
Bayesian Learning

Complicated derivation of known things.
Maximal aposteriory probability hypothesis (MAP) (nejpravděpodobnější
hypotéza)
Maximum likelihood hypothesis (ML) (maximálně věrohodná hypotéza)
Bayesian optimal prediction (Bayes Rate)
EM algorithm
Naive Bayes model (classifier)
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Candy Example (Russel, Norvig: Artif. Intell. a MA)

Our favorite candy comes in two flavors: cherry and lime, both in the same
wrapper.
They are in a bag in one of following rations of cherry candies and prior
probability of bags:
hypothesis (bag type) h1 h2 h3 h4 h5
cherry 100% 75% 50% 25% 0%
prior probability hi 10% 20% 40% 20% 10%

The first candy is cherry.
MAP Which of hi is the most probable given first candy is cherry?

Bayes estimate What is the probability next candy from the same bag is cherry?
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Maximum Aposteriory Probability Hypothesis (MAP)

We assume large bags of candies, the result of one missing candy in the bag
is negligable.
Recall Bayes formula:

P(hi |B = c) = P(B = c|hi ) · P(hi )∑
j=1,...,5 P(B = c|hj) · P(hj)

= P(B = c|hi ) · P(hi )
P(B = c)

We look for the MAP hypothesis maximálně aposteriorně pravděpodobná

argmaxiP(hi |B = c) = argmaxiP(B = c|hi ) · P(hi ).

Aposteriory probabilities of hypotheses are in the following table.

Machine Learning Bayesian learning, EM algorithm 7 4. dubna 2019 3 / 32



Candy Example: Aposteriory Probability of Hypotheses

index prior cherry ratio cherry AND hi aposteriory prob. hi

i P(hi ) P(B = c|hi ) P(B = c|hi ) · P(hi ) P(hi |B = c)
1 0.1 1 0.1 0.2
2 0.2 0.75 0.15 0.3
3 0.4 0.5 0.2 0.4
4 0.2 0.25 0.05 0.1
5 0.1 0 0 0
Which hypothesis is most probable?

hMAP = argmaxiP(data|hi ) · P(hi )

What is the prediction of a new candy according the most probable
hypothesis hMAP?
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Bayesian Learning, Bayesian Optimal Prediction

Bayesian optimal prediction is weigthed average of predictions of all
hypotheses:

P(N = c|data) =
∑

j=1,...,5
P(N = c|hj , data) · P(hj |data)

=
∑

j=1,...,5
P(N = c|hj) · P(hj |data)

If our model is correct, no prediction has smaller expected error then
Bayesian optimal prediction.
We always assume i.i.d. data, independently identically distributed.
We assume the hypothesis fully describes the data behavior. Observations are
mutually conditionally independent given the hypothesis. This allows the last
equation above.
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Candy Example: Bayesian Optimal Prediction

i P(hi |B = c) P(N = c|hi ) P(N = c|hi ) · P(hi |B = c)
1 0.2 1 0.2
2 0.3 0.75 0.225
3 0.4 0.5 0.2
4 0.1 0.25 0.02
5 0 0 0∑

1 0.645
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Maximum Likelihood Estimate (ML)

Usually, we do not know prior probabilities of hypotheses.
Setting all prior probabilities equal leads to Maximum Likelihood
Estimate, maximálně věrohodný odhad

hML = argmaxiP(data|hi )

Probability of data given hypothesis = likelihood of hypothesis given data.
Find the ML estimate:

index prior cherry ration cherry AND hi Aposteriory prob. hi

i P(hi ) P(B = c|hi ) P(B = c|hi ) · P(hi ) P(hi |B = c)
1 0.1 1 0.1 0.2
2 0.2 0.75 0.15 0.3
3 0.4 0.5 0.2 0.4
4 0.2 0.25 0.05 0.1
5 0.1 0 0 0
In this example, do you prefer ML estimate or MAP estimate?
(Only few data, overfitting, penalization is usefull. AIC, BIC)
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MAP and Penalized Methods

MAP hypothesis maximizes:

hMAP = argmaxiP(data|hi ) · P(hi )

therefore minimizes:

hMAP = argmaxhP(data|h)P(h)
= argminh[−log2P(data|h)− log2P(h)]
= argminh[−loglik + complexity penalty]
= argminh[RSS + complexity penalty] Gaussian models
= argmaxh[loglik − complexity penalty] Categorical models
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Remark: Bayesian Parameter Learning
We represent probability distribution on parameters.
For binary features, Beta function is used, a is the number of positive
examples, b the number of negative examples.

beta[a, b](θ) = αθa−1(1− θ)b−1

(For categorical features, Dirichlet priors and multinomial distribution is used.
(Dirichlet-multinomial distribution).
For Gaussian, µ has Gaussian prior, 1

σ has gamma prior (to stay in
exponential family).)
Beta Function:
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Maximum Likelihood: Continuous Parameter θ

New producer on the market. We do not know the ratios of candies, any hθ,
kde θ ∈ 〈0; 1〉 is possible, any prior probabilities hθ are possible.
We look for maximum likelihood estimate.
For a given hypothesis hθ, the probability of a cherry candy is θ, of a lime
candy 1− θ.
Probability of a sequence of c cherry and l lime candies is:

P(data|hθ) = θc · (1− θ)l .
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ML Estimate of Parameter θ

Probability of a sequence of c cherry and l lime candies is:

P(data|hθ) = θc · (1− θ)l

Usual trick is to take logarithm:

LL(hθ; data) = c · log2 θ + l · log2(1− θ)

To find the maximum of LL (log likelihood of the hypothesis) with respect to
θ we set the derivative equal to 0:

∂LL(hθ; data)
∂θ

= c
θ
− l

1− θ
c
θ

= l
1− θ

θ = c
c + l .
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ML Estimate of Multiple Parameters

Producer introduced two colors of wrappers - red r and green g .
Both flavors are wrapped in both wrappers, but with different probability of
the red/green wrapper.
We need three parameters to model this situation:

P(B = c) P(W = r |B = c) P(W = r |B = l)
θ0 θ1 θ2

Following table denotes observed frequences:
wrapper\ flavor cherry lime

red rc rl
green gc gl
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ML Estimate of Multiple Parameters

Parameters are: P(B = c) P(W = r |B = c) P(W = r |B = l)
θ0 θ1 θ2

Probability of data given the hypothesis hθ0,θ1,θ2 is:

P(data|hθ0,θ1,θ2 ) = θrc
1 · (1− θ1)gc · θrc +gc

0 · θrl
2 · (1− θ2)gl · (1− θ0)rl +gl

LL(hθ0,θ1,θ2 ; data) = rc log2 θ1 + gc log2(1− θ1) + (rc + gc) log2 θ0

+rl log2 θ2 + gl log2(1− θ2) + (rl + gl ) log2(1− θ0)

We look for maximum:

∂LL(hθ0,θ1,θ2 ; data)
∂θ0

= rc + gc
θ0

− rl + gl
1− θ0

θ0 = (rc + gc)
rc + gc + rl + gl

∂LL(hθ0,θ1,θ2 ; data)
∂θ2

= rl
θ2
− gl

1− θ2

θ2 = rl
rl + gl

.
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Discrete Variables

Maximum Likelihood estimate is the ratio of fequences.
Naive Bayes Model, Bayes Classifier assumes independent features given
the class variable.

Calculate prior probability of classes P(ci )
For each feature f , calculate for each class the probability of this feature
P(f |ci )
For a new observation of features f predict the most probable class
argmaxci P(f |ci ) · P(ci ).

Bayes factor
We can start with a comparison ratio of two classes P(ci )

P(cj )

after each observation xp multiply it by the bayes factor P(xp |ci )
P(xp |cj )

that is:
P(ci |x1, . . . , xp)
P(cj |x1, . . . , xp) = P(ci )

P(cj)
· P(x1|ci )

P(x1|cj)
· . . . · P(xp|ci )

P(xp|cj)
.

Bayesian Networks learn more complex (in)dependencies between features.
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Bayesian Information Criterion BIC
Suppose a set of candidate modelsMm,m = 1, . . .M and corresponding
parameters θm
training data Z = {xi , yi}N

i=1

P(Mm|Z) ∝ P(Mm) · P(Z|Mm)

∝ P(Mm) ·
∫

P(Z|θm,Mm)P(θm|Mm)dθm

Typically we assume that the prior over models is uniform.
For P(Z|Mm) a Laplace approximation is used

logP(Z|Mm) = logP(Z|θ̂m,Mm)− dm
2 logN + O(1)

θ̂m maximum likelihood estimate
dm the number of free parameters in modelMm.

If we define our loss function to be −2logP(Z|θ̂m,Mm)
we get the BIC criterion

BIC = −2 · loglik + (logN) · d .
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BIC Model Comparison

We can estimate the posterior probability of each modelMm as

P̂(Mm) = e− 1
2 ·BICm∑M

`=1−
1
2 · BIC`

.
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Bayesian Methods

We specify a sampling model P(Z|θ)
and a prior distribution for parameters P(θ)
then we compute

P(θ|Z) = P(Z|θ) · P(θ)∫
P(Z|θ) · P(θ)dθ

,

we may draw samples
or summarize by the mean or mode.
it provides the predictive distribution:

P(znew |Z) =
∫

P(znew |θ) · P(θ|Z)dθ.
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Bayesian smoothing example
Training data Z = {zi , . . . , zN},
zi = (xi , yi ), i = 1, . . . ,N.
We look for a cubic spline with
three knots in quartiles of the X
values. It corresponds to B-spline
basis hj(x), j = 1, . . . , 7.
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FIGURE 8.1. (Left panel): Data for smoothing ex-
ample. (Right panel:) Set of seven B-spline basis func-
tions. The broken vertical lines indicate the placement
of the three knots.

We estimate the conditional mean
E(Y |X = x): µ(x) =

∑7
j=1 βjhj(x)

Let H be the N matrix hj(xi ).
RSS β estimate is
β̂ = (HTH)−1HTy.
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FIGURE 8.4. Smoothing example: Ten draws from
the posterior distribution for the function μ(x), for two
different values of the prior variance τ . The purple
curves are the posterior means.

We assume to know σ2, fixed xi , we specifying prior on β ∼ N(0, τΣ).

E(β|Z) = (HTH + σ2

τ
Σ−1)−1HTy

E(µ(x)a|Z) = h(t)T (HTH + σ2

τ
Σ−1)−1HTy.
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Bootstrap
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Bootstrap

Bootstrap

replications

samples

sampleTrainingZ = (z1, z2, . . . , zN )

Z∗1 Z∗2 Z∗B

S(Z∗1) S(Z∗2) S(Z∗B)

FIGURE 7.12. Schematic of the bootstrap process.
We wish to assess the statistical accuracy of a quan-
tity S(Z) computed from our dataset. B training sets

Z∗b, b = 1, . . . , B each of size N are drawn with re-
placement from the original dataset. The quantity of
interest S(Z) is computed from each bootstrap training

set, and the values S(Z∗1), . . . , S(Z∗B) are used to as-
sess the statistical accuracy of S(Z).

We select N samples with replacement
the probability of not being selected is roughly 0.368

Êrr
(1)

= 1
N
∑N

i=1
1
|C−i |

∑
b∈C−i L(yi , f̂ ∗b(xi )).

more in Model assessment and selection slides.
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Missing data (T.D. Nielsen)

Die tossed N times. Result reported via noisy telephone line. When transmission
not clearly audible, record missing value:

4, 2, ?, 6, 5, 4, ?, 3, 4, 1, . . .

“2” and “3” sound similar, therefore:

P(Yi =?|Xi = k) = P(Mi = 1|Xi = k) =
{

1/4 k = 2,3
1/8 k = 1,4,5,6

Distribution of the Y is (for fair die):
? 1

3
1
4 + 2

3
1
8 = 1

6
2,3 1

6
3
4 = 1

8
1,4,5,6 1

6
7
8 = 7

48
If we simply ignore the missing data items, we obtain as the maximum likelihood
estimate for the parameters of the die:

θ∗ = ( 7
48 ,

1
8 ,

1
8 ,

7
48 ,

7
48 ,

7
48) ∗ 65 = (0.175, 0.15, 0.15, 0.175, 0.175, 0.175)
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Incomplete data

How do we handle cases with missing values:
Faulty sensor readings.
Values have been intentionally removed.
Some variables may be unobservable.

How is the data missing?
We need to take into account how the data is missing:

Missing completely at random The probability that a value is missing is
independent of both the observed and unobserved values (a monitoring
system that is not completely stable and where some sensor values are not
stored properly).
Missing at random The probability that a value is missing depends only on
the observed values (a database containing the results of two tests, where the
second test has only performed (as a “backup test”) when the result of the
first test was negative).
Non-ignorable Neither MAR nor MCAR (an exit poll, where an extreme
right-wing party is running for parlament).
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EM - Algorithm

EM algorithm is used for learning a model with unobserved variables (for
example, cluster membership).
We assume (hope) they are missing at random.
It is an iterative algorithm with two steps:

Expectation, fills in the unobserved data based on current M model, and
Maximize, finds maximum (log)likelihood model given the data filled in E
step.

Example: T.D. Nielsen
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Learning by EM - Algorithm

Clustering (observed may be of categorical and/or continuous)
Hidden Markov Models
Latent Dirichlet Allocation
Hierarchical Mixtures of Experts
and others.
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ML Estimate of Gaussian Distribution Parameters

Assume x to have Gaussian distribution with unknown parameters µ a σ.

Our hypotheses are hµ,σ = 1√
2πσ e

−(x−µ)2

2σ2 .
We have observed x1, . . . , xn.
Log likelihood is:

LL =
N∑

j=1
log 1√

2πσ
e

−(x−µ)2

2σ2

= N · (log 1√
2πσ

)−
N∑

j=1

(xj − µ)2

2σ2

Find the maximum.
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Linear Gaussian Distribution

Assume random variable (feature) X .
Assume goal variable Y with linear gaussian distribution where µ = b · x + b0

and fixed variance σ2 p(Y |X = x) = N(b · x + b0;σ) = 1√
2πσ e

−(y−((b·x+b0))2

2σ2 .
Find maximum likelihood estimate of b, b0 given a set of observations
data = {〈x1, y1〉, . . . , 〈xN , yN〉}.
(Look for maximum of the logarithm of it; change the max to min with the
opostite sign. Do you know this formula?)

argmaxb,b0 (loge(ΠN
i=1(e−(yi−(b·xi +b0))2

))) = argminb,b0 (?)
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Reasons for Modelling Unobserved Variables

We know the model structure, observations are missing.
Unobserved variable makes many features conditionally independent (that is,
simplifies the model).
Often, mixtures of Gaussians are used. It is also our example: clustering.
Also used to learn Hidden Markov Models.
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EM Algorithm

We have a model from the previous step (at the beginning, we may choose
random cluster centers and/or uniformly distributed values or values based on
sample mean and variance.
Use weighted data, each row i with unobserved variables filled by j is the
weight γij .
Expectation step: For each data row:

Calculate the conditional probability of possible values of unobserved variables
given the model.

Maximize step: for some models we know:
gaussians - mean and standard deviation are maximum likelihood estimates of
µ, σ,
discrete - the ratios of observed counts.
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Mixture of Two Gaussians, one input feature x

Model parameters: π, µ1, σ
2
1 , µ2, σ

2
2 , initialize µ randomly, π = 0.5, σ2 =

sample variance, π prior of the second cluster
Expectation – step: fill the data, estimate weights, γi = P(Ci = 2|xi ):

γi = πφθ2 (xi )
(1− π)φθ1 (xi ) + πφθ2 (xi )

Maximize – step: estimate new model,

µ1 =
∑N

i=1(1− γi )xi∑N
i=1(1− γi )

σ2
2 =

∑N
i=1 γi (xi − µ2)2∑N

i=1 γi

π =
∑N

i=1 γi

N
iterate E–M until convergence.
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Mixture of K Gaussians

Model parameters π1, . . . , πk , µ1, . . . , µk ,Σ1, . . . ,Σk such that
∑K

k=1 πk = 1.
Expectation: weights of unobserved ’fill–ins’ k of variable C :

pik = P(C = k|xi ) = α · P(xi |Ci = k) · P(Ci = k)

= πkφθk (xi )∑K
l=1 πlφθl (xi )

pk =
N∑

i=1
pik

Maximize: mean, variance and cluster ’prior’ for each cluster k:

µk ←
∑

i

pik
pk

xi

Σk ←
∑

i

pik
pk

(xi − µk)(xi − µk)T

πk ← pk∑K
l=1 pl
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FIGURE 8.5. Mixture example. (Left panel:) His-
togram of data. (Right panel:) Maximum likelihood
fit of Gaussian densities (solid red) and responsibility
(dotted green) of the left component density for obser-
vation y, as a function of y.
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Hierarchical Mixture of Experts

a hierarchical extension of naive
Bayes (latent class model)
a decision tree with ’soft splits’
splits are probabilistic functions of a
linear combination of inputs (not a
single input as in CART)
terminal nodes called ’experts’
non–terminal nodes are called
gating network
may be extended to multilevel.
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Hierarchical Mixture of Experts

data (xi , yi ), i = 1, . . . ,N, yi continuous or
categorical, first xi ≡ 1 for intercepts.

gi (x , γj) = eγ
T
j x∑K

k=1
eγ

T
k x , j = 1, . . . ,K children

of the root,

g`|j(x , γj`) = eγ
T
j`x∑K

k=1
e
γT

jk x , ` = 1, . . . ,K

children of the root,
Terminals (Experts)

Regression Gaussian linear reg. model, θj` = (βj`, σj`2),
Y = βT

j` + ε

Classification The linear logistic reg. model:
Pr(Y = 1|x , θj`) = 1

1+e
−θT

j`x

EM algorithm
∆i , ∆`|j 0–1 latent
variables – branching

E step expectations for ∆’s
M step estimate parameters HME

by a version of multiple
logistic regression.
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