A theoretical look at the CSP

Jakub Bulín

KTIML MFF UK

Jan 7, 2020

A brief history

- Operations research
- Database theory
- Artificial intelligence
- Computational logic
- Complexity theory
- Combinatorics
- Universal algebra, multivalued logic, category theory

Constraint Satisfaction Problem (CSP)

Input:

- X a finite set of variables,
- A a finite set of values,
- $C = \{C_1, \ldots, C_m\}$ finitely many constraints $C_i = (\bar{x}_i, R_i)$,
 - \bar{x}_i is a k_i -tuple of variables ("constraint scope")
 - $R_i \subseteq A^{k_i}$ ("constraint relation")

Decide: Is there a solution, i.e. an evaluation $\varphi : X \to A$ satisfying $\varphi(\bar{x}_i) \in R_i$ for all $1 \le i \le m$?

Example

•
$$X = \{x, y, z\}, A = \{0, 1\}, \text{ constraints } C = \{C_1, C_2, C_3\}$$

•
$$C_1 = ((x, y), R), C_2 = ((y, z), R), C_3 = ((z, x), R)$$
, where $R = \{(0, 1), (1, 0)\}$

Logical viewpoint

A (finite) relational structure: $\mathbf{A} = \langle A; R_1^{\mathbf{A}}, \dots, R_n^{\mathbf{A}} \rangle$ where $R_i^{\mathbf{A}} \subseteq A^{k_i}$ is a k_i -ary relation on the set A

"Primitive-positive" fragment of FO model checking

- Input: a {∃, ∧, =}-sentence Φ and a finite relational structure A (in the same language)
- **Decide:** Does $\mathbf{A} \models \Phi$, i.e., is Φ true in \mathbf{A} ?

Construction: constraint $C = (\bar{x}, R)$ becomes a predicate $R(\bar{x})$, make a conjunction, quantify everything existentially

Example

•
$$\Phi = (\exists x)(\exists y)(\exists z)(R(x,y) \land R(y,z) \land R(z,x))$$

• $\mathbf{A} = \langle \{0,1\}; R^{\mathbf{A}} \rangle$ where $R^{\mathbf{A}} = \{(0,1), (1,0)\}$

Boolean satisfiability

[*k*-]SAT

- Input: a propositional formula ψ in [k-]CNF
- **Decide:** Is ψ satisfiable?

Fact: SAT is equivalent to 3-SAT e.g. $x_1 \lor x_2 \lor x_3 \lor \neg x_4 \quad \rightsquigarrow \quad (x_1 \lor x_2 \lor \neg u) \land (u \lor x_3 \lor \neg x_4) \quad (u \text{ new})$

3-SAT as a CSP $\mathbf{A} = \langle \{0,1\}; \{R_{ijk}^{\mathbf{A}} \mid i,j,k \in \{0,1\}\} \rangle$ $R_{ijk}^{\mathbf{A}} = \{0,1\}^3 \setminus \{(i,j,k)\}$

Example

3-SAT input

$$\psi = (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_4 \lor x_5 \lor \neg x_1) \land (\neg x_1 \lor x_4 \lor \neg x_3)$$

becomes

 $\Phi = (\exists x_1 \dots x_5)(R_{010}(x_1, x_2, x_3) \land R_{101}(x_4, x_5, x_1) \land R_{101}(x_1, x_4, x_3))$

Fragments of SAT

2-SAT

• Input: a propositional formula ψ in 2-CNF

e.g.
$$\psi = (x \vee \neg y) \land (y \vee \neg z) \land (\neg x \vee z)$$

• **Decide:** Is ψ satisfiable?

• CSP:
$$\mathbf{A} = \langle \{0, 1\}; R_{11}^{\mathbf{A}}, R_{10}^{\mathbf{A}}, R_{01}^{\mathbf{A}}, R_{00}^{\mathbf{A}} \rangle$$
 $R_{ij}^{\mathbf{A}} = \{0, 1\}^2 \setminus \{(i, j)\}$
 $\Phi = (\exists x, y, z) (R_{01}(x, y), R_{01}(y, z), R_{10}(x, z))$

Horn-[3-]SAT

- Input: a conjunction of Horn clauses [of width 3]
- enough to encode " $x \wedge y \rightarrow z$ ", " $x \wedge y \rightarrow \neg z$ ", " $\neg x$ ", "x"

• CSP:
$$\mathbf{A} = \langle \{0, 1\}; R_{110}^{\mathbf{A}}, R_{111}^{\mathbf{A}}, C_0^{\mathbf{A}}, C_1^{\mathbf{A}} \rangle$$
 $C_0^{\mathbf{A}} = \{0\}, C_1^{\mathbf{A}} = \{1\}$
 $\psi = (x \land y \to z) \land (y \land z \to \neg x) \land x \land \neg z$
 $\Phi = (\exists x, y, z) (R_{110}(x, y, z) \land R_{111}(y, z, x) \land C_1(x) \land C_0(z))$

Combinatorial viewpoint

- A digraph (directed graph): $\mathbf{G} = \langle G; \rightarrow^{\mathbf{G}} \rangle$ where $\rightarrow^{\mathbf{G}} \subseteq G \times G$
- A (simple) graph: $\rightarrow^{\mathbf{G}}$ is symmetric and loopless
- Graph homomorphism: $\varphi : \mathbf{G} \to \mathbf{H}$ such that for every edge $u \to v$ in \mathbf{G} we have $\varphi(u) \to \varphi(v)$ in \mathbf{H} , i.e.

$$(u,v) \in \rightarrow^{\mathsf{G}} \implies (\varphi(u),\varphi(v)) \in \rightarrow^{\mathsf{H}}$$

 Relational homomorphism: φ : A → B preserving relations, i.e. for every R (say k-ary) in the language we have

$$(a_1,\ldots,a_k)\in R^{\mathsf{A}} \implies (\varphi(a_1),\ldots,\varphi(a_k))\in R^{\mathsf{B}}$$

CSP as a homomorphism problem

Homomorphism problem

- Input: a pair of finite relational structures X, A
- **Decide:** Is there a homomorphism $\varphi : \mathbf{X} \to \mathbf{A}$?

Example (from slide 3)

- $X = \{x, y, z\}, A = \{0, 1\}, C = \{C_1, C_2, C_3\}, C_1 = ((x, y), R), C_2 = ((y, z), R), C_3 = ((z, x), R), \text{ where } R = \{(0, 1), (1, 0)\}$
- construction of A and X:
 - *R*^A's are all distinct relations on *A* appearing as constraint relations in the CSP instance
 - collect to R^X all tuples of variables that are constraint scopes with constraint relation R^A

•
$$\mathbf{X} = \langle \{x, y, z\}; R^{\mathbf{X}} \rangle$$
 where $R^{\mathbf{X}} = \{(x, y), (y, z), (z, x)\},$
 $\mathbf{A} = \langle \{0, 1\}; R^{\mathbf{A}} \rangle$ where $R^{\mathbf{A}} = \{(0, 1), (1, 0)\}$
("Is the oriented 3-cycle 2-colorable?")

Graph homomorphism & coloring problems

Graph homomorphism

- Input: a pair of (simple) graphs G, H
- Decide: Is there a graph homomorphism $\varphi : \mathbf{G} \to \mathbf{H}$?

Note that every CSP can be encoded as a digraph homomorphism problem, but not (simple) graph homomorphism.

Graph coloring

- Input: a graph **G** and c > 0
- **Decide:** Is **G** colorable with *c* colors?

(A special case of graph homomorphism where $\mathbf{H} = \mathbf{K}_{\mathbf{c}}$.)

- Every CSP instance can be equivalently viewed as
 - validity of a primitive positive (∃, ∧, =) sentence in a finite relational structure,
 - the homomorphism problem for a pair of structures.
- Different viewpoints sometimes bring better insight and tools.
- Many classical computational problems are CSPs.

Computational complexity: P vs. NP

- Decision problem: for every instance answer YES or NO
- A problem is in P: "can be solved efficiently" polynomial-time algorithm (linear, *n* log *n*, quadratic,...)
- NP problem: "correctness of a given solution can be verified efficiently" an oracle provides an answer with proof, we can verify by a polynomial-time algorithm
- Reduction [polynomial-time]: transform [in polynomial time] instances of one problem to instances of another problem, preserving the answer
- NP-complete problem: is in NP and every NP problem reduces to it in polynomial time
 - e.g. 3-SAT, graph 3-coloring
 - known algorithms are exponential-time (worst-case complexity)
 - The P vs. NP problem: P algorithm for NP-complete problems?

Complexity classification of CSPs?

Fact: CSP is NP-complete

- In NP: to verify if φ : X → A is a solution, check for every constraint C = (x̄, R) whether φ(x̄) ∈ R
- NP-complete: contains (has a reduction from) 3-SAT

Easier subproblems? Restrict possible CSP inputs (X, A):

- if **X** is fixed, then $\mathrm{CSP}(\mathbf{X},-)$ is solvable in polynomial time
- if X's are (relational) trees, then the CSP is in P
- also true if X's have treewidth k dynamic programming ("looks like a tree from far away")

Theorem (Grohe 2007)

 ${\rm CSP}(\mathcal{C},-)$ is in P, if and only if $\mathcal C$ is a class of structures with bounded treewidth.^1

¹up to "hom. equivalence", under reasonable complexity theory assumptions

Fixing the template

- It is natural to restrict admissible constraint relations.
- Combinatorial view: fix the structure **A** ("template")
- Database theory: evaluate varying input queries X over a fixed database A.

 $\operatorname{CSP}(\mathbf{A})$

- Input: a relational structure X
- **Decide:** Is there a homomorphism $\varphi : \mathbf{X} \to \mathbf{A}$?

Examples

- graph 3-coloring is $CSP(K_3)$
- 3-SAT, 2-SAT, Horn-SAT are of this form too

"What properties of **A** make CSP(A) easy vs. hard?"

Polymorphisms

A polymorphism of A:

• a function $f : A^n \to A$ preserving all the constraint relations, i.e. for each R^A and $\mathbf{a}^i \in R^A$, $f(\mathbf{a}^1, \dots, \mathbf{a}^n) \in R^A$

- a multivariate homomorphism $f: \mathbf{A}^n \to \mathbf{A}$
- a "high-dimensional symmetry" of solution spaces of CSP(A) instances, can be used in algorithms to combine [partial] solutions to obtain "nicer" solutions
- Pol(A): the set of all polymorphisms of A, closed under composition, contains projections f(x₁,..., x_n) = x_i

"More symmetric problems are easier."

Hard Boolean CSPs

- 3-SAT: $\mathbf{A} = \langle \{0,1\}; \{R_{ijk}^{\mathbf{A}} \mid i, j, k \in \{0,1\}\} \rangle$
 - Pol(A): only projections

lin3-SAT: $\mathbf{A} = \langle \{0,1\}; \{(1,0,0), (0,1,0), (0,0,1)\} \rangle$

- Input: a list of triples of Boolean variables
- Goal: evaluate so that in each triple exactly 1 variable is true
- Pol(A): only projections

NAE-SAT: $\mathbf{A} = \langle \{0,1\}; \{0,1\}^3 \setminus \{(0,0,0), (1,1,1)\} \rangle$

- Input: a list of triples of Boolean variables
- **Goal:** evaluate so that in each triple at least 1 variable is true and at least 1 is false
- Pol(A):projections and their negations

Easy Boolean CSPs

HORN-SAT: $\mathbf{A} = \langle \{0, 1\}; R_{110}^{\mathbf{A}}, R_{111}^{\mathbf{A}}, \{0\}, \{1\} \rangle$

- unit propagation algorithm (essentially arc consistency)
- Pol(**A**): conjunctive functions, e.g. min(x, y)
- 2-SAT: $\mathbf{A} = \langle \{0, 1\}; R_{11}^{\mathbf{A}}, R_{10}^{\mathbf{A}}, R_{01}^{\mathbf{A}}, R_{00}^{\mathbf{A}} \rangle$
 - propagate values via edges in search of a failure
 - Pol(A): monotone functions, e.g. majority(x, y, z)

PATH (digraph [un-]reachability): $\mathbf{A} = \langle \{0,1\}; x \leq y, \{0\}, \{1\} \rangle$

- given a digraph and vertices *s*, *t*, answer YES if there is no directed path from *s* to *t*
- Pol(A): same as 2-SAT, e.g. majority(x, y, z)

UPATH (graph [un-]reachability): $\mathbf{A} = \langle \{0,1\}; x = y, \{0\}, \{1\} \rangle$

- given a (simple) graph and two vertices, YES if not connected
- Pol(A): f(x, x, ..., x) = x, e.g. $\min(x, y)$, majority(x, y, z)

Arc Consistency (a very high-level view)

- For every variable $x \in X$ keep a list of possible values $P_x \subseteq A$
- Initialize: $P_x := A$
- Update: For every constraint $C = (\bar{x}, R)$ and every *i*,

$$P_{x_i} := P_{x_i} \cap \operatorname{proj}_{x_i} R$$
$$R := R \cap (P_{x_1} \times \cdots \times P_{x_n})$$

- Repeat until no change
- The instance is arc consistent, if all P_x are nonempty.
- A solution \Rightarrow arc consistent. (" \Leftarrow " not true in general.)

Theorem

If $Pol(\mathbf{A})$ contains min(x, y), then every arc consistent instance of $CSP(\mathbf{A})$ has a solution ($\Rightarrow CSP(\mathbf{A})$ is in P).

Proof. Define $\varphi(x) := \min(\{a \in P_x\})$. [blackboard picture]

Local Consistency

- For all $x, y \in X$ compute admissible $P_x \subseteq A$, $P_{xy} \subseteq A \times A$
- Initialize: $P_x := A$, $P_{xy} := A \times A$. Enforce the following:
 - for every $C = (\bar{x}, R)$ or $((x, y), P_{xy})$ and every $x, y \in \bar{x}$, $P_x = \text{proj}_x R$, $P_{xy} = \text{proj}_{xy} R$
 - for every $x, y, z \in X$ and $(a, b) \in P_{x,y}$ there is $c \in P_z$ such that $(a, c) \in P_{x,z}$ and $(b, c) \in P_{y,z}$

"Any partial solution on 2 var's extends to any 3rd variable."

- The instance is (2,3)-consistent, if all P_x are nonempty.
- A solution \Rightarrow (2,3)-consistent. (" \Leftarrow " not true in general.)

Theorem

If $Pol(\mathbf{A})$ contains majority(x, y, z), then every (2,3)-consistent instance of $CSP(\mathbf{A})$ has a solution ($\Rightarrow CSP(\mathbf{A})$ is in P).

Proof? Every partial solution on 3 var's extends to any 4th var. [blackboard picture]

Linear systems

$\mathsf{LINEQ}(\mathbb{Z}_2)$

- Input: a system of linear equations Σ over \mathbb{Z}_2
- **Decide:** Is Σ consistent?
- Fact: Σ can be expressed using only x + y = z, x = 0, x = 1.
 For example, x₁ + x₂ + x₃ = 1 becomes

$$x_1 + x_2 = u$$
$$u + x_3 = v$$
$$v = 1$$

- CSP(A) where $A = \langle \{0, 1\}; x + y = z, \{0\}, \{1\} \rangle$
- Gaussian elimination (computing rank of a Boolean matrix)
- Pol(**A**): affine functions, e.g. $x + y + z \pmod{2}$
- (Note: Local consistency is no guarantee of a solution.)

Theorem (Post 1941)

Let \mathcal{F} be a set of Boolean functions closed under composition and containing all projections. Then either

0 \mathcal{F} only consists of projections or their negations,

- or \mathcal{F} contains one of the following "nice" functions:
 - **1** a constant function (always output 0 or always output 1),
 - 2 min(x, y) or max(x, y),
 - **3** majority(x, y, z),
 - 4 $x + y + z \pmod{2}$.

Corollary (Schaefer's dichotomy theorem 1978) Every Boolean CSP(**A**) is either in P or NP-complete.

Proof of Schaefer's dichotomy theorem

 If Pol(A) only consists of projections or their negations, then CSP(A) encodes NAE-SAT and thus is NP-complete. (see the Appendix for proof)

Else, $Pol(\mathbf{A})$ contains one of the "nice" functions:

- const₀ ⇒ every (nonempty) $R^{\mathbf{A}}$ contains the tuple (0,...,0) ⇒ every instance is a YES instance
- 2 min $(x, y) \Rightarrow CSP(\mathbf{A})$ is solvable by arc consistency
- **3** majority $(x, y, z) \Rightarrow CSP(\mathbf{A})$ is solvable by (2,3)-consistency
- 4 x + y + z (mod 2) ⇒ every R^A is an affine subspace
 ⇒ every CSP instance is a system of linear equations over Z₂
 ⇒ CSP(A) is solvable by Gaussian elimination

Graph homomorphism problem

Let **H** be a (simple) graph.

Graph homomorphism

- Input: a (simple) graph G
- Decide: Is there a graph homomorphism $\varphi : \mathbf{G} \to \mathbf{H}$?

Theorem (Hell, Nešetřil 1990)

If H is bipartite, then $\mathrm{CSP}(H)$ is in P. Otherwise, $\mathrm{CSP}(H)$ is NP-complete.

- H is bipartite with at least one edge ⇔ homomorphically equivalent to K₂, so CSP(H) has the same YES/NO instances as graph 2-coloring.
- non-bipartite \Leftrightarrow contains a cycle of odd length
- graph 2-coloring is in P, *c*-coloring for $c \ge 3$ is NP-complete

The CSP dichotomy

The CSP dichotomy theorem

For every finite relational structure $\boldsymbol{\mathsf{A}},\,\mathrm{CSP}(\boldsymbol{\mathsf{A}})$ is either in P or NP-complete.

- Conjectured by Feder and Vardi in 1993
- Proved by Bulatov and Zhuk in 2017
- Classification via existence of a "nice" polymorphism
- In general, if $P \neq NP$, then there are infinitely many different complexity classes between (up to P-reductions).
- CSPs are in some sense the "largest natural" class where a dichotomy is possible

Want to know more?

- A Matfyz course on basics of the theory
 - NMAG563 Intro to complexity of the CSP
- A (somewhat, partly) accessible survey article:
 - Polymorphisms and how to use them (L. Barto, A. Krokhin, and R. Willard)
- Talk to me!
 - jakub.bulin@mff.cuni.cz

Appendix: How polymorphisms work

- a relation S ⊆ A^k is pp-definable from A, if it is definable with a (∃, ∧, =)-formula
- equivalently, S is the set of all solutions to some instance of CSP(**A**), with some "auxiliary" variables ignored
- adding S to A doesn't change the complexity of CSP(A)
- key lemma: S is pp-definable, if and only if it is invariant under all polymorphisms of **A**

Corollary

If $\mathsf{Pol}(\mathsf{A}) \subseteq \mathsf{Pol}(\mathsf{B})$, then $\mathrm{CSP}(\mathsf{B})$ reduces to $\mathrm{CSP}(\mathsf{A})$.

Example

- Let CSP(**B**) be NAE-SAT, then Pol(**B**) is the set of all projections and negations of projections.
- If Pol(A) contains only projections or negations of projections, then by Corollary, CSP(B) reduces to CSP(A) which proves that CSP(A) is NP-complete.