
Modelling Resource Transitions
in Constraint-Based Scheduling

Roman Barták*

Charles University in Prague, Faculty of Mathematics and Physics
Malostranské námestí 2/25, 118 00 Praha 1, Czech Republic

bartak@kti.mff.cuni.cz

Abstract. Constraint-based scheduling is an approach for solving scheduling
problems using constraint satisfaction techniques. Its main advantage over the
traditional scheduling techniques is possibility to model real-life restrictions via
specialised constraints. In the paper we propose a concept of the transition
constraint that is used to model a state change in resources. We describe and
compare three models of the transition constraint. These models have been
implemented and tested in the scheduling engine of Visopt ShopFloor system.

Introduction

Scheduling is a successful application area of constraint programming because a
scheduling problem can be naturally modelled as a constraint satisfaction problem,
i.e., using a set of variables, their domains, and constraints describing feasible
combinations of variables' values [8]. A traditional scheduling problem is defined by
a set of activities with precedence constraints and by a set of resources with capacity
limits. The task is to allocate the activities to available resources respecting the
precedence and capacity constraints (and minimising or maximising a given objective
function). In most current scheduling systems, the resources are rather simple, usually
only a capacity limit is used to describe the resource. In some systems, set-up times
are assumed between the activities, i.e., a time gap must be inserted between two
activities allocated to a single resource. In more complex industries, like chemical,
pharmaceutical, and food enterprises, the resources are becoming even more complex
and resource-centric models are more suitable to describe scheduling problems in
such industries [1,2]. In particular, a complex transition scheme is given to describe
behaviour of the resource. Such transition scheme defines allowed transitions between
the activities and repetitions of the activities. For example, an activity of type B may
follow an activity of type A but not the activity of type C and at least two activities of
type B and at most five activities of type B can be processed in a sequence. Note that
such transition scheme cannot be fully modelled using the standard concept of set-up
times, where a long set-up time (or large cost) is used to describe the forbidden
transition. Long set-up time does not forbid the transition, it makes it non-preferred

* The research is supported by the Grant Agency of the Czech Republic under the contracts

201/99/D057 and 201/01/0942.

2

only (depending on the objective function). Moreover, set-up times do not provide a
mechanism to describe limited repetition of activities. Therefore, we propose a special
transition constraint that is able to model fully the above transition scheme. This
constraint has been implemented in the Visopt ShopFloor system [5] and as far as we
know, it is the only system that can cover such complexity of resources. In [6], Beck
and Fox proposed a model for alternative activities that could be used to model the
above transition scheme. However, this model requires introduction of all the
alternative activities in the form of a process plan. As we argue in [2], Beck's and
Fox's technique is less suitable when the number of alternative branches is large.

In this paper, we describe three models of the transition constraint. First, we sketch
the problem area in more details. Then we explain the basic ideas behind the slot
representation of resources and finally, we describe and compare the models of the
transition constraints.

Problem Area

Visopt ShopFloor is a generic scheduling system designed to address complex
problems where traditional scheduling techniques failed [1,5]. A typical feature of our
problem area is using resources (machines) with complex behaviour. This behaviour
is described using states and transitions between the states. At each time, the resource
is in a single state or the resource is in the transition between two states (we allow
transition time to be assigned to each transition). The transition scheme is typically
described by a directed graph (Figure 1) or by a transition table (Figure 3). Note that
using this general concept we can model set-ups, changeovers etc. either using
transition times or using states. The set-up states are useful, if these states are
connected to other resources. For example, if some by-product is produced during the
set-up or if a worker (another resources) is required to do the set-up. Still, at the
modelling level set-up states are handled like all other states. The number of states in
the resource is not limited; some resources have just one state, in other resources the
number of states can be very large (tens to hundreds).

Fig. 1. A simple transition scheme for the resource.

Currently, we concentrate on batch production primarily so the schedule of the
resource is described by a sequence of non-overlapping batches1. Every batch belongs
to one of the resource states. The user may also restrict the length of the batch
sequence in given state. For example a minimal number of five batches and maximal
number of ten batches of some state S can be in sequence. It means that the state S of

1 Continuous process can be decomposed into a sequence of batches.

loading

heating unloading

cleaning

cooling

3

the resource cannot be changed until at least five batches of this state are processed
and the state S must change to another state (following the transition scheme) if ten
batches of the state S have been processed.

Slot Representation

Traditional scheduling systems use a task-centric model of the problem where the
activities are grouped per task. Because, the resources in our problem area are more
complex than the traditional "capacity-only" resources, we prefer the resource-centric
model [1] in the Visopt ShopFloor system, i.e., the activities are primarily grouped by
the resource. We will use the word batch instead of activity in the following text.

The resource centric model is realised via slots. Slot is a shell filled by a batch
during scheduling. For each resource we have a chain of slots and during scheduling
these slots are being filled by batches. The difference from slots in timetabling is time
location of slots. In timetabling, the slots represent fixed time intervals. In the Visopt
solver, the slots may slide in time. Still, the order of slots is fixed but the slots may be
shifted in time, e.g., if the slot is moved to later time then all the successive slots must
be moved as well (Figure 2).

Fig. 2. Slots can slide in time provided that the ordering of slots is preserved

The details about the slot representation can be found in [2,5], we extract here only
the slot parameters necessary to model the transitions. The batch type - state - that can
be filled to the slot is described by a finite domain (FD) variable state. The constraint
binding the state variables of two consecutive slots describes naturally the allowed
transitions. In complex transition schemes, we need to restrict repetition of batches in
the slots as well. Therefore, we introduce a FD variable serial number that indicates a
relative position of the batch (in given slot) in the longest continuous sequence of the
batches of the same state (see Figure 3).

Fig. 3. Serial numbers in slots indicate the position of the batch (slot) in the sequence of slots
of the same state.

time shift

Before

After

state = 1
serial = 1

state = 1
serial = 2

state = 1
serial = 3

state = 2
serial =1

state = 2
serial =2

state = 1
serial =1

State MinBatches MaxBatches NextStates

1 3 4 2

2 1 2 1

Required state
change

Possible but non-
required state change

4

Sometimes, the maximal number of batches is not restricted for some states.
Typically, set/up, cleaning, maintenance, and similar states have upper limit for the
number of batches (usually, it equals to one), while processing states have no upper
limit (but usually they have the lower limit greater than one for technology reasons).
Because we are generating schedules for a fixed time horizon [5], we can estimate the
maximal number of batches of given state in the schedule, e.g., by dividing the
schedule duration by the batch duration. Thus, we can expect that the maximal
number of batches is finite (i.e. different from supreme) for all the states.

Constraint Models

Basically, the transition constraint connects the state variables and the serial numbers
of two consecutive batches (slots) in such a way that the transition scheme is fulfilled.
Because the user defines the transitions between the states we must be ready to cover
an arbitrary state transition relation. In [3,4], we proposed filtering algorithms for
general binary constraints, we call them tabular constraints, and these algorithms are
used in the transition constraint as well. Note also that the tabular constraint is used to
model the relation between the state and the minimal number of batches and between
the state and the maximal number of batches.

In the following paragraphs, we describe three different models of the transition
constraint. All of these models use some form of the tabular constraint.

A basic logic model

The simplest model of the transition constraint describes the state transition and the
repetition restriction separately using the tabular constraints. For simplicity reasons,
we use a meta-formulation of the constraints where the tabular constraint is integrated
into existing primitive constraints like implication and comparison. Nevertheless, it is
not a problem to separate the constraints using auxiliary variables, i.e., to follow the
syntax of a particular underlying solver.

First, we define the state transition constraint via the tabular constraint. Basically,
it is a general binary constraint with the domain defined using the table NextStates.
The index of the variable indicates the ordinal number of the batch (slot).

statei+1 in {statei} ∪ NextStates(statei)

Now, we can define how the serial number changes in the next batch (slot). Simply, if
the states in the batches (slots) are identical then the serial number is increased by
one, otherwise the serial number is set to one (we are starting to count batches of
another state). Because exactly one of the preconditions of the following implications
holds, one of the conclusions must hold as well (constructive disjunction can be used
to achieve better domain filtering).

statei=statei+1 ⇒ serial_numberi+1 = serial_numberi+1
statei≠statei+1 ⇒ serial_numberi+1 = 1

5

Finally, we need to connect the serial number and the state variable in each slot to
model the repetition restriction. The serial number cannot be greater than the maximal
number of batches of given state, this can be modelled using a tabular constraint,
where the table MaxBatches describes the relation. A similar table MinBatches
describes the lower limit for the number of batches. If the serial number in the batch
(slot) is lower than the minimal number of batches then the state in the next batch
must be identical to the state in the current batch.

serial_numberi in 1..MaxBatches(statei)
serial_numberi<MinBatches(statei) ⇒ statei=statei+1

The above model is a straightforward formulation of the transition constraint and if
we have the tabular constraint, such model can be implemented easily. However, this
model suffers from weak domain filtering, i.e., there remain inconsistent values in the
domain of variables. By inconsistent value we mean a value that is not part of any
solution. Using such value may cause problem in search (labelling) because the
inconsistency is detected late and backtracking is required. In particular, setting a
wrong state in the batch is undesirable (Figure 4).

Fig. 4. A locally (arc) consistent sequence of batches that is not globally consistent - the
seventh batch must be in the state 1.

A simple tabular model

The reason for weak propagation in the basic logic model is hidden in separation of
the state and serial number variables. If we look at Figure 4, we can see that in the
batch 6 there is an inconsistent serial number 3. This value is deduced from the value
2 of the serial number in the batch 5 for the state 1. Locally, this is a correct decision,
i.e., all the constraints are locally consistent. The problem is that the serial number 2
in batch 5 belongs to state 2. To keep information about the connection between the
serial numbers and the states we propose to encode the state and the serial number
into a compound serial number. The following formulas can be used to define the
encoding:

(){ } statesiiMaxBatches ∈= maxlog1010separator
compound_serial = separator * state + serial

state = 1
serial = 1

state = 1
serial = 2

state = 1
serial = 3

state = {1,2}
serial = {1,4}

state = {1,2}
serial = {1,2}

state = {1,2}
serial = {1,2,3}

State MinBatches MaxBatches NextStates

1 3 4 2

2 1 2 1

state = 2
serial = {1,2}

1 2 3 4 5 6 7

6

The complete transition scheme can then be converted into a simple transition table
describing the transitions in terms of compound serial numbers. As we can see at
Figure 5 such table describes state transitions as well as MinBatches/MaxBatches
restrictions. For example the compound serial number 13, that represents a third batch
of state 1, can either go to 14, i.e., to the fourth batch of state 1, or to 21, i.e., to a first
batch of state 2. But, if the compound serial number is 11 or 12 then we can continue
with 12 or 13 respectively so the state is not changed. Note also that the domain
filtering is now complete, i.e., all inconsistencies are removed (Figure 5).

Fig. 5. Conversion of the transition scheme into a transition table for compound serial numbers.

Now, the transition constraint is modelled using a single tabular constraint between
two consecutive compound serial numbers. The state can be decoded from the
compound serial number easily2.

compound_seriali+1 in NextSerials(compound_seriali)
statei = integer(compound_seriali / separator)

The simple tabular model provides a complete domain filtering for the transition
constraint. It is also easy to implement it provided that we have a tabular constraint.
Unfortunately, in large-scale real-life problems, the size of the induced transition table
for the compound serial numbers can be very large. Assume that we have 300 states
and the maximal number of batches per state is slightly less than 1000. Then, the
induced transition table has about 300 000 rows. Moreover the structure of such table
is not very compact so we cannot use the rectangular representation of the domain as
proposed in [4]. Thus we decided to combine the representation using the compound
serial numbers with the intentional model of the transition constraint.

A compound model

To suppress disadvantages of the previous two models, we designed a special filtering
algorithm that combines both above approaches. The new filtering procedure uses the

2 States play role in other scheduling constraints so the state variable should be preserved. The

serial numbers are used just to model transitions so it is not necessary to decode them from
the compound serial number.

State MinBatches MaxBatches NextStates

1 3 4 2

2 1 2 1

Compound serial NextSerials

11 12

12 13

13 14,21

14 21

21 11,22

22 11

state = 1
cserial = 11

state = 1
cserial = 12

state = 1
cserial = 13

state = {1,2}
cserial = {14,21}

state = {1,2}
cserial = {11,21,22}

state = {1,2}
cserial = {11,12,22}

state = 1
cserial = {11,12,13}

1 2 3 4 5 6 7

7

compound serial numbers but the transition scheme is described using the original
tables NextStates, MinBatches, and MaxBatches. For efficiency reasons, the values in
MinBatches and MaxBatches tables are expressed as compound values, i.e., they
include the state. The filtering procedure computes the induced transition table during
runtime so it does not need to keep the table in memory. Thus, we can achieve the
same pruning as the simple tabular model (all inconsistencies are removed) while
keeping reasonable memory consumption. The following code describes the basic
structure of the filtering algorithm for the transition constraint.

procedure TransitionConstraint(FromState,FromSerial,ToState,ToSerial)
ToSerial := relevant_serials(ToState,ToSerial)
NewFromState := NewToState := NewFromSerial := NewToSerial := {}
for each State from FromState do
Serial := relevant_serials({State},FromSerial)
if nonempty Serial then

NextSerial := increase(Serial,MaxBatches(State)) ∩ ToSerial
if nonempty NextSerial then

 // transition to identical state

NewFromState := NewFromState ∪ {A}
 NewToState := NewToState ∪ {A}

NewFromSerial := NewFromSerial ∪ decrease(NextSerial)
NewToSerial := NewToSerial ∪ NextSerial

 end if
NextSerial := start_serial(NextStates(State)) ∩ ToSerial
if nonempty NextSerial & MinBatches(State)≤max(Serial) then

 // transition to different state
NewFromState := NewFromState ∪ {A}
NewToState := NewToState ∪ NextStates(State)
NewFromSerial := NewFromSerial ∪

 (MinBatches(State)..MaxBatches(State))

NewToSerial := NewToSerial ∪ NextSerial
 end if
 end if

end for
 FromState in NewFromState
 ToState in NewToState
 FromSerial in NewFromSerial
 ToSerial in NewToSerial
end procedure

It may seem that the efficiency of the dedicated filtering algorithm is not as good as
efficiency of the simple tabular model. However note, that the main complexity of the
tabular model is hidden in the tabular constraint. Because, the new filtering algorithm
mimics behaviour of the filtering algorithm for tabular constraints described in [3],
there is no significant decrease of efficiency. Additional work done during filtering is
balanced by using smaller and more compact tables compared to the tabular model.

Discussion and conclusions

In the paper, we propose and discuss three constraint models for the transition scheme
that is useful in modelling complex resources. All these models have been

8

implemented using the clpfd library of SICStus Prolog [7] and tested in the real-life
scheduling system Visopt ShopFloor [5]. First, we defined the transition constraint
using a general concept of tabular constraints. This concept provides very good
domain filtering but for resources with many states (and many slots), the memory
consumption of such model is unacceptable. Therefore, we returned to a basic logic
model of the transition constraint. Unfortunately, this model does not filter as good as
the simple tabular model (see Figure 4). In fact, missing propagation led to "infinite"
solving times of some real-life problems with restrictive transition scheme. Therefore
we proposed a special transition constraint that mix the advantages of both logic and
tabular models: good domain filtering and reasonable memory consumption. This
compound model is used in the current version of Visopt ShopFloor system. We also
use a variant of the basic logic model there to describe counters over the sequence of
batches [5]. Counter is a generalisation of the transition scheme forcing some
transitions after a given number of batches (perhaps of different states). Thus, the
counter can be used to model maintenance and cleaning batches that typically appear
after a specified number of production cycles; its detail description is out of scope of
this paper.

We do not provide a detail empirical evaluation because we are not aware about
any existing model for the transition scheme to which we can compare our models.
Moreover, the compound model is superior to both basic logic and tabular models. It
means that using the compound model we can solve all our benchmark problems as
fast as using the basic logic and tabular models. However, some of the problems
cannot be solved using the basic tabular model due to large memory consumption
(memory crash) and some of the problems cannot be solved using the basic logic
model due to weak pruning ("infinite" running time).

References

1. Barták, R.: Conceptual Models for Combined Planning and Scheduling. Electronic Notes
in Discrete Mathematics, Volume 4, Elsevier (1999).

2. Barták, R.: Dynamic Constraint Models for Planning and Scheduling Problems.
Proceedings of the ERCIM/CompulogNet Workshop on Constraint Programming, LNAI
Series, Springer Verlag (2000).

3. Barták R.: A General Relation Constraint: An Implementation. Proceedings of CP2000
Post-Workshop on Techniques for Implementing Constraint Programming Systems,
Singapore (2000).

4. Barták, R.: Filtering Algorithms for Tabular Constraints. Proceedings of CP2001
Workshop CICLOPS, Paphos, Cyprus (2001), 168-182.

5. Barták, R.: Visopt ShopFloor: On the edge of planning and scheduling. Submitted to
CP2002.

6. Beck, J.Ch. and Fox, M.S.: Scheduling Alternative Activities. Proceedings of AAAI-99,
USA (1999), 680-687.

7. Carlsson M., Ottosson G., Carlson B. An Open-Ended Finite Domain Constraint Solver.
Proceedings Programming Languages: Implementations, Logics, and Programs (1997).

8. Wallace, M.: Applying Constraints for Scheduling, in: Constraint Programming, Mayoh
B. and Penjaak J. (eds.), NATO ASI Series, Springer Verlag (1994).

