported in (Pardalos, Qian, and Resende 1999). 
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Fig. 3.  Computation results on min-cutset problems 
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Conclusions 

We introduced a new constraint model describing precedence graphs with optional 
activities and direct precedence relations. For this model we proposed propagation 
rules that keep a transitive closure of the graph and remove inconsistencies caused by 
forbidden direct precedence relations. If explicit direct precedences are not present 
then the proposed rules achieve global consistency. We also experimentally showed 
that this model of the precedence graph is more efficient than a straightforward 
implementation of precedence relations. If explicit direct precedences, for example 
modelling state transition diagram, are present then the proposed rules realise a 
complete constraint model though the domain filtering is not complete. Rather than 
proposing a monolithic algorithm, we focused on incremental propagation of changes 
and on implementation-friendly architecture that is easy to translate into propagation 
rules usable in existing constraint solvers. Moreover this approach is extendable to 
problems where the number of activities in unknown in advance. Because the 
proposed technology is designed for resources with more complex behaviour, we 
believe that it might be appropriate for space applications like scheduling earth 
observations. 
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