

MAPF and Ozobots

Final report

Seminar on Artificial Intelligence II

2018

David Nohejl

Chaman Shafiq

Věra Škopková

Problem we were solving

The original theme of our project was “Pick-up and Delivery using Multi-agent Path

Finding (MAPF)”. It was planned to create a set of tasks in which robot, to whom

would be the task assigned, should pick up some virtual object at a pick-up location

and then he should deliver it to the delivery location as quickly as possible. After

studying the problem and after the first attempts to implement MAPF algorithm on

our own, we realized that the task is quite large and we decided to simplify it a bit.

Because the extension of simple MAPF to simple Pick-up and Delivery would not

give us apparently more space to study anything interesting, we changed the theme

only to MAPF and we started to focus on how the physical attributes of Ozobots can

interrupt originally conflict free paths.

What we created

For this project we created three important programs. The first one is a JavaScript

web application for designing the maps visually. The second program is the most

important part of our work because it is the implementation of MAPF algorithm. As

the basic algorithm we have chosen CBS (Sharon, Stern, Felner, & Sturtevant, 2015)

and then we have extended it to k-robust MAPF (Atzmon, Felkner, Wagner, Barták,

& Zou, 2017). And the last program we created is responsible for translating paths

found by MAPF into instructions for Ozobots. All our codes are available on GitHub

(GitHub - Věra, 2018), (GitHub - David, 2018) and (GitHub - Chaman, 2018).

Maps Designer

We have built a simple utility program to visually design the grid plan. It’s a browser

based JavaScript application that allows user to compose the grid by assembling

various tiles. The final grid can then be exported as list of edges, which serves as

input to the MAPF algorithm. It can also be directly printed. However, there are some

unresolved difficulties when using the printed out map, namely the multipage printing

of large map can be challenging, borderless printing can be an issue, and scaling is

also an issue because Ozobots require pretty much one specific width of the line.

Because of all these issues, hand painted maps still works the best for us. However,

this tool was still very useful when designing the maps, and as an input to virtual test

cases (just algorithmic runs), and to visualize the test cases.

MAPF Algorithms

We’ve implemented Conflict-based search (CBS) (Sharon, Stern, Felner, &

Sturtevant, 2015), which is complete, optimal MAPF algorithm, in C#. There is an

available implementation of CBS (GitHub - MAPF (doratzmon), 2018), actually ICBS,

but it uses different representations of the grid map, and it takes some work to

convert between the representations. We also wanted just the basic CBS, without

many optimizations, because our experiments are relatively small (typically 8x4 grid

with 2-4 agents), and we wanted to be able to easily modify the algorithm for our

experiments. Additionally, we’ve implemented k-robust extension of CBS (Atzmon,

Felkner, Wagner, Barták, & Zou, 2017). As a low level search we use A* with

Manhattan distance heuristics. Initially we considered to implement or to use other

algorithms like FAR, etc., but due to time constraints we did not.

Translation to Ozocode

Ozocode Generation

After finding plans for all agents, we needed to translate them into commands for

Ozobots. Possibilities how to program Ozobots are very limited. It is because

Ozobots use the Ozoblockly language (Ozoblockly, 2018) that allows us to program

by connecting colored blocks that represent single commands similarly like in

children programming language Scratch (Scratch, 2018). Such style of programming

can be fun for beginners, but it is quite uncomfortable for us. Firstly, building code

from individual blocks makes programming slower and it is also a bit chaotic when

writing more complicated code. There is not possible to write comments or to change

the style of indentation. Secondly, more serious problem is that we need to translate

many plans in very similar form into Ozocode and we are not able to do it

automatically in Ozoblockly. Because of that we were searching for Java or Python

interface to Ozobots but we had not succeeded, so we decided to implement our

own program for the more comfortable generation of Ozocode.

When storing Ozoblockly program to a computer it has the form of text file with suffix

“Ozocode“, and it consists of XML tags that represent individual blocks of the code.

Interesting is that the blocks are not laid out one after another, but they are laid out

recursively - always the preceding block contains the whole succeeding block in

itself. The tags for individual blocks are mostly composed, all of them have the main

tag that represents the type of the block and then it can have several subtags for

setting the parameters. Because this structure is quite logical and regular, it was not

difficult to implement functions that are able to generate an XML representation of

the blocks and to compose the whole code for Ozobots from these functions.

Our program was written in C# and it is simple Console Application. For generation

of the code for one Ozobot it requires an input file with a sequence of instructions

which means the directions Ozobot should pick on the junctions (one after another).

Program supposes Ozobot is moving on the grid so it works only with directions left,

right, straight, backward and wait (no move). Every direction has a numbered

constant which represents it and the input file has to contain only these constants –

one constant per line.

The program reads the input file and it generates such Ozocode that the Ozobot

(when put on the grid) goes exactly the directions described in the input file. For

debugging purposes the program is able to include such commands into generated

code that the Ozobot is able to say the name of the direction that he is actually

picking and it is possible to include some light effects into Ozocode too.

Until we got access to the 5th section of the Ozoblockly editor we had to generate

Ozocode as described above, it means by writing individual “move” and “pick

direction” commands for every turn. The 5th section allowed us to use arrays and it

made the whole generation of the Ozocode much simpler. Using the arrays, it is

possible to create much shorter code consisted of a loop that goes through all fields

of that array having different branches for individual directions. And such simple

code was only the straightforward step to include other logic into the Ozocode. It was

quite easy to add commands for sensors to detect if there is an obstacle in front of

the Ozobot or to include commands for simple communication. And the best

advantage of all of that is that codes for individual Ozobots differ only in the content

of the array with directions. So it is not necessary to generate all commands in the

generator separately, it is possible to design the code in the Ozoblockly editor and

then to generate only the correct initialization of the fields of the array.

Obstacle Detection

In order to avoid collisions if something bad happens when executing the plans, we

included simple obstacle detection in the code. Before the Ozobot starts moving to

the next junction, it tests whether there is no obstacle. If there is an obstacle (not

agent), Ozobot turns back and makes a step to the node he came from. Then he

waits a random amount of time and then he tries to continue in executing the plan

from the previous node. If there appears an obstacle on the last visited node, Ozobot

will go back again until the first node of his path. When backtracking, if the node

where Ozobot wants to go is already occupied by another Ozobot or by an obstacle

then Ozobot waits.

Communication

Communication between agents is little bit complicated and tricky. The agent tries to

communicate when it detects that there is something ahead of it by using its sensors.

Hence let us describe it briefly how we made agents capable of communication with

each other. We used obstacle detection first, so that we make sure that there is

somebody with whom agent can communicate. Meanwhile, there was also another

factor in our mind that what if there is an obstacle instead of a real agent? Because

the agent can just sense and tell us that there is something in front of it without

providing more information about it whether it is an obstacle or a real agent. So, we

also have to handle this case during the attempt of communication with another

agent. In short, after performing a lot of experiments, we figured out one way to

differentiate between the real agent and the obstacle (if someone is interested,

he/she can look the code). In case, if there is a real agent then communication takes

place, but if there is an obstacle then agent steps back and waits there for a random

amount of time then again tries to follow the path. Why it was tricky? Because when

we tried to use communication feature in our main collision free path following

program, then we realized that it is not easy to merge them altogether as we were

expecting. We made a lot of attempts to merge them, but at last, we realized that it is

not possible due to the limitation of storage, language and Ozobot hardware

capabilities. There were some limitations which were impossible to solve according

to our requirements. In simple cases, agents communicate with each other and take

decisions according to the communication. There is also a FAQ about

communication uploaded on GitHub (GitHub - Chaman, 2018).

Experiments and results

How to perform experiments with our tools

The way how to perform an experiment using our tools may look a bit complicated,

so let us describe it in short. At first it is needed to use our Maps Designer and to

draw the map. Then the application enables to export something that looks nearly

like the input for our MAPF algorithm. But it cannot be used immediately, it is needed

to replace all dashes (-) with spaces, add a line with the letter X and after that add

information about the start and goal locations of all agents. For every agent there

should be one row containing two numbers - number of the start and of the goal

node. We number the nodes naturally, from left top corner to the right bottom corner,

row after row, beginning with number 0.

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

Numbering system of the grid

Now we have valid input for the MAPF algorithm which we can run. The program

generates numbered text files, each of them represents a path for one Ozobot. But it

is not usable yet, it is needed to get all these files to Ozocode Generator which will

create the corresponding instructions for Ozobots.

As the last step it is needed to load every output of the Ozocode Generator into the

Ozoblockly editor (on the web) and via it to store it into the account of the Evo mobile

app. And finally, after turning the Ozobot on and connecting it via Bluetooth with the

app, it is possible to run the program. The conditions for successful execution are

that all Ozobots should always start the execution at the same time, they should be

facing right and they should stay a bit behind their starting node.

We made many experiments and we filmed some of them. They are available on

Google Drive (Video repository, 2018).

Big map – 4 Ozobots

This was probably our biggest plan. The map was a little bit bigger than A4 page and

there were 4 Ozobots. Each of the Ozobots was starting from different part of the

map and his goal position was on the other side of the map. Approximately in the

middle of their way there was a bridge so the Ozobots had to order themself in order

to go through that bridge. Although the plans for individual Ozobots were conflict-free

in theory and although there were some attempts to insert some delays when

Ozobots are not turning, there were still some collisions. We managed to set

parameters of delays in such way that all of Ozobots executed their plans without

collisions but it was very exhausting, we spend about 3 hours with this example.

Successful execution can bee seen in a video.

Train with 4 Ozobots

In this experiment we divided 4 Ozobots into 2 couples with similar start and goal

positions. Then the plans for Ozobots in the couple were very similar and Ozobots

were creating two “trains” during execution (going always the same way, just one a

node behind the second). For a while they were connected into one longer “train”

also. There was possible to observe how they were asynchronous a bit but they still

managed to execute the plans successfully. This example is also available to see in

the video.

ZigZag

This example shows how serious delay can be caused by turns. Two Ozobots start

synchronously and both of them should move to the next node 5 times. The path for

the first Ozobot has 5 nodes in one row while the second Ozobot has to make turn

on every junction. At the end of the execution the first Ozobot finishes one step

before the second Ozobot. Video to this example is also available.

K-robust example

In this example, Ozobots have it really simple! There is single path from start to

finish, no crossings, nothing. Just a few turns. But the catch is that the robots’

starting points are next to each other, and so are their goals. So in optimal solution,

they will create a train and closely follow one another. As we found out, in real world,

they sometimes crash when one turns slower than the other, and sometimes our

built-in collision detections kicks in and one robot goes step back before resuming

his path. To resolve this issue, we deployed the 1-robust solution (which on this map

really means that the second robot is delayed by one step). And then everything

works fine and Ozobots successfully reach their goals. All these situations are visible

in our video repository.

Step Back

As described in the section about what we did, we tried to execute some plans with

obstacles. In practice there is the problem of sensitivity of the proximity sensors so

making step back when detecting another Ozobot did not work properly in all cases.

But it worked good, when using a bigger obstacle, actually we are able to

demonstrate this example live using one Ozobot and a hand. Putting hand always on

the node Ozobot is actually going to visit, we are able (in extreme case) to force him

to return from the last but one node to the first one.

Communication

During the attempts of communication between ozobots, we confronted a lot of

challenges. Few of them were little annoying while, on the other hand, some of them

were impossible to achieve according to our expectation. One of them was; we were

thinking that communication part is working fine separately and it will also work when

we will merge it with our main MAPF program. But when we tried to merge it, then

we saw that there are some communication code compatible issues are occurring

and then, when we tried to resolve them other function started to misbehave. In a

technical sense, Ozobot communicates with other when it is doing nothing or

executing asynchronous instructions. It means Ozobot do just some things in

combination parallel not all. For example, we were trying that during the execution of

finding next intersection or line end if you detect obstacle or other agent then behave

according to the situation. It means, if there is an obstacle then step back and if there

is agent then communicate with him. When we study the documentation thoroughly,

then we got to know that this thing is not possible and the agent can do this task just

with the combination of fewer instructions. In simple words, it is possible to execute

the line following instruction and the sensors to detect obstacle or agent for

communication. In short, we extract out the communication part from our MAPF

algorithm and let it separately. The annoying thing was to load the program through

flash because of communication. There is also a way to load the program through

Mobile app rapidly, but mobile app currently doesn’t support the communication

feature. Therefore when we tried this possibility, the app destroyed our code and just

showed those instructions which were supported by it. Hence, all the time, after it we

used flash for loading the programs in Ozobots. The second problem with Ozobot

was that it didn’t see the other agent coming towards him, but it efficiently detected

the other kind of materials. Thus, we also faced this problem all the time due to the

inefficiency of detecting other ozobot. Just to see the communication between them

almost every time we used to start the Ozobot from start, so that we can see whether

they communicating perfectly or not. In a nutshell, we achieved, which we wanted by

using algorithms, but we couldn’t get it fully by communication as we were expecting

because of the Ozobot limitations.

Problems

Quality of the line

The first “physical” problem we were facing when executing plans on Ozobots was

the right detection of the line that Ozobot should follow. Ozobots detect correctly line

only of a given width which is around 5 mm. When the line is visibly thinner or thicker

it may cause problems. Moreover, the line should be homogeneous. If it is

broadening, it can be detected as junction sometimes. Also the color of the line

should be homogeneous, the change of the color of the line can be also interpreted

as a junction.

Junction detection

During the whole execution of the plans on Ozobots we strongly rely on proper

junction detection. Missing the junction would destroy our plans irrecoverably. It

means every junction should be drawn properly - it should be really a cross with right

angles.

We suppose we have a grid with some nodes missing. It means in our maps there

can appear situation that there is a node in which only one direction can be chosen.

But such junction is not detected as junction by Ozobots, Ozobots behave like it is a

straight line. Because the detection of such situations in the program would be

annoying and it has no theoretical or practical meaning, we decided to solve this

problem by representing every junction like a cross, adding small pieces of the line at

positions where the neighboring nodes are missing.

Imperfection of sensors

As mentioned above, we tried to improve our Ozocode with some obstacle detection

using proximity sensors. Theoretically, it worked well. We found some limit how near

the object should be if it should be detected and we designed the nodes of the grid

with the appropriate distances between each other.

But in reality it didn´t work as easy. The Ozobots detect bigger obstacles like a

human hand properly, but they have problems to detect each other. If they meet

exactly face to face they have nearly no chance to see each other, probably because

of the material on the surface of the Ozobots. Such problem made our code for

detection of obstacles nearly useless.

Multiple turns on one junction

When implementing obstacle detection, there was needed to be able to do more

than one turn on one junction. It is not possible with “Pick direction” Ozoblockly

commands, they allow only one turn and then Ozobot does not stay on the junction

any more. Because if it, it was needed to replace all these commands with low level

commands “Rotate a given angle”. But after rotation Ozobot may lose control of the

line he is standing on so it was needed to also replace all “Follow line” commands

with “Move forward until the line is found” commands.

Loading code into Ozobots

Actually, there is no other possibility how to load Ozocode into Ozobot except for

loading it via the Ozoblockly web editor. This editor allows two possibilities of

loading. The first one is so called flashing. It means that Ozobot is put on the screen

and the program is loaded through a sequence of color blocks. This way of loading

takes a lot of time and it also needs enough access to the internet. It is nearly

impossible to load program successfully when, for example, listening to music on

YouTube.

The second possibility of loading Ozocode into Ozobot is via mobile applications. It is

quicker and more comfortable and it is possible to have more programs in the app

and to switch between them at any time. But it has also some limits. The mobile

phone has to have higher versions of Android, it is not possible to run it on for

example Android 4. Moreover, it is needed to use Bluetooth in the phone because

the app communicates with Ozobots via it.

Starting the Ozobots

The next problem is to start the Ozobots at the same time. When using a mobile app,

every Ozobot needs different phone. It is possible to connect more Ozobots to one

mobile but then they have run the same program. When starting Ozobots by double-

pressing of the power button then it is needed to have a skillful hand to manage it

properly. Otherwise the demo program is started instead.

Connection to other algorithms

We also attempted to connect our maps to the foreign CBS implementation (GitHub -

MAPF (doratzmon), 2018), but there was problem of different map representation. It

was because we always explicitly name the couples of nodes which are connected

by an edge while this algorithm expects edges between all present nodes

automatically. We managed to convert our maps into this representation using

auxiliary nodes between all couples of connected nodes but there were some plans

we were not able to convert their outputs back to our maps. It was when there was

any step in which an agent was waiting on the auxiliary node, then it was impossible

to convert the plans back.

Future Possible Work

There are two main directions in which we can imagine future work. One is to turn

our ad hoc utilities into a kind of framework or workbench where different MAPF

algorithms and their modifications can be tested both on in silico and in the real

world using the Ozobots. Second direction is to focus on improving the robustness of

execution in Ozobots by either further investigating online resolving of unexpected

collision, possibly with communication, or making more robust plans. We’ve briefly

touched on that with k-robust CBS, but more experiments are needed.

To realize the “framework” idea, several steps need to be done. One is to finalize the

designer application. Work out printing maps out of designer, allow custom grid

sizes, specify the starting points, etc. Other is to include a simulator, or a way to

visualize ideal execution of the found solution in computer. One of the most

problematic parts of the experiments is synchronized start of the agents. There

should be a way to easily start all agents at once. Existing application for Ozobots

allows to connect to multiple robots, but it seems we can only execute the same

program. Last but not least, currently our solution is several applications, which you

have to run one by one to get to the final code for Ozobot. This should be integrated

into one user friendly application.

Tasks Distribution

David Nohejl Chaman Shafiq Věra Škopková

Map designer

CBS implementation

kR-CBS implementation

Study of theory

Communication

Obstacle detection

Step back in Ozocode

Design some test cases

Review final report

Ozocode Generator

Obstacle detection

Steps back in Ozocode

Presentations

Final report

Design of experiments

Interface design

Organization of the team

References

1. Atzmon, D., Felkner, A., Wagner, G., Barták, R., & Zou, N.-F. (2017). K-

Robust Multi-Agent Path Finding. Proceedings of the Tenth International

Symposium of Combinatorial Search.

2. GitHub – Chaman. (2018). Retrieved from https://github.com/chamanshafiq

3. GitHub - David. (2018). Retrieved from https://github.com/DavidNohejl/bot-

track-designer

4. GitHub - MAPF (doratzmon). (2018, May 13). Retrieved from

https://github.com/doratzmon/MAPF

5. GitHub - Věra. (2018). Retrieved from https://github.com/verka383

6. Ozoblockly. (2018). Retrieved from

https://ozoblockly.com/editor?lang=en&robot=evo&mode=4

7. Scratch. (2018). Retrieved from https://scratch.mit.edu/

8. Sharon, G., Stern, R., Felner, A., & Sturtevant, N. (2015). Conflict-Based

Search for Optimal Multi-Agent Pathfinding. Artificial Intelligence, 219, pp. 40-

66.

9. Video repository. (2018). Retrieved from

https://drive.google.com/drive/folders/18fG_vvyCQUzU4GKC1rxzIuQ2lJ4lqujp

?usp=sharing

