A theoretical look at the CSP

Jakub Bulín
KTIML MFF UK
Jan 7, 2020

A brief history

- Operations research
- Database theory
- Artificial intelligence
- Computational logic
- Complexity theory
- Combinatorics
- Universal algebra, multivalued logic, category theory

Constraint satisfaction

Constraint Satisfaction Problem (CSP)

Input:

- X - a finite set of variables,
- A - a finite set of values,
- $\mathcal{C}=\left\{C_{1}, \ldots, C_{m}\right\}$ - finitely many constraints $C_{i}=\left(\bar{x}_{i}, R_{i}\right)$,
- \bar{x}_{i} is a k_{i}-tuple of variables ("constraint scope")
- $R_{i} \subseteq A^{k_{i}}$ ("constraint relation")

Decide: Is there a solution, i.e. an evaluation $\varphi: X \rightarrow A$ satisfying $\varphi\left(\bar{x}_{i}\right) \in R_{i}$ for all $1 \leq i \leq m$?

Example

- $X=\{x, y, z\}, A=\{0,1\}$, constraints $\mathcal{C}=\left\{C_{1}, C_{2}, C_{3}\right\}$
- $C_{1}=((x, y), R), C_{2}=((y, z), R), C_{3}=((z, x), R)$, where $R=\{(0,1),(1,0)\}$

Logical viewpoint

A (finite) relational structure: $\mathbf{A}=\left\langle A ; R_{1}^{\mathbf{A}}, \ldots, R_{n}^{\mathbf{A}}\right\rangle$ where $R_{i}^{\mathbf{A}} \subseteq A^{k_{i}}$ is a k_{i}-ary relation on the set A
"Primitive-positive" fragment of FO model checking

- Input: a $\{\exists, \wedge,=\}$-sentence Φ and a finite relational structure \mathbf{A} (in the same language)
- Decide: Does $\mathbf{A} \models \Phi$, i.e., is Φ true in \mathbf{A} ?

Construction: constraint $C=(\bar{x}, R)$ becomes a predicate $R(\bar{x})$, make a conjunction, quantify everything existentially

Example

- $\Phi=(\exists x)(\exists y)(\exists z)(R(x, y) \wedge R(y, z) \wedge R(z, x))$
- $\mathbf{A}=\left\langle\{0,1\} ; R^{\mathbf{A}}\right\rangle$ where $R^{\mathbf{A}}=\{(0,1),(1,0)\}$

Boolean satisfiability

[k-]SAT

- Input: a propositional formula ψ in [k-]CNF
- Decide: Is ψ satisfiable?

Fact: SAT is equivalent to 3-SAT
e.g. $x_{1} \vee x_{2} \vee x_{3} \vee \neg x_{4} \rightsquigarrow\left(x_{1} \vee x_{2} \vee \neg u\right) \wedge\left(u \vee x_{3} \vee \neg x_{4}\right) \quad(u$ new $)$

3-SAT as a CSP
$\mathbf{A}=\left\langle\{0,1\} ;\left\{R_{i j k}^{\mathbf{A}} \mid i, j, k \in\{0,1\}\right\}\right\rangle \quad R_{i j k}^{\mathbf{A}}=\{0,1\}^{3} \backslash\{(i, j, k)\}$
Example
3-SAT input
$\psi=\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{4} \vee x_{5} \vee \neg x_{1}\right) \wedge\left(\neg x_{1} \vee x_{4} \vee \neg x_{3}\right)$
becomes

$$
\Phi=\left(\exists x_{1} \ldots x_{5}\right)\left(R_{010}\left(x_{1}, x_{2}, x_{3}\right) \wedge R_{101}\left(x_{4}, x_{5}, x_{1}\right) \wedge R_{101}\left(x_{1}, x_{4}, x_{3}\right)\right)
$$

Fragments of SAT

2-SAT

- Input: a propositional formula ψ in 2-CNF

$$
\text { e.g. } \psi=(x \vee \neg y) \wedge(y \vee \neg z) \wedge(\neg x \vee z)
$$

- Decide: Is ψ satisfiable?
- CSP: $\mathbf{A}=\left\langle\{0,1\} ; R_{11}^{\mathbf{A}}, R_{10}^{\mathbf{A}}, R_{01}^{\mathbf{A}}, R_{00}^{\mathbf{A}}\right\rangle \quad R_{i j}^{\mathbf{A}}=\{0,1\}^{2} \backslash\{(i, j)\}$

$$
\Phi=(\exists x, y, z)\left(R_{01}(x, y), R_{01}(y, z), R_{10}(x, z)\right)
$$

Horn-[3-]SAT

- Input: a conjunction of Horn clauses [of width 3]
- enough to encode " $x \wedge y \rightarrow z$ ", " $x \wedge y \rightarrow \neg z$ ", " $\neg x$ ", " x "
- CSP: $\mathbf{A}=\left\langle\{0,1\} ; R_{110}^{\mathbf{A}}, R_{111}^{\mathbf{A}}, C_{0}^{\mathbf{A}}, C_{1}^{\mathbf{A}}\right\rangle \quad C_{0}^{\mathbf{A}}=\{0\}, C_{1}^{\mathbf{A}}=\{1\}$

$$
\begin{aligned}
& \psi=(x \wedge y \rightarrow z) \wedge(y \wedge z \rightarrow \neg x) \wedge x \wedge \neg z \\
& \Phi=(\exists x, y, z)\left(R_{110}(x, y, z) \wedge R_{111}(y, z, x) \wedge C_{1}(x) \wedge C_{0}(z)\right)
\end{aligned}
$$

Combinatorial viewpoint

- A digraph (directed graph): $\mathbf{G}=\left\langle G ; \rightarrow^{\mathbf{G}}\right\rangle$ where $\rightarrow{ }^{\mathbf{G}} \subseteq G \times G$
- A (simple) graph: $\rightarrow^{\mathbf{G}}$ is symmetric and loopless
- Graph homomorphism: $\varphi: \mathbf{G} \rightarrow \mathbf{H}$ such that for every edge $u \rightarrow v$ in \mathbf{G} we have $\varphi(u) \rightarrow \varphi(v)$ in \mathbf{H}, i.e.

$$
(u, v) \in \rightarrow^{\mathbf{G}} \quad \Longrightarrow \quad(\varphi(u), \varphi(v)) \in \rightarrow^{\mathbf{H}}
$$

- Relational homomorphism: $\varphi: \mathbf{A} \rightarrow \mathbf{B}$ preserving relations, i.e. for every R (say k-ary) in the language we have

$$
\left(a_{1}, \ldots, a_{k}\right) \in R^{\mathbf{A}} \quad \Longrightarrow \quad\left(\varphi\left(a_{1}\right), \ldots, \varphi\left(a_{k}\right)\right) \in R^{\mathbf{B}}
$$

CSP as a homomorphism problem

Homomorphism problem

- Input: a pair of finite relational structures \mathbf{X}, \mathbf{A}
- Decide: Is there a homomorphism $\varphi: \mathbf{X} \rightarrow \mathbf{A}$?

Example (from slide 3)

- $X=\{x, y, z\}, A=\{0,1\}, \mathcal{C}=\left\{C_{1}, C_{2}, C_{3}\right\}, C_{1}=((x, y), R)$, $C_{2}=((y, z), R), C_{3}=((z, x), R)$, where $R=\{(0,1),(1,0)\}$
- construction of \mathbf{A} and \mathbf{X} :
- $R^{\mathbf{A}}$'s are all distinct relations on A appearing as constraint relations in the CSP instance
- collect to $R^{\mathbf{X}}$ all tuples of variables that are constraint scopes with constraint relation $R^{\mathbf{A}}$
- $\mathbf{X}=\left\langle\{x, y, z\} ; R^{\mathbf{X}}\right\rangle$ where $R^{\mathbf{X}}=\{(x, y),(y, z),(z, x)\}$, $\mathbf{A}=\left\langle\{0,1\} ; R^{\mathbf{A}}\right\rangle$ where $R^{\mathbf{A}}=\{(0,1),(1,0)\}$
("Is the oriented 3-cycle 2-colorable?")

Graph homomorphism \& coloring problems

Graph homomorphism

- Input: a pair of (simple) graphs G, H
- Decide: Is there a graph homomorphism $\varphi: \mathbf{G} \rightarrow \mathbf{H}$?

Note that every CSP can be encoded as a digraph homomorphism problem, but not (simple) graph homomorphism.

Graph coloring

- Input: a graph G and $c>0$
- Decide: Is G colorable with c colors?
(A special case of graph homomorphism where $\mathbf{H}=\mathbf{K}_{\mathbf{c}}$.)
- Every CSP instance can be equivalently viewed as
- validity of a primitive positive $(\exists, \wedge,=)$ sentence in a finite relational structure,
- the homomorphism problem for a pair of structures.
- Different viewpoints sometimes bring better insight and tools.
- Many classical computational problems are CSPs.

Computational complexity: P vs. NP

- Decision problem: for every instance answer YES or NO
- A problem is in P: "can be solved efficiently" -polynomial-time algorithm (linear, $n \log n$, quadratic,...)
- NP problem: "correctness of a given solution can be verified efficiently" - an oracle provides an answer with proof, we can verify by a polynomial-time algorithm
- Reduction [polynomial-time]: transform [in polynomial time] instances of one problem to instances of another problem, preserving the answer
- NP-complete problem: is in NP and every NP problem reduces to it in polynomial time
- e.g. 3-SAT, graph 3-coloring
- known algorithms are exponential-time (worst-case complexity)
- The P vs. NP problem: P algorithm for NP-complete problems?

Complexity classification of CSPs?

Fact: CSP is NP-complete

- In NP: to verify if $\varphi: X \rightarrow A$ is a solution, check for every constraint $C=(\bar{x}, R)$ whether $\varphi(\bar{x}) \in R$
- NP-complete: contains (has a reduction from) 3-SAT

Easier subproblems? Restrict possible CSP inputs (\mathbf{X}, \mathbf{A}):

- if \mathbf{X} is fixed, then $\operatorname{CSP}(\mathbf{X},-)$ is solvable in polynomial time
- if \mathbf{X} 's are (relational) trees, then the CSP is in P
- also true if \mathbf{X} 's have treewidth k - dynamic programming ("looks like a tree from far away")

Theorem (Grohe 2007)
$\operatorname{CSP}(\mathcal{C},-)$ is in P , if and only if \mathcal{C} is a class of structures with bounded treewidth. ${ }^{1}$

[^0]
Fixing the template

- It is natural to restrict admissible constraint relations.
- Combinatorial view: fix the structure \mathbf{A} ("template")
- Database theory: evaluate varying input queries \mathbf{X} over a fixed database \mathbf{A}.
$\operatorname{CSP}(\mathbf{A})$
- Input: a relational structure \mathbf{X}
- Decide: Is there a homomorphism $\varphi: \mathbf{X} \rightarrow \mathbf{A}$?

Examples

- graph 3-coloring is $\operatorname{CSP}\left(\mathbf{K}_{\mathbf{3}}\right)$
- 3-SAT, 2-SAT, Horn-SAT are of this form too
"What properties of \mathbf{A} make $\operatorname{CSP}(\mathbf{A})$ easy vs. hard?"

Polymorphisms

A polymorphism of \mathbf{A} :

- a function $f: A^{n} \rightarrow A$ preserving all the constraint relations, i.e. for each $R^{\mathbf{A}}$ and $\mathbf{a}^{\mathbf{i}} \in R^{\mathbf{A}}, f\left(\mathbf{a}^{\mathbf{1}}, \ldots, \mathbf{a}^{\mathbf{n}}\right) \in R^{\mathbf{A}}$
$\left.\begin{array}{cccccc}f\left(\begin{array}{cccc}a_{1} & a_{2} & \ldots & a_{n}\end{array}\right) & =a \\ \downarrow & \downarrow & & \downarrow & \Longrightarrow & \downarrow \\ f\left(b_{1}\right. & b_{2} & \ldots & b_{n}\end{array}\right)=b$
- a multivariate homomorphism $f: \mathbf{A}^{n} \rightarrow \mathbf{A}$
- a "high-dimensional symmetry" of solution spaces of $\operatorname{CSP}(\mathbf{A})$ instances, can be used in algorithms to combine [partial] solutions to obtain "nicer" solutions
- $\operatorname{Pol}(\mathbf{A})$: the set of all polymorphisms of \mathbf{A}, closed under composition, contains projections $f\left(x_{1}, \ldots, x_{n}\right)=x_{i}$
"More symmetric problems are easier."

Hard Boolean CSPs

3-SAT: $\quad \mathbf{A}=\left\langle\{0,1\} ;\left\{R_{i j k}^{\mathbf{A}} \mid i, j, k \in\{0,1\}\right\}\right\rangle$

- $\operatorname{Pol}(\mathbf{A})$: only projections

1in3-SAT: $\mathbf{A}=\langle\{0,1\} ;\{(1,0,0),(0,1,0),(0,0,1)\}\rangle$

- Input: a list of triples of Boolean variables
- Goal: evaluate so that in each triple exactly 1 variable is true
- $\operatorname{Pol}(\mathbf{A})$: only projections

NAE-SAT: $\quad \mathbf{A}=\left\langle\{0,1\} ;\{0,1\}^{3} \backslash\{(0,0,0),(1,1,1)\}\right\rangle$

- Input: a list of triples of Boolean variables
- Goal: evaluate so that in each triple at least 1 variable is true and at least 1 is false
- $\operatorname{Pol}(\mathbf{A}):$ projections and their negations

Easy Boolean CSPs

HORN-SAT: $\mathbf{A}=\left\langle\{0,1\} ; R_{110}^{\mathbf{A}}, R_{111}^{\mathbf{A}},\{0\},\{1\}\right\rangle$

- unit propagation algorithm (essentially arc consistency)
- $\operatorname{Pol}(\mathbf{A}):$ conjunctive functions, e.g. $\min (x, y)$

2-SAT: $\quad \mathbf{A}=\left\langle\{0,1\} ; R_{11}^{\mathbf{A}}, R_{10}^{\mathbf{A}}, R_{01}^{\mathbf{A}}, R_{00}^{\mathbf{A}}\right\rangle$

- propagate values via edges in search of a failure
- $\operatorname{Pol}(\mathbf{A}):$ monotone functions, e.g. majority (x, y, z)

PATH (digraph [un-]reachability): $\mathbf{A}=\langle\{0,1\} ; x \leq y,\{0\},\{1\}\rangle$

- given a digraph and vertices s, t, answer YES if there is no directed path from s to t
- $\operatorname{Pol}(\mathbf{A}):$ same as 2-SAT, e.g. majority (x, y, z)

UPATH (graph [un-]reachability): $\mathbf{A}=\langle\{0,1\} ; x=y,\{0\},\{1\}\rangle$

- given a (simple) graph and two vertices, YES if not connected
- $\operatorname{Pol}(\mathbf{A}): f(x, x, \ldots, x)=x$, e.g. $\min (x, y)$, majority (x, y, z)

Arc Consistency (a very high-level view)

- For every variable $x \in X$ keep a list of possible values $P_{x} \subseteq A$
- Initialize: $P_{x}:=A$
- Update: For every constraint $C=(\bar{x}, R)$ and every i,

$$
\begin{aligned}
& P_{x_{i}}:=P_{x_{i}} \cap \operatorname{proj}_{x_{i}} R \\
& R:=R \cap\left(P_{x_{1}} \times \cdots \times P_{x_{n}}\right)
\end{aligned}
$$

- Repeat until no change
- The instance is arc consistent, if all P_{x} are nonempty.
- A solution \Rightarrow arc consistent. (" \Leftarrow " not true in general.)

Theorem
If $\operatorname{Pol}(\mathbf{A})$ contains $\min (x, y)$, then every arc consistent instance of $\operatorname{CSP}(\mathbf{A})$ has a solution $(\Rightarrow \operatorname{CSP}(\mathbf{A})$ is in P$)$.
Proof. Define $\varphi(x):=\min \left(\left\{a \in P_{x}\right\}\right)$. [blackboard picture]

Local Consistency

- For all $x, y \in X$ compute admissible $P_{x} \subseteq A, P_{x y} \subseteq A \times A$
- Initialize: $P_{x}:=A, P_{x y}:=A \times A$. Enforce the following:
- for every $C=(\bar{x}, R)$ or $\left((x, y), P_{x y}\right)$ and every $x, y \in \bar{x}$, $P_{x}=\operatorname{proj}_{x} R, P_{x y}=\operatorname{proj}_{x y} R$
- for every $x, y, z \in X$ and $(a, b) \in P_{x, y}$ there is $c \in P_{z}$ such that $(a, c) \in P_{x, z}$ and $(b, c) \in P_{y, z}$
"Any partial solution on 2 var's extends to any 3rd variable."
- The instance is $(2,3)$-consistent, if all P_{x} are nonempty.
- A solution $\Rightarrow(2,3)$-consistent. (" \Leftarrow " not true in general.)

Theorem
If $\operatorname{Pol}(\mathbf{A})$ contains majority (x, y, z), then every (2,3)-consistent instance of $\operatorname{CSP}(\mathbf{A})$ has a solution $(\Rightarrow \operatorname{CSP}(\mathbf{A})$ is in P$)$.
Proof? Every partial solution on 3 var's extends to any 4 th var. [blackboard picture]

Linear systems

$\operatorname{LINEQ}\left(\mathbb{Z}_{2}\right)$

- Input: a system of linear equations Σ over \mathbb{Z}_{2}
- Decide: Is Σ consistent?
- Fact: Σ can be expressed using only $x+y=z, x=0, x=1$. For example, $x_{1}+x_{2}+x_{3}=1$ becomes

$$
\begin{aligned}
x_{1}+x_{2} & =u \\
u+x_{3} & =v \\
v & =1
\end{aligned}
$$

- $\operatorname{CSP}(\mathbf{A})$ where $\mathbf{A}=\langle\{0,1\} ; x+y=z,\{0\},\{1\}\rangle$
- Gaussian elimination (computing rank of a Boolean matrix)
- $\operatorname{Pol}(\mathbf{A}):$ affine functions, e.g. $x+y+z(\bmod 2)$
- (Note: Local consistency is no guarantee of a solution.)

Schaefer's dichotomy theorem

Theorem (Post 1941)

Let \mathcal{F} be a set of Boolean functions closed under composition and containing all projections. Then either
$0 \mathcal{F}$ only consists of projections or their negations, or \mathcal{F} contains one of the following "nice" functions:
(1) a constant function (always output 0 or always output 1),
(2) $\min (x, y)$ or $\max (x, y)$,

3 majority (x, y, z),
(4) $x+y+z(\bmod 2)$.

Corollary (Schaefer's dichotomy theorem 1978)
Every Boolean CSP(A) is either in P or NP-complete.

Proof of Schaefer's dichotomy theorem

0 If $\operatorname{Pol}(\mathbf{A})$ only consists of projections or their negations, then $\operatorname{CSP}(\mathbf{A})$ encodes NAE-SAT and thus is NP-complete. (see the Appendix for proof)

Else, $\operatorname{Pol}(\mathbf{A})$ contains one of the "nice" functions:
(1) const $_{0} \Rightarrow$ every (nonempty) $R^{\mathbf{A}}$ contains the tuple ($0, \ldots, 0$) \Rightarrow every instance is a YES instance
(2) $\min (x, y) \Rightarrow \operatorname{CSP}(\mathbf{A})$ is solvable by arc consistency
(3) majority $(x, y, z) \Rightarrow \operatorname{CSP}(\mathbf{A})$ is solvable by (2,3)-consistency
$4 x+y+z(\bmod 2) \Rightarrow$ every $R^{\mathbf{A}}$ is an affine subspace \Rightarrow every CSP instance is a system of linear equations over \mathbb{Z}_{2}
$\Rightarrow \operatorname{CSP}(\mathbf{A})$ is solvable by Gaussian elimination

Graph homomorphism problem

Let \mathbf{H} be a (simple) graph.

Graph homomorphism

- Input: a (simple) graph G
- Decide: Is there a graph homomorphism $\varphi: \mathbf{G} \rightarrow \mathbf{H}$?

Theorem (Hell, Nešetřil 1990)
If \mathbf{H} is bipartite, then $\operatorname{CSP}(\mathbf{H})$ is in P . Otherwise, $\operatorname{CSP}(\mathbf{H})$ is NP-complete.

- \mathbf{H} is bipartite with at least one edge \Leftrightarrow homomorphically equivalent to \mathbf{K}_{2}, so $\operatorname{CSP}(\mathbf{H})$ has the same YES/NO instances as graph 2-coloring.
- non-bipartite \Leftrightarrow contains a cycle of odd length
- graph 2-coloring is in P, c-coloring for $c \geq 3$ is NP-complete

The CSP dichotomy

The CSP dichotomy theorem

For every finite relational structure $\mathbf{A}, \operatorname{CSP}(\mathbf{A})$ is either in P or NP-complete.

- Conjectured by Feder and Vardi in 1993
- Proved by Bulatov and Zhuk in 2017
- Classification via existence of a "nice" polymorphism
- In general, if $\mathrm{P} \neq \mathrm{NP}$, then there are infinitely many different complexity classes between (up to P-reductions).
- CSPs are in some sense the "largest natural" class where a dichotomy is possible

Want to know more?

- A Matfyz course on basics of the theory
- NMAG563 Intro to complexity of the CSP
- A (somewhat, partly) accessible survey article:
- Polymorphisms and how to use them (L. Barto, A. Krokhin, and R. Willard)
- Talk to me!
- jakub.bulin@mff.cuni.cz

Appendix: How polymorphisms work

- a relation $S \subseteq A^{k}$ is pp-definable from \mathbf{A}, if it is definable with a $(\exists, \wedge,=)$-formula
- equivalently, S is the set of all solutions to some instance of $\operatorname{CSP}(\mathbf{A})$, with some "auxiliary" variables ignored
- adding S to \mathbf{A} doesn't change the complexity of $\operatorname{CSP}(\mathbf{A})$
- key lemma: S is pp-definable, if and only if it is invariant under all polymorphisms of \mathbf{A}

Corollary
If $\operatorname{Pol}(\mathbf{A}) \subseteq \operatorname{Pol}(\mathbf{B})$, then $\operatorname{CSP}(\mathbf{B})$ reduces to $\operatorname{CSP}(\mathbf{A})$.

Example

- Let $\operatorname{CSP}(\mathbf{B})$ be NAE-SAT, then $\operatorname{Pol}(\mathbf{B})$ is the set of all projections and negations of projections.
- If $\operatorname{Pol}(\mathbf{A})$ contains only projections or negations of projections, then by Corollary, $\operatorname{CSP}(\mathbf{B})$ reduces to $\operatorname{CSP}(\mathbf{A})$ which proves that $\operatorname{CSP}(\mathbf{A})$ is NP-complete.

[^0]: ${ }^{1}$ up to "hom. equivalence", under reasonable complexity theory assumptions

