A theoretical look at the CSP

Jakub Bulin

KTIML MFF UK

Jan 7, 2020



A brief history

Operations research
Database theory
Artificial intelligence
Computational logic
Complexity theory
Combinatorics

Universal algebra, multivalued logic, category theory



Constraint satisfaction

Constraint Satisfaction Problem (CSP)
Input:
e X — a finite set of variables,
e A — a finite set of values,
e C={G,...,Cy} — finitely many constraints C; = (x;, R;),

® X; is a k;-tuple of variables (“constraint scope™)
® R; C A% (“constraint relation”)

Decide: Is there a solution, i.e. an evaluation p: X — A
satisfying ¢(x;) € R; forall 1 < i< m?

Example
e X ={x,y,z}, A={0,1}, constraints C = {C1, (2, G3}

e G =((x,¥),R), = ((y,2),R), GG =((z,x),R), where
R ={(0,1),(1,0)}



Logical viewpoint

A (finite) relational structure: A = (A; R, ... R?) where
RA C Akiis a k;-ary relation on the set A

“Primitive-positive” fragment of FO model checking

® Input: a {3, \, =}-sentence ® and a finite relational
structure A (in the same language)

¢ Decide: Does A =&, ie., is ® true in A?

Construction: constraint C = (X, R) becomes a predicate R(%),
make a conjunction, quantify everything existentially
Example

* &= (3I)(Fy)EF2)(R(xy) AR(y,z) AR(z,x) )

e A= ({0,1}; RA) where RA = {(0,1),(1,0)}



Boolean satisfiability

[k-]SAT
¢ Input: a propositional formula ¢ in [k-]CNF
® Decide: Is i satisfiable?

Fact: SAT is equivalent to 3-SAT
eg. x1VxoVxsV-xg ~ (xxVxoV-u)A(uVx3V-xs) (unew)

3-SAT as a CSP
A= <{07 1}; {RIJAk | i,Jj,k € {07 1}}> Ri_]Ak = {07 1}3 \ {(i7j7 k)}

Example
3-SAT input
P=(x1V-x2Vx3)A(=xsVxsV-x1)A(—x1VxaV-ox3)
becomes
® = (Ix1 ... x5)(Roro(x1, x2, X3) AR101(Xa, X5, x1) AR101 (X1, X4, X3))



Fragments of SAT

2-SAT
® Input: a propositional formula ) in 2-CNF
eg. v=(xVay)A(yV-z)A(-xV2z)
® Decide: Is v satisfiable?
® CSP: A= ({0,1}; Ry, Rit, Rovs Ron) Rt = {0,132\ {(i,./)}
® = (Ix,y,z)( Roi(x,y), Ro1(y, z), Rio(x, z) )

Horn-[3-]SAT
® Input: a conjunction of Horn clauses [of width 3]
® enough to encode “xAy — Z", XAy — —=z", “=x", X"
° CSP: A= ({0,1}; R Ry, G, Y G = {0}, Cff = {1}
Yv=(xANy—=z2)AN(yNz— x)AxA-z
& = (3Ix,y, 2)( Ri1o(x,y,2) A Ri11(y, z, x) A Ci(x) A Go(2) )



Combinatorial viewpoint

A digraph (directed graph): G = (G; =€) where =¢C G x G
A (simple) graph: —G is symmetric and loopless

Graph homomorphism: ¢ : G — H such that for every edge
u— v in G we have p(u) — ¢(v) in H, i.e.

(u,v) €= = (p(u),p(v)) e="

Relational homomorphism: ¢ : A — B preserving relations,
i.e. for every R (say k-ary) in the language we have

(31,...,ak) € RA - (go(al),. . .,(p(ak)) S RB



CSP as a homomorphism problem

Homomorphism problem
® Input: a pair of finite relational structures X, A

® Decide: Is there a homomorphism ¢ : X — A?

Example (from slide 3)

o X = {X,y,Z}, A= {0, 1}, C = {Cl, Cz, C3}, C1 =
G = ((y,2),R), G = ((z,x),R), where R = {(0,

® construction of A and X:
® RA’s are all distinct relations on A appearing as constraint

relations in the CSP instance
® collect to R* all tuples of variables that are constraint scopes

with constraint relation R”
* X = ({x,y,z}; RX) where R* = {(x,y),
A = ({0,1}; RA) where RA = {(0,1), (1
(“Is the oriented 3-cycle 2-colorable?")

((xx): R),
1).(1,0))

(v;2), (2, %)},
,0)}



Graph homomorphism & coloring problems

Graph homomorphism
® Input: a pair of (simple) graphs G, H
® Decide: Is there a graph homomorphism ¢ : G — H?

Note that every CSP can be encoded as a digraph homomorphism
problem, but not (simple) graph homomorphism.

Graph coloring
® Input: a graph G and ¢ >0

® Decide: Is G colorable with ¢ colors?

(A special case of graph homomorphism where H = K¢.)



Recap

® Every CSP instance can be equivalently viewed as

® validity of a primitive positive (3, A, =) sentence in a finite
relational structure,

® the homomorphism problem for a pair of structures.
e Different viewpoints sometimes bring better insight and tools.

® Many classical computational problems are CSPs.



Computational complexity: P vs. NP

Decision problem: for every instance answer YES or NO

A problem is in P: “can be solved efficiently” —
polynomial-time algorithm (linear, nlog n, quadratic,. . .)
NP problem: “correctness of a given solution can be verified
efficiently” — an oracle provides an answer with proof, we can
verify by a polynomial-time algorithm
Reduction [polynomial-time]: transform [in polynomial time]
instances of one problem to instances of another problem,
preserving the answer
NP-complete problem: is in NP and every NP problem reduces
to it in polynomial time
® e.g. 3-SAT, graph 3-coloring
® known algorithms are exponential-time (worst-case complexity)
® The P vs. NP problem: P algorithm for NP-complete problems?



Complexity classification of CSPs?

Fact: CSP is NP-complete
® In NP: to verify if ¢ : X — A is a solution, check for every
constraint C = (X, R) whether ¢(X) € R

® NP-complete: contains (has a reduction from) 3-SAT

Easier subproblems? Restrict possible CSP inputs (X, A):
e if X is fixed, then CSP(X, —) is solvable in polynomial time
e if X's are (relational) trees, then the CSP is in P

® also true if X's have treewidth k — dynamic programming
(“looks like a tree from far away”)

Theorem (Grohe 2007)

CSP(C,—) is in P, if and only if C is a class of structures with
bounded treewidth.*

lup to "hom. equivalence”, under reasonable complexity theory assumptions



Fixing the template

® |t is natural to restrict admissible constraint relations.
e Combinatorial view: fix the structure A (“template”)

® Database theory: evaluate varying input queries X
over a fixed database A.

CSP(A)
® Input: a relational structure X

® Decide: Is there a homomorphism ¢ : X — A?

Examples
e graph 3-coloring is CSP(K3)
® 3-SAT, 2-SAT, Horn-SAT are of this form too

“What properties of A make CSP(A) easy vs. hard?”



Polymorphisms

A polymorphism of A:

® 3 function f : A" — A preserving all the constraint relations,

i.e. for each RA and a' € R?, f(al,...,a") € RA
fl(ax a ... a) = a
RS I = |
flbp by ... by) = b

® a multivariate homomorphism f : A" — A

® a “high-dimensional symmetry” of solution spaces of CSP(A)
instances, can be used in algorithms to combine [partial]
solutions to obtain “nicer” solutions

® Pol(A): the set of all polymorphisms of A, closed under
composition, contains projections f(xi,...,Xs) = X;

“More symmetric problems are easier.”



Hard Boolean CSPs

3-SAT: A= ({0,1};{Rf | i,j, k € {0,1}})
¢ Pol(A): only projections

1in3-SAT: A = ({0,1};{(1,0,0),(0,1,0),(0,0,1)})
® Input: a list of triples of Boolean variables

® Goal: evaluate so that in each triple exactly 1 variable is true

® Pol(A): only projections

NAE-SAT: A = ({0,1};{0,1}*\ {(0,0,0), (1,1, 1)})
® Input: a list of triples of Boolean variables

® Goal: evaluate so that in each triple at least 1 variable is true
and at least 1 is false

® Pol(A):projections and their negations



Easy Boolean CSPs

HORN-SAT: A = ({0,1}; Ry, R\, {0}, {1})
® unit propagation algorithm (essentially arc consistency)
® Pol(A): conjunctive functions, e.g. min(x,y)

2-SAT: A= ({0,1}; R, R, RS\, RSY)
® propagate values via edges in search of a failure

® Pol(A): monotone functions, e.g. majority(x, y, z)

PATH (digraph [un-]reachability): A = ({0,1};x <y,{0},{1})
® given a digraph and vertices s, t, answer YES if there is no
directed path from s to t

® Pol(A): same as 2-SAT, e.g. majority(x, y, z)
UPATH (graph [un-]reachability): A = ({0,1};x =y, {0}, {1})
e given a (simple) graph and two vertices, YES if not connected

® Pol(A): f(x,x,...,x) = x, e.g. min(x,y), majority(x,y, z)



Arc Consistency (a very high-level view)

For every variable x € X keep a list of possible values P, C A
Initialize: P, := A

Update: For every constraint C = (X, R) and every i,

Py, :== Py, N proj,.R
R:=RN(Py x---x Py)

® Repeat until no change

® The instance is arc consistent, if all P, are nonempty.

® A solution = arc consistent. (“<" not true in general.)
Theorem
If Pol(A) contains min(x, y), then every arc consistent instance of
CSP(A) has a solution (= CSP(A) is in P).
Proof. Define ¢(x) := min({a € P}). [blackboard picture]



Local Consistency

® For all x,y € X compute admissible P, C A, P,, CAx A
® Initialize: Py := A, Py, := A x A. Enforce the following:
e for every C = (X, R) or ((x,y), Px) and every x,y € X,
Py = proj R, Py, = proj,, R
® for every x,y,z € X and (a, b) € Py, there is ¢ € P, such
that (a,c) € Py, and (b,c) € P, ,
“Any partial solution on 2 var's extends to any 3rd variable.”
® The instance is (2,3)-consistent, if all Py are nonempty.

® A solution = (2,3)-consistent. (“<" not true in general.)

Theorem

If Pol(A) contains majority(x, y, z), then every (2,3)-consistent
instance of CSP(A) has a solution (= CSP(A) is in P).
Proof? Every partial solution on 3 var's extends to any 4th var.
[blackboard picture]



Linear systems

LINEQ(Z>)

Input: a system of linear equations ¥ over Z,
Decide: Is ¥ consistent?

Fact: ¥ can be expressed usingonly x+y =2z, x =0, x =1.
For example, x1 + xo + x3 = 1 becomes

X1+ Xo=u
Uu—+x3 =V

v=1

CSP(A) where A = ({0,1}; x+y = z,{0},{1})
Gaussian elimination (computing rank of a Boolean matrix)
Pol(A): affine functions, e.g. x+ y + z (mod 2)

(Note: Local consistency is no guarantee of a solution.)



Schaefer’s dichotomy theorem

Theorem (Post 1941)
Let F be a set of Boolean functions closed under composition and
containing all projections. Then either

® F only consists of projections or their negations,

or F contains one of the following “nice” functions:
@ a constant function (always output 0 or always output 1),
® min(x,y) or max(x,y),
©® majority(x, y, z),
O x+y+z (mod?2).

Corollary (Schaefer's dichotomy theorem 1978)
Every Boolean CSP(A) is either in P or NP-complete.



Proof of Schaefer’s dichotomy theorem

© If Pol(A) only consists of projections or their negations, then
CSP(A) encodes NAE-SAT and thus is NP-complete.
(see the Appendix for proof)

Else, Pol(A) contains one of the “nice” functions:

@ consty = every (nonempty) R? contains the tuple (0,...,0)
= every instance is a YES instance

® min(x,y) = CSP(A) is solvable by arc consistency
©® majority(x, y,z) = CSP(A) is solvable by (2,3)-consistency

O x+y+z (mod 2) = every R” is an affine subspace
= every CSP instance is a system of linear equations over Z»
= CSP(A) is solvable by Gaussian elimination



Graph homomorphism problem

Let H be a (simple) graph.
Graph homomorphism

® Input: a (simple) graph G
® Decide: Is there a graph homomorphism ¢ : G — H?

Theorem (Hell, Ne3etfil 1990)
If H is bipartite, then CSP(H) is in P. Otherwise, CSP(H) is
NP-complete.

® H is bipartite with at least one edge < homomorphically
equivalent to Kz, so CSP(H) has the same YES/NO
instances as graph 2-coloring.

® non-bipartite < contains a cycle of odd length

® graph 2-coloring is in P, c-coloring for ¢ > 3 is NP-complete



The CSP dichotomy

The CSP dichotomy theorem

For every finite relational structure A, CSP(A) is either in P or
NP-complete.

Conjectured by Feder and Vardi in 1993

Proved by Bulatov and Zhuk in 2017

Classification via existence of a “nice” polymorphism

In general, if P # NP, then there are infinitely many different
complexity classes between (up to P-reductions).

CSPs are in some sense the “largest natural” class where a
dichotomy is possible



Want to know more?

e A Matfyz course on basics of the theory
- NMAG563 Intro to complexity of the CSP

® A (somewhat, partly) accessible survey article:

- Polymorphisms and how to use them
(L. Barto, A. Krokhin, and R. Willard)

® Talk to me!
- jakub.bulin@mff.cuni.cz


https://is.cuni.cz/studium/eng/predmety/index.php?do=predmet&kod=NMAG563
https://drops.dagstuhl.de/opus/volltexte/2017/6959/pdf/DFU-Vol7-15301-1.pdf
https://drops.dagstuhl.de/opus/volltexte/2017/6959/pdf/DFU-Vol7-15301-1.pdf
mailto:jakub.bulin@mff.cuni.cz

Appendix: How polymorphisms work

a relation S C AK is pp-definable from A, if it is definable

with a (3, A, =)-formula

® equivalently, S is the set of all solutions to some instance of
CSP(A), with some “auxiliary” variables ignored

® adding S to A doesn’t change the complexity of CSP(A)

e key lemma: S is pp-definable, if and only if it is invariant

under all polymorphisms of A

Corollary
If Pol(A) C Pol(B), then CSP(B) reduces to CSP(A).

Example
e Let CSP(B) be NAE-SAT, then Pol(B) is the set of all
projections and negations of projections.

¢ If Pol(A) contains only projections or negations of projections,
then by Corollary, CSP(B) reduces to CSP(A) which proves
that CSP(A) is NP-complete.



