
A theoretical look at the CSP

Jakub Buĺın

KTIML MFF UK

Jan 7, 2020

A brief history

• Operations research

• Database theory

• Artificial intelligence

• Computational logic

• Complexity theory

• Combinatorics

• Universal algebra, multivalued logic, category theory

Constraint satisfaction

Constraint Satisfaction Problem (CSP)

Input:

• X – a finite set of variables,

• A – a finite set of values,
• C = {C1, . . . ,Cm} – finitely many constraints Ci = (x̄i ,Ri),

• x̄i is a ki -tuple of variables (“constraint scope”)
• Ri ⊆ Aki (“constraint relation”)

Decide: Is there a solution, i.e. an evaluation ϕ : X → A
satisfying ϕ(x̄i) ∈ Ri for all 1 ≤ i ≤ m?

Example

• X = {x , y , z}, A = {0, 1}, constraints C = {C1,C2,C3}
• C1 = ((x , y),R), C2 = ((y , z),R), C3 = ((z , x),R), where
R = {(0, 1), (1, 0)}

Logical viewpoint

A (finite) relational structure: A = 〈A;RA
1 , . . . ,R

A
n 〉 where

RA
i ⊆ Aki is a ki -ary relation on the set A

“Primitive-positive” fragment of FO model checking

• Input: a {∃,∧,=}-sentence Φ and a finite relational
structure A (in the same language)

• Decide: Does A |= Φ, i.e., is Φ true in A?

Construction: constraint C = (x̄ ,R) becomes a predicate R(x̄),
make a conjunction, quantify everything existentially

Example

• Φ = (∃x)(∃y)(∃z)(R(x , y) ∧ R(y , z) ∧ R(z , x))

• A = 〈{0, 1};RA〉 where RA = {(0, 1), (1, 0)}

Boolean satisfiability

[k-]SAT

• Input: a propositional formula ψ in [k-]CNF

• Decide: Is ψ satisfiable?

Fact: SAT is equivalent to 3-SAT
e.g. x1 ∨ x2 ∨ x3 ∨ ¬x4 (x1 ∨ x2 ∨ ¬u) ∧ (u ∨ x3 ∨ ¬x4) (u new)

3-SAT as a CSP
A = 〈{0, 1}; {RA

ijk | i , j , k ∈ {0, 1}}〉 RA
ijk = {0, 1}3 \ {(i , j , k)}

Example

3-SAT input
ψ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x4 ∨ x5 ∨ ¬x1) ∧ (¬x1 ∨ x4 ∨ ¬x3)

becomes
Φ = (∃x1 . . . x5)(R010(x1, x2, x3)∧R101(x4, x5, x1)∧R101(x1, x4, x3))

Fragments of SAT

2-SAT
• Input: a propositional formula ψ in 2-CNF

e.g. ψ = (x ∨ ¬y) ∧ (y ∨ ¬z) ∧ (¬x ∨ z)

• Decide: Is ψ satisfiable?

• CSP: A = 〈{0, 1};RA
11,R

A
10,R

A
01,R

A
00〉 RA

ij = {0, 1}2 \ {(i , j)}
Φ = (∃x , y , z)(R01(x , y),R01(y , z),R10(x , z))

Horn-[3-]SAT

• Input: a conjunction of Horn clauses [of width 3]

• enough to encode “x ∧ y → z”, “x ∧ y → ¬z”,“¬x”, “x”

• CSP: A = 〈{0, 1};RA
110,R

A
111,C

A
0 ,C

A
1 〉 CA

0 = {0},CA
1 = {1}

ψ = (x ∧ y → z) ∧ (y ∧ z → ¬x) ∧ x ∧ ¬z
Φ = (∃x , y , z)(R110(x , y , z)∧R111(y , z , x)∧C1(x)∧C0(z))

Combinatorial viewpoint

• A digraph (directed graph): G = 〈G ;→G〉 where →G⊆ G × G

• A (simple) graph: →G is symmetric and loopless

• Graph homomorphism: ϕ : G→ H such that for every edge
u → v in G we have ϕ(u)→ ϕ(v) in H, i.e.

(u, v) ∈→G =⇒ (ϕ(u), ϕ(v)) ∈→H

• Relational homomorphism: ϕ : A→ B preserving relations,
i.e. for every R (say k-ary) in the language we have

(a1, . . . , ak) ∈ RA =⇒ (ϕ(a1), . . . , ϕ(ak)) ∈ RB

CSP as a homomorphism problem

Homomorphism problem

• Input: a pair of finite relational structures X,A

• Decide: Is there a homomorphism ϕ : X→ A?

Example (from slide 3)

• X = {x , y , z}, A = {0, 1}, C = {C1,C2,C3}, C1 = ((x , y),R),
C2 = ((y , z),R), C3 = ((z , x),R), where R = {(0, 1), (1, 0)}
• construction of A and X:

• RA’s are all distinct relations on A appearing as constraint
relations in the CSP instance

• collect to RX all tuples of variables that are constraint scopes
with constraint relation RA

• X = 〈{x , y , z};RX〉 where RX = {(x , y), (y , z), (z , x)},
A = 〈{0, 1};RA〉 where RA = {(0, 1), (1, 0)}
(“Is the oriented 3-cycle 2-colorable?”)

Graph homomorphism & coloring problems

Graph homomorphism

• Input: a pair of (simple) graphs G,H

• Decide: Is there a graph homomorphism ϕ : G→ H?

Note that every CSP can be encoded as a digraph homomorphism
problem, but not (simple) graph homomorphism.

Graph coloring

• Input: a graph G and c > 0

• Decide: Is G colorable with c colors?

(A special case of graph homomorphism where H = Kc.)

Recap

• Every CSP instance can be equivalently viewed as

• validity of a primitive positive (∃,∧,=) sentence in a finite
relational structure,

• the homomorphism problem for a pair of structures.

• Different viewpoints sometimes bring better insight and tools.

• Many classical computational problems are CSPs.

Computational complexity: P vs. NP

• Decision problem: for every instance answer YES or NO

• A problem is in P: “can be solved efficiently” —
polynomial-time algorithm (linear, n log n, quadratic,. . .)

• NP problem: “correctness of a given solution can be verified
efficiently” — an oracle provides an answer with proof, we can
verify by a polynomial-time algorithm

• Reduction [polynomial-time]: transform [in polynomial time]
instances of one problem to instances of another problem,
preserving the answer
• NP-complete problem: is in NP and every NP problem reduces

to it in polynomial time
• e.g. 3-SAT, graph 3-coloring
• known algorithms are exponential-time (worst-case complexity)
• The P vs. NP problem: P algorithm for NP-complete problems?

Complexity classification of CSPs?

Fact: CSP is NP-complete

• In NP: to verify if ϕ : X → A is a solution, check for every
constraint C = (x̄ ,R) whether ϕ(x̄) ∈ R

• NP-complete: contains (has a reduction from) 3-SAT

Easier subproblems? Restrict possible CSP inputs (X,A):

• if X is fixed, then CSP(X,−) is solvable in polynomial time

• if X’s are (relational) trees, then the CSP is in P

• also true if X’s have treewidth k – dynamic programming
(“looks like a tree from far away”)

Theorem (Grohe 2007)

CSP(C,−) is in P, if and only if C is a class of structures with
bounded treewidth.1

1up to “hom. equivalence”, under reasonable complexity theory assumptions

Fixing the template

• It is natural to restrict admissible constraint relations.

• Combinatorial view: fix the structure A (“template”)

• Database theory: evaluate varying input queries X
over a fixed database A.

CSP(A)

• Input: a relational structure X

• Decide: Is there a homomorphism ϕ : X→ A?

Examples

• graph 3-coloring is CSP(K3)

• 3-SAT, 2-SAT, Horn-SAT are of this form too

“What properties of A make CSP(A) easy vs. hard?”

Polymorphisms

A polymorphism of A:

• a function f : An → A preserving all the constraint relations,
i.e. for each RA and ai ∈ RA, f (a1, . . . , an) ∈ RA

f (a1 a2 . . . an) = a
↓ ↓ ↓ =⇒ ↓

f (b1 b2 . . . bn) = b

• a multivariate homomorphism f : An → A

• a “high-dimensional symmetry” of solution spaces of CSP(A)
instances, can be used in algorithms to combine [partial]
solutions to obtain “nicer” solutions

• Pol(A): the set of all polymorphisms of A, closed under
composition, contains projections f (x1, . . . , xn) = xi

“More symmetric problems are easier.”

Hard Boolean CSPs

3-SAT: A = 〈{0, 1}; {RA
ijk | i , j , k ∈ {0, 1}}〉

• Pol(A): only projections

1in3-SAT: A = 〈{0, 1}; {(1, 0, 0), (0, 1, 0), (0, 0, 1)}〉
• Input: a list of triples of Boolean variables

• Goal: evaluate so that in each triple exactly 1 variable is true

• Pol(A): only projections

NAE-SAT: A = 〈{0, 1}; {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}〉
• Input: a list of triples of Boolean variables

• Goal: evaluate so that in each triple at least 1 variable is true
and at least 1 is false

• Pol(A):projections and their negations

Easy Boolean CSPs

HORN-SAT: A = 〈{0, 1};RA
110,R

A
111, {0}, {1}〉

• unit propagation algorithm (essentially arc consistency)

• Pol(A): conjunctive functions, e.g. min(x , y)

2-SAT: A = 〈{0, 1};RA
11,R

A
10,R

A
01,R

A
00〉

• propagate values via edges in search of a failure

• Pol(A): monotone functions, e.g. majority(x , y , z)

PATH (digraph [un-]reachability): A = 〈{0, 1}; x ≤ y , {0}, {1}〉
• given a digraph and vertices s, t, answer YES if there is no

directed path from s to t

• Pol(A): same as 2-SAT, e.g. majority(x , y , z)

UPATH (graph [un-]reachability): A = 〈{0, 1}; x = y , {0}, {1}〉
• given a (simple) graph and two vertices, YES if not connected

• Pol(A): f (x , x , . . . , x) = x , e.g. min(x , y), majority(x , y , z)

Arc Consistency (a very high-level view)

• For every variable x ∈ X keep a list of possible values Px ⊆ A

• Initialize: Px := A

• Update: For every constraint C = (x̄ ,R) and every i ,

Pxi := Pxi ∩ projxiR

R := R ∩ (Px1 × · · · × Pxn)

• Repeat until no change

• The instance is arc consistent, if all Px are nonempty.

• A solution ⇒ arc consistent. (“⇐” not true in general.)

Theorem
If Pol(A) contains min(x , y), then every arc consistent instance of
CSP(A) has a solution (⇒ CSP(A) is in P).

Proof. Define ϕ(x) := min({a ∈ Px}). [blackboard picture]

Local Consistency

• For all x , y ∈ X compute admissible Px ⊆ A, Pxy ⊆ A× A
• Initialize: Px := A, Pxy := A× A. Enforce the following:

• for every C = (x̄ ,R) or ((x , y),Pxy) and every x , y ∈ x̄ ,
Px = projxR, Pxy = projxyR

• for every x , y , z ∈ X and (a, b) ∈ Px,y there is c ∈ Pz such
that (a, c) ∈ Px,z and (b, c) ∈ Py ,z

“Any partial solution on 2 var’s extends to any 3rd variable.”

• The instance is (2,3)-consistent, if all Px are nonempty.

• A solution ⇒ (2,3)-consistent. (“⇐” not true in general.)

Theorem
If Pol(A) contains majority(x , y , z), then every (2,3)-consistent
instance of CSP(A) has a solution (⇒ CSP(A) is in P).

Proof? Every partial solution on 3 var’s extends to any 4th var.
[blackboard picture]

Linear systems

LINEQ(Z2)

• Input: a system of linear equations Σ over Z2

• Decide: Is Σ consistent?

• Fact: Σ can be expressed using only x + y = z , x = 0, x = 1.
For example, x1 + x2 + x3 = 1 becomes

x1 + x2 = u

u + x3 = v

v = 1

• CSP(A) where A = 〈{0, 1}; x + y = z , {0}, {1}〉
• Gaussian elimination (computing rank of a Boolean matrix)

• Pol(A): affine functions, e.g. x + y + z (mod 2)

• (Note: Local consistency is no guarantee of a solution.)

Schaefer’s dichotomy theorem

Theorem (Post 1941)

Let F be a set of Boolean functions closed under composition and
containing all projections. Then either

0 F only consists of projections or their negations,

or F contains one of the following “nice” functions:

1 a constant function (always output 0 or always output 1),

2 min(x , y) or max(x , y),

3 majority(x , y , z),

4 x + y + z (mod 2).

Corollary (Schaefer’s dichotomy theorem 1978)

Every Boolean CSP(A) is either in P or NP-complete.

Proof of Schaefer’s dichotomy theorem

0 If Pol(A) only consists of projections or their negations, then
CSP(A) encodes NAE-SAT and thus is NP-complete.
(see the Appendix for proof)

Else, Pol(A) contains one of the “nice” functions:

1 const0 ⇒ every (nonempty) RA contains the tuple (0, . . . , 0)
⇒ every instance is a YES instance

2 min(x , y) ⇒ CSP(A) is solvable by arc consistency

3 majority(x , y , z) ⇒ CSP(A) is solvable by (2,3)-consistency

4 x + y + z (mod 2) ⇒ every RA is an affine subspace
⇒ every CSP instance is a system of linear equations over Z2

⇒ CSP(A) is solvable by Gaussian elimination

Graph homomorphism problem

Let H be a (simple) graph.

Graph homomorphism

• Input: a (simple) graph G

• Decide: Is there a graph homomorphism ϕ : G→ H?

Theorem (Hell, Nešeťril 1990)

If H is bipartite, then CSP(H) is in P. Otherwise, CSP(H) is
NP-complete.

• H is bipartite with at least one edge ⇔ homomorphically
equivalent to K2, so CSP(H) has the same YES/NO
instances as graph 2-coloring.

• non-bipartite ⇔ contains a cycle of odd length

• graph 2-coloring is in P, c-coloring for c ≥ 3 is NP-complete

The CSP dichotomy

The CSP dichotomy theorem

For every finite relational structure A, CSP(A) is either in P or
NP-complete.

• Conjectured by Feder and Vardi in 1993

• Proved by Bulatov and Zhuk in 2017

• Classification via existence of a “nice” polymorphism

• In general, if P 6= NP, then there are infinitely many different
complexity classes between (up to P-reductions).

• CSPs are in some sense the “largest natural” class where a
dichotomy is possible

Want to know more?

• A Matfyz course on basics of the theory

- NMAG563 Intro to complexity of the CSP

• A (somewhat, partly) accessible survey article:

- Polymorphisms and how to use them

(L. Barto, A. Krokhin, and R. Willard)

• Talk to me!

- jakub.bulin@mff.cuni.cz

https://is.cuni.cz/studium/eng/predmety/index.php?do=predmet&kod=NMAG563
https://drops.dagstuhl.de/opus/volltexte/2017/6959/pdf/DFU-Vol7-15301-1.pdf
https://drops.dagstuhl.de/opus/volltexte/2017/6959/pdf/DFU-Vol7-15301-1.pdf
mailto:jakub.bulin@mff.cuni.cz

Appendix: How polymorphisms work

• a relation S ⊆ Ak is pp-definable from A, if it is definable
with a (∃,∧,=)-formula
• equivalently, S is the set of all solutions to some instance of

CSP(A), with some “auxiliary” variables ignored
• adding S to A doesn’t change the complexity of CSP(A)
• key lemma: S is pp-definable, if and only if it is invariant

under all polymorphisms of A

Corollary

If Pol(A) ⊆ Pol(B), then CSP(B) reduces to CSP(A).

Example

• Let CSP(B) be NAE-SAT, then Pol(B) is the set of all
projections and negations of projections.

• If Pol(A) contains only projections or negations of projections,
then by Corollary, CSP(B) reduces to CSP(A) which proves
that CSP(A) is NP-complete.

