Automated Planning
A Logical Perspective
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Initial state

Situation calculus
— planning in first-order logic

Classical planning
— ad-hoc planning in simplified first-order logic

Control rules
— help from simple temporal logic

Planning as tabled logic programming
— fast and simple approach to planning



Situation Calculus

How to reason about actions and their effects in time?

In propositional logic we need a copy of each action for
each time (situation):
— LY, A FacingRight' A Forward" = L*!,,, |

— We need an upper bound for the number of steps to reach a
goal but this will lead to a huge number of formulas.

Can we do it better in first-order logic?

— We do not need copies of axioms describing state changes;
this can be implemented using a universal quantifier for time
(situation)

— Vt Pis the result of action A in time t+1




* actions are represented by terms

- GO(X,V)
— Grab(g)
— Release(g)

situation is also a term

— initial situation: S '
— situation after applying action a to state s: Result(a,s)

fluent is a predicates changing with time

— the situation is in the last argument of that term

— Holding(G, S,)

— Gold(G)
— Adjacent(x,y)

We need to reason about sequences of actions —about

plans.
— Result([],s) = s

rigid (eternal) predicates

— Result([a|seq],s) = Result(seq, Result(a,s))

What are typical tasks related to plans?

— projection task — what is the state/situation after applying a
given sequence of actions?

* At(Agent, [1,1], S,) A At(G, [1,2], S,) A =Holding(o, S)
* At(G, [1,1], Result([Go([1,1],[1,2]),Grab(G),Go([1,2],[1,1])], S,))

— planning task — which sequence of actions reaches a given

state/situation?

» dseq At(G, [1,1], Result(seq, S,))
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Each action can be described using two axioms:

— possibility axiom: Preconditions = Poss(a,s)
* At(Agent,x,s) A Adjacent(x,y) = Poss(Go(x,y),s)
* Gold(g) A At(Agent,x,s) A At(g,x,s) = Poss(Grab(g),s)
* Holding(g,s) = Poss(Release(g),s)

— effect axiom: Poss(a,s) = Changes
* Poss(Go(x,y),s) = At(Agent,y,Result(Go(x,y),s))
* Poss(Grab(g),s) = Holding(g,Result(Grab(g),s))
* Poss(Release(g),s) = —Holding(g,Result(Release(g),s))

Beware! This is not enough to deduce that a plan reaches a given
goal.

We can deduce At(Agent, [1,2], Result(Go([1,1],[1,2]), S,))
but we cannot deduce At(G, [1,2], Result(Go([1,1],[1,2]), S,))

Effect axioms describe what has been changed in the world but they
say nothing about the property that everything else is not changed!

This is a so called frame problem.

We need to represent properties that are not
changed by actions.

A simple frame axiom says what is not changed:
At(o,x,s) A o=Agent A —Holding(o,s) =
At(o,x,Result(Gol(y,z),s))
— for F fluents and A actions we need O(FA) frame
axioms

— This is a lot especially taking in account that most
predicates are not changed.



Can we use less axioms to model the frame problem?

* successor-state axiom

Poss(a,s) =
(fluent holds in Result(a,s) <
fluent is effect of a v (fluent holds in s A a does not change fluent))

We get F axioms (F is the number of fluents) with O(AE) literals in
total (A is the number of actions, E is the number of effects).

Examples:
Poss(a,s) =
(At(Agent,y,Result(a,s)) < a=Go(x,y) v (At(Agent,y,s) A a=Go(y,z)))

Poss(a,s) =
(Holding(g,Result(a,s)) < a=Grab(g) v (Holding(g,s) A a=Release(g)))



Classical Planning

natural language processing

planning

machine learning
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We can simplify the full FOL model into a so called classical
representation of planning problems.

State is a set of instantiated atoms (no variables). There is a
finite number of states!

— The truth value of some atoms
is changing in states:

cranel ﬂuents
L ()
C3 (= 1,
a1 P2 @ﬁ * example: at(r1,loc2)
pl O [0} .
— The truth value of some state is
locl loc2

the same in all states

{attached(p1,locl), in(cl,pl), in(c3,pl), . .
top(c3,pl), on(c3,cl), on(cl,pallet), attached(p2,locl), in(c2,p2), top(c2,p2), ¢ rlgld atoms
on(c2,pallet), belong(cranel,locl), empty(cranel), adjacent(locl,loc2), adja- R example'

cent(loc2,locl), at(rl,loc2), occupied(loc2), unloaded(rl)}.
adjacent(loc1,loc2)

We will use a classical closed world assumption.
An atom that is not included in the state does not hold at that state!

operator o is a triple (name(o), precond(o), effects(o))
— name(o): name of the operator in the form n(x,...,x,)

* n:asymbol of the operator (a unique name for each operator)
* Xy,...X,: symbols for variables (operator parameters)
— Must contain all variables appearing in the operator definition!
— precond(o):
* literals that must hold in the state so the operator is applicable on it
— effects(o):

* literals that will become true after operator application (only fluents
can be there!)

take(k,l, c,d,p)
;; crane k at location [ takes ¢ off of d in pile p
precond: belong(k,1), attached(p,1),empty(k), top(c, p),on(c,d)
effects:  holding(k, ¢), —empty(k), = in(ec,p), ~top(e, p), mon(e, d), top(d, p)




An action is a fully instantiated operator
— substitute constants to variables

cranel
A
=N
Ca 1) b
pl

e
take(k,l,c,d, p) ozt =
:; crane k at location [ takes ¢ off of d in pile p operator

precond: belong(k, 1), attached(p, ), empty(k), top(c,p),on(c,d)
effects:  holding(k, ¢), ~empty(k), —in(c, p), = top(c, p), ~on(c, d), top(d, p)

take(cranel,locl,c3,cl,pl) action
;; crane cranel at location locl takes c3 off cl in pile pl
precond: belong(cranel,locl), attached(pl,locl),
empty(cranel), top(c3,pl), on(c3,cl)
effects:  holding(cranel,c3), —empty(cranel), —in(c3,pl),
—top(c3,pl), —on(c3,cl), top(cl,pl)

Notation:
— S* = {positive atoms in S}
— S~ = {atoms, whose negation is in S}

Action a is applicable to state s if and only if
precond*(@a) & s A precond(a) Ns=J

The result of application of actionatos s
v(s,a) = (s — effects™(a)) U effects*(a)

take(cranel,locl,c3,c1,pl)
;; crane cranel at location locl takes ¢3 off cl in pile pl
precond: belong(cranel,locl), attached(pl,locl),
empty(cranel), top(c3,pl), on(c3,c1)
effects:  holding(cranel,c3), —empty(cranel), —in(c3,pl),
—top(c3,pl), —on(c3,cl), top(cl,pl) loc1 loc2

cranel
A
(=1,
a1 B2

pl

Kl
v

locl loc2



Planning problem P is a triple (X,s,,8):
— 2 =(S,A)y) is a planning domain (states, actions, transition)
— Spis an initial state, s, €S
— gis a set of instantiated literals

* state s satisfies the goal condition g if and only if
gCsAgNs=

* S, ={s €S| s satisfies g} — a set of goal states
Plan is a sequence of actions (@,,a,,...,ay)-

Plan (a,,a,,...,a,) is a solution plan for problem P iff
v*(s,,7) satisfies the goal condition g.
Usually the planning problem is given by a triple (O,s,,g).
— O defines the the operators and predicates used
— s, provides the particular constants (objects)
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The search space corresponds to the state space of the
planning problem.

— search nodes correspond to world states

— arcs correspond to state transitions by means of actions

— the task is to find a path from the initial state to some goal

state

Basic approaches

— forward search (progression)

* start in the initial state and apply actions until reaching a goal state

— backward search (regression)

* start with the goal and apply actions in the reverse order until a
subgoal satisfying the initial state is reached

* lifting (actions are only partially instantiated)

Forward-search(O, sg, g)

S S

m «— the empty plan

loop
if s satisfies ¢ then return 7
E < {ala is a ground instance of an operator in O,

and precond(a) is true in s}

if E = () then return failure
nondeterministically choose an action a € F
s «— vy(s,a)

cranel

e T.a -‘ ]
-c2
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Control Rules

Heuristics guide the planner towards a goal state by ordering
alternative plans. They do not solve the problem with the large
number of alternatives.

Can we detect and prune bad alternatives?

Example (blockworld)

— If a block is placed correctly (consistent with the goal) then any action
that moves that block just enlarges the plan.

— If a block is on a wrong place and there is an action that moves it to
the correct place then any action that moves the block elsewhere just
enlarges the plan.

Domain dependent information can prune the search space, but
the open question is how to express such information for a
general planning algorithm.

— control rules



We need a formalism to express relations between the
current world state and future states.

Simple temporal logic

— extension of first-order logic by modal operators

* ¢, U, (until) ¢, is true in all states until the first state (if any)
in which ¢, is true

* [ ¢ (always) ¢ is true now and in all future states

« & ¢ (eventually) ¢ is true now or in any future state

* O ¢ (next) ¢ is true in the next state

* GOAL(}) ¢ (no modal operators) is true in the goal state

— ¢ is a logical formula expressing relations between the objects
of the world (it can include modal operators)

. badtower
e Goodtower is a tower such that q -

B

no block needs to be moved. ]

Badtower is a tower that is not good. B
Initial State Goal State

goodtower(z) 2 clear(z) A ~GOAL(holding(z)) A goodtowerbelow(z)

goodtowerbelow(z) = (ontable(xz) A —=3[y:GOAL(on(z,y))]))
V d[y:on(z, y)] ~GOAL(ontable(z)) A ~GOAL(holding(y)) A ~GOAL(clear(y))
A V[z:GOAL(on(z, 2))] z = y A V[z:GOAL(on(z,y))] 2 = =
A goodtowerbelow(y)

badtower(z) 2 clear(z) N —~goodiower(z)

| goodtower remains goodtower |

Control rule:
] (V[z:clear(m)] goodtower(z) = O(clear(z) V J[y:on(y, z}] goodtower(y))

A badrower(m) = O(ﬁa[y:on(y, ‘E)] ) % do not put anything on
A {ontable(z) A [y:GOAL{on(z,y))} ~goodtower(y)) Badtower

= O(—nholding(:r;)))

do not take a block from a table until you
can put it on a goodtower




To use control rules in planning we need to express how the formula changes when we
go from state s, to state s, ;.

— We look for a formula progr(¢, s;) that is true in's;,,, if ¢ is true in state s,

* ¢ does not contain any modal operator
— progr(¢, s;) = true ifs, |-([)
=false  ifs, | ¢ does not hold

* ¢ with logical connectives
— progr(¢; A §,, ;) = progr(¢,, s;) A progr(,, s))
— progr(=¢, s;) = ~progr(¢, s))
* ¢ with quantifiers (no function symbols, just k constants cj)
— progr(Vx ¢, s;) = progr(dp{x/c;}, s;) A ... A progr(d{x/c}, s;)
— progr(3x ¢, s;) = progr(¢{x/c,}, s) v ... v progr(dpfx/c.}, s)
* ¢ with modal operators
- progr((l)l U ¢,, Si) = ((¢1 U q)z) A progr (¢1r Si)) vV progr (q)z: Si)
— progr(d ¢, s) = (L0 ¢) A progr(¢, s))
= progr(< ¢, 5) = (& ¢) v progr(¢, s))
— progr(O ¢, s)=¢

Technical notes:
— progress(¢, s,) is obtained from progr(¢, s,) by cleaning (true A d — d, —=true — false, ...)
— Can be extended to a sequence of states (s, ... ,s,,)

progress(9, (So, - ,Sp)) = ¢ ifn=0
= progress(progress(¢, (Sq, -+ ,5,.1)) Sp) otherwise

Forward state-space planning guided by control rules.

— If a partial plan S violates the control rule progress(¢, S..),
then the plan is not expanded.

STL-plan(O, so, g, @)
s < 5 a partial plan violates the control rule ¢

7 < the empty plan
|.00p /// ‘
if ¢ = false then return failure 2 a complete plan found

if s satisfies g then return = 1
A <« {a | ais a ground instance of an operator in O ]
and precond(a) is true in s} actions applicable to state s
if A = @ then return failure
nondeterministically choose an action a € A -
J a new state after the action
s < y(s,a) —

T« Tm.a [
g

¢ < progress(¢, s) j control rule progression ¢




(2% ?Y) (on ?Xx ?y)

(forall (?x 2y) (i

Planners with
control rules

Forward
planning

Domain

# insts

TLPlan

N
TALPlanner

FF

Depots

22

22

22

22

DriverLog

20

20

20

15

Zenotravel

20

20

20

20

Rovers

20

20

20

20

Satellite

20

20

20

20

Total

-| 894 (100%)

610 (100%)

237 (83%)

(and

(print ?stream "(on ~A ~R) -="
(implies (good-tower ?X)
(print ?stream "
(implies (bad-tower ?2x) .
(print ?stream
(implies (good-tower ?Y) .
(print ?stream
(implies (bad-tower ?Y) 5
(print ?stream

n ?x ?Y)

(and

(print ?stream "(in ~A ~B) "
(exists (?1) (at 2y ?1)
(print ?stream
(implies (has-goal—loc ?x)
(print ?stream
?x (crate-go
(print ?stream "~3")))

?2x ?Y)

(good-tower ~R)

(bad-tower ~n) "

al-location

" ?x))

?x))

(good-tower ~n)~%" ?Y))

(bad-tower -n)~-3" ?¥))))

?2x) ?X (crate-goa

problems solved

?2x ?Y)
"(at ~A ~A) " ?¥ 21))
"(crate—goal—location ~p) = ~A (crate-goal—surface ~A

1-surface ?x)))

)= -A"




Planning as Tabled
Logic Programming

Logic programming (Prolog) represents knowledge in the
form of Horn clauses and uses backward chaining as a method
to answer queries (with unification and backtracking to explore
alternatives).

rule head rule body

criminal (X) :-
american (X) , weapon(Y),
owns (nono,ml) .

ells(X,Y,Z2), hostile(2).

missile (m1) . ?- criminal (west) .
sells (west,X,nono) :- ?- american(west), weapon (Y),
. . 11 t,Y,Z), hostile(Z).
missile(X), owns(nono,X). setis(wes ) hestiie(®)
?- weapon(Y), sells(west,Y,Z),
weapon (X) :- hostile (Z)
missile (X) . ?- missile(Y), sells(west,Y,Z2),
hostile(2Z) .

hostile (X) :-

. ?- sells(west,ml,Z), hostile(Z).
enemy (X,america) .

?- missile(ml), owns(nono,ml),
american (west) . hostile (nono) .
enemy (nono , america) . ?- owns (nono,ml), hostile(nono).

?- hostile (nono) .

?- enemy (nono,america) .

?- criminal (west) .

?- true.




The idea:

Tabling memorizes calls and their answers in order
to prevent infinite loops and to limit redundancy.

An example (in Picat):

table

£fib(0) = 1.

fib(1) = 1.

fib(N) = f£fib(N-1) + fib(N-2).

Without tabling, £ib (N) takes exponential time in N.
With tabling, £ib (N) takes linear time.

Forward planning in Picat language (using tabling):

table (+,-,min)
plan(S,Plan,Cost) ,final (S) =>
Plan=[],Cost=0.
plan(S,Plan,Cost) =>
action(Action,S,S1,ActionCost),
plan(S1,Planl,Costl),
Plan = [Action|Planl],
Cost = Costl+ActionCost.



Locations of
Farmer, Wolf, Goat, and Cabbage

action (Action, [F,F,G,C],S1l) ?2=>
Action=farmer wolf,
opposite(F,F1l),
S1=[F1l,Fl1,G,C], safe(Sl).

action(Action, [F,W,F,C],S1) ?=>
Action=farmer goat,
opposite (F,F1),

S1=[F1 ,W,F1,C], ], safe(Sl).
action(Action, [F,W,G,F],S1l) ?=>
Action=farmer cabbage,

opposite(F,F1l),
S1=[Fl1,W,G,F1l], safe(S1l).
action (Action, [F,W,G,C],S1l) =>
Action=farmer alone,
opposite(F,Fl),
S1=[F1,W,G,C], safe(Sl).

A truck moves between locations to pickup and
deliver packages while consuming fuel during
Mmoves.
— setting:
* initial locations of packages and truck
* goal locations of packages
* initial fuel level, fuel cost for moving between locations

— possible actions: load, unload, drive

— assumption: track can carry any number
of packages



State representation:
s (Loc,Fuel,LoadedCGs,Cargoes)
LoadedCGs = [CargoGoal]
Cargoes = [[CargoLoc|CargoGoal]]

Actions
— Unload package only at its destination
— Load all not-delivered packages at current location
— Move somewhere

Post-processing
— Returning back the names of cargoes

action(Action, s(Loc,Fuel, LoadedCGs,Cargoes), NextState),
select (Loc,LoadedCGs,LoadedCGsl)

=>
Action = unload(Loc,Loc),
NextState = s(Loc,Fuel,LoadedCGsl,Cargoes).

action(Action, s(Loc,Fuel,LoadedCGs,Cargoes), NextState),
select ([Loc|CargoGoal], Cargoes,Cargoesl)

=>
insert_ordered(CargoGoal,LoadedCGs,h LoadedCGsl),
Action = load(Loc,CargoGoal),
NextState = s(Loc,Fuel,LoadedCGsl,Cargoesl).

action(Action, s(Loc,Fuel,LoadedCGs,Cargoes), NextState)
?2=>
Action = drive(Loc,Locl),
NextState = s(Locl,Fuell,LoadedCGs,Cargoes),
fuelcost (Cost,Loc,Locl),
Fuell is Fuel-Cost,
Fuell >= 0.



no tabling no heuristics
used used

IPC 2014
winner

encoding size

Domain # insts Picat Picat-nt | Picat-nh Symba
Barman 14 14 0 14 6
Cave 20 20 0 20 3
Childsnack 20 20 20 20 3
Citycar 20 20 17 18 17
Floortile 20 20 0 20 20
GED 20 20 19 13 19
Parking 20 11 4 0 1
Tetris 17 13 13 9 10
Transport 20 10 0 4 8
number of optimally solved problems
Domain #insts | Picat | TLPlan | TALPlanner | SHOP2
Depots 22 22 22 22 22
Zenotravel 20 20 20 20 20
Satellite 20 20 20 20 20
problems solved
Domain #insts | Picat | TLPlan | TALPlanner | SHOP2
Depots 22| 21.90 19.93 20.53 18.63
Zenotravel 20 19.13 18.56 18.96 17.30
Satellite 20| 19.95 18.90 17.10 17.68
quality score
Domain PDDL Picat | TLPlan
Depots 42 147 933
Zenotravel 61 111 308
Satellite 75 122 186




 using structured representation of states
instead of factored representation

— symmetry breaking

* deterministic vs. non-deterministic actions
— smaller branching factor during search

* using domain knowledge
— smaller branching factor during search

* no prior grounding of actions

— smaller memory consumption




