Bayesian Learning

Complicated derivation of known things.

@ Maximal aposteriory probability hypothesis (MAP) (nejpravdépodobné;si
hypotéza)
Maximum likelihood hypothesis (ML) (maximalné vérohodné hypotéza)
Bayesian optimal prediction (Bayes Rate)
EM algorithm
Naive Bayes model (classifier)
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Candy Example (Russel, Norvig: Artif. Intell. a MA)

@ Our favorite candy comes in two flavors: cherry and lime, both in the same
wrapper.

@ They are in a bag in one of following rations of cherry candies and prior
probability of bags:

hypothesis (bag type) hy ho h3 hy hs
cherry 100% | 75% | 50% | 25% | 0%
prior probability h; 10% | 20% | 40% | 20% | 10%

@ The first candy is cherry.

MAP Which of h; is the most probable given first candy is cherry?
/es estimate What is the probability next candy from the same bag is cherry?
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Maximum Aposteriory Probability Hypothesis (MAP)

@ We assume large bags of candies, the result of one missing candy in the bag

is negligable.
@ Recall Bayes formula:
P(B = clh;) - P(h; P(B = cl|h;) - P(h;
P(hlB— ¢ — PB=clh) P(h) __ P(B=clh)- P(h)
2 j1,..5 P(B = clhj) - P(h;) P(B = c)

@ We look for the MAP hypothesis maximalné aposteriorné pravdépodobna
argmax; P(h;|B = ¢) = argmax; P(B = c|h;) - P(h;).

@ Aposteriory probabilities of hypotheses are in the following table.
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Candy Example: Aposteriory Probability of Hypotheses

’ index\ prior \ cherry ratio \

cherry AND h;

| aposteriory prob. h; |

i | P(h) | P(B=clh) | P(B=clh) P(h) P(hi|B = c)
1 0.1 1 0.1 0.2

2 | 02 0.75 0.15 03

3 | 04 05 0.2 0.4

7 | 02 0.25 0.05 0.1

5 | 01 0 0 0

@ Which hypothesis is most probable?

@ What is the prediction of a new candy according the most probable

hmap = argmax; P(datal|h;) - P(h;)

hypothesis hyap?
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Bayesian Learning, Bayesian Optimal Prediction

o Bayesian optimal prediction is weigthed average of predictions of all
hypotheses:

P(N =c|data) = > P(N = cl|hj,data)- P(hj|data)
j=1,...,5

= Y P(N=c|hj)- P(hj|data)
j=1,...,5

@ If our model is correct, no prediction has smaller expected error then
Bayesian optimal prediction.

@ We always assume i.i.d. data, independently identically distributed.

@ We assume the hypothesis fully describes the data behavior. Observations are
mutually conditionally independent given the hypothesis. This allows the last
equation above.
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Candy Example: Bayesian Optimal Prediction

i [P(RB=c) | P(N=c|h) | P(N=clh) - P(hi]B = c)
1 0.2 1 0.2
2 03 0.75 0.225
3 0.4 05 0.2
4 0.1 0.25 0.02
5 0 0 0
(2] 1 \ \ 0.645
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Maximum Likelihood Estimate (ML)

@ Usually, we do not know prior probabilities of hypotheses.

@ Setting all prior probabilities equal leads to Maximum Likelihood

Estimate, maximalné vérohodny odhad

@ Probability of data given hypothesis = likelihood of hypothesis given data.

@ Find the ML estimate:

hye = argmax; P(datal h;)

’ index \ prior \ cherry ration \ cherry AND h; \ Aposteriory prob. h; ‘

i | P(h) | P(B=clh) | P(B=clh)P(h) P(h|B = c)
1 0.1 1 0.1 0.2

2 0.2 0.75 0.15 0.3

3 04 0.5 0.2 0.4

4 0.2 0.25 0.05 0.1

5 0.1 0 0 0

@ In this example, do you prefer ML estimate or MAP estimate?

o (Only few data, overfitting, penalization is usefull. AIC, BIC)
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MAP and Penalized Methods

o MAP hypothesis maximizes:
huvap = argmax; P(datalh;) - P(h;)
@ therefore minimizes:

hyap = argmaxyP(data|h)P(h)
argminy[—logy P(data|h) — loga P(h)]
= argminy[—loglik + complexity penalty]

argminy[RSS + complexity penalty] Gaussian models

= argmaxy[loglik — complexity penalty] Categorical models
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Remark: Bayesian Parameter Learning

@ We represent probability distribution on parameters.
@ For binary features, Beta function is used, a is the number of positive
examples, b the number of negative examples.

beta[a, b](0) = af*1(1 — 9)>~!
o (For categorical features, Dirichlet priors and multinomial distribution is used.
(Dirichlet-multinomial distribution).
@ For Gaussian, p has Gaussian prior, % has gamma prior (to stay in

exponential family).)
@ Beta Function:

~| pos,neg
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[ 55
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Maximum Likelihood: Continuous Parameter 6

@ New producer on the market. We do not know the ratios of candies, any hy,
kde 0 € (0; 1) is possible, any prior probabilities hy are possible.

@ We look for maximum likelihood estimate.

@ For a given hypothesis hg, the probability of a cherry candy is 6, of a lime
candy 1 — 6.

@ Probability of a sequence of ¢ cherry and / lime candies is:

P(datalhg) = 6 - (1 — 0)".
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ML Estimate of Parameter 6

@ Probability of a sequence of ¢ cherry and / lime candies is:
P(datalhg) = 6 - (1 — 0)'
@ Usual trick is to take logarithm:
LL(hg; data) = c - log, 0 + I - log,(1 — 6)

e To find the maximum of LL (log likelihood of the hypothesis) with respect to
0 we set the derivative equal to O:

OLL(hg;data) ¢ |
00 6 1-90
c_ L
6 1-96

c
Q_C—H'
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ML Estimate of Multiple Parameters

@ Producer introduced two colors of wrappers - red r and green g.
@ Both flavors are wrapped in both wrappers, but with different probability of
the red/green wrapper.
@ We need three parameters to model this situation:
P(B=c) | P(W=rB=c) | P(W=rB=1)
0o 01 0>
@ Following table denotes observed frequences:
wrapper\ flavor | cherry | lime
red re r
green 8c 8i
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ML Estimate of Multiple Parameters

P(W =r|B=c¢)

P(W =r[B=1)

Parameters are:
o

61

6>

Probability of data given the hypothesis hy, g, g, is:

P(data|hgo791792) =
LL(hgoygl 027 data)

Q{C . (1 _ gl)gc . 96c+gc . gg . (1 _ gz)g/ . (1 _
re |0g2 01+ 8c |0g2(1 - 91) + (rc + gc) |0g2 6o
+rylog, 0>+ g |og2(1 — 92) + (I‘/ + g/) |og2(1 — 90)

eo)fIJrg/

We look for maximum:

aLL(hgoﬂlﬁz; data) e+ 8¢ _h + 8
06g B 0o 1— 6
00 — ("c +gc)
g = —— =7
re + 8c +n+ 14
6LL(h90,91792; data) _ o g
00, 0, 1—06,
9, = — .
n+ g
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Discrete Variables

@ Maximum Likelihood estimate is the ratio of fequences.

o Naive Bayes Model, Bayes Classifier assumes independent features given
the class variable.
o Calculate prior probability of classes P(c;)
e For each feature f, calculate for each class the probability of this feature
P(flci)
o For a new observation of features f predict the most probable class
argmaxc, P(f|ci) - P(ci).
Bayes factor

P(ci)
P(q)

o after each observation x, multiply it by the bayes factor
e that is:

o We can start with a comparison ratio of two classes

P(xplci)
P(Xp‘cj)

P(C,“Xl,.“,xp) B P(C,‘) P(X1|Cf) P(Xp|cf)

P(gha,.- %) — P(g) Plalg) 7 Plele)’
@ Bayesian Networks learn more complex (in)dependencies between features.
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Bayesian Information Criterion BIC

@ Suppose a set of candidate models M,,,m=1,... M and corresponding
parameters 6,
training data Z = {x;, y;}

P(Mm‘z) X ’D(Mm)' P(Z|Mm)
x P(Mm)«/P(Z\Gm,Mm)P(9m|Mm)d9m

N
i=1

Typically we assume that the prior over models is uniform.
For P(Z|M,,) a Laplace approximation is used

log P(Z| M ) = log P(Z|0m, M) — %’" log N + O(1)

o O, maximum likelihood estimate
o dp, the number of free parameters in model M,,.

If we define our loss function to be —2/0gP(Z|6m, M)
we get the BIC criterion

BIC = —2 - loglik + (logN) - d.
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BIC Model Comparison

@ We can estimate the posterior probability of each model M,, as
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Bayesian Methods

o We specify a sampling model P(Z|0)
@ and a prior distribution for parameters P(6)

@ then we compute
P(Z]9) - P(6)
| P(Z]0) - P(0)d6’

P(6Z) =

o we may draw samples
e or summarize by the mean or mode.
o it provides the predictive distribution:

P(z""|Z) = / P(z""|0) - P(6|Z)do.
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Bayesian smoothing example

@ Training data Z = {z, ...
Zi = (X,‘,y,'), i= 1,...7N.

@ We look for a cubic spline with >
three knots in quartiles of the X

values. It corresponds to
basis hj(x), j=1,...,7.

@ We estimate the conditional mean
7
E(Y[X = x): p(x) = 32— Bihi(x)
o Let H be the N matrix h;(x;).

© RSS [ estimate is
B=(HTH)"'HTy.

We assume to know o2, fixed

2wk ; 1T 7]

B-spline Basis

\“ \
O

B-spline

T=1 7 = 1000

p(z)

u(
)

;

15 20 25 30 00 05 10 15 20
T xz

x;, we specifying prior on § ~ N(0,7X).

2
EBZ) = (H'H+Z5 1) HTy
T
2
E(u(x)alz) = h(t)T(HTH+ Z5-1)"1HTy,
T
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Bootstrap

\

@

=Gz, ey Sinipies

® We select N samples with replacement

@ the probability of not being selected is roughly 0.368

— () N
o Err =LY, ﬁ Dpec—i Ly, £2(x)).

@ more in Model assessment and selection slides.
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Missing data (T.D. Nielsen)

Die tossed N times. Result reported via noisy telephone line. When transmission
not clearly audible, record missing value:

4,2,7,6,5,4,7.3,4,1,...

“2" and "“3" sound similar, therefore:

1/4 k=23
P(Yf=?|Xf=k)=P(Mf=1Xf=k):{ 1?8 k=1456
11,21 _1
PR E i L
Distribution of the Y is (for fair die): 2,3 85 =g
1456 1l-L
tain as the maximum likelihood

If we simply ignore the missing data items, we obt
estimate for the parameters of the die:

7117 7 7,6
= (=2 oy ) * ¢ = (0.175,0.15,0.15,0.175,0.175,0.175)
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Incomplete data

How do we handle cases with missing values:
@ Faulty sensor readings.
@ Values have been intentionally removed.
@ Some variables may be unobservable.
How is the data missing?
We need to take into account how the data is missing:

@ Missing completely at random The probability that a value is missing is
independent of both the observed and unobserved values (a monitoring
system that is not completely stable and where some sensor values are not
stored properly).

@ Missing at random The probability that a value is missing depends only on
the observed values (a database containing the results of two tests, where the
second test has only performed (as a “backup test”) when the result of the
first test was negative).

o Non-ignorable Neither MAR nor MCAR (an exit poll, where an extreme
right-wing party is running for parlament).
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EM - Algorithm

e EM algorithm is used for learning a model with unobserved variables (for
example, cluster membership).

@ We assume (hope) they are missing at random.

@ It is an iterative algorithm with two steps:
o Expectation, fills in the unobserved data based on current M model, and
e Maximize, finds maximum (log)likelihood model given the data filled in E
step.

Example: T.D. Nielsen
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Learning by EM - Algorithm

Clustering (observed may be of categorical and/or continuous)
Hidden Markov Models
Latent Dirichlet Allocation

Hierarchical Mixtures of Experts

and others.
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ML Estimate of Gaussian Distribution Parameters

@ Assume x to have Gaussian distribution with unknown parameters . a o.

—(x=p)?
@ Our hypotheses are hy, , = ﬁe 27
@ We have observed xi, ..., X,.
o Log likelihood is:
N (x=p)
LL = lo e 22
1 (x5 — n)?
= N-(lo - J
(e o) ~ 2" 202

@ Find the maximum.
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Linear Gaussian Distribution

@ Assume random variable (feature) X.

@ Assume goal variable Y with linear gaussian distribution where = b - x + by
—(y—=((b-x+b9))?
and fixed variance 02 p(Y|X = x) = N(b-x + by;0) = —~—e T

2no
@ Find maximum likelihood estimate of b, by given a set of observations

data = {(x1, 1), -, {(xn, yn)}-

@ (Look for maximum of the logarithm of it; change the max to min with the
opostite sign. Do you know this formula?)

argmaxp, b, (loge(MLy (€0 +0*))y — argminy, 4 (7)
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Reasons for Modelling Unobserved Variables

@ We know the model structure, observations are missing.

@ Unobserved variable makes many features conditionally independent (that is,
simplifies the model).

o Often, mixtures of Gaussians are used. It is also our example: clustering.
@ Also used to learn Hidden Markov Models.
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EM Algorithm

@ We have a model from the previous step (at the beginning, we may choose
random cluster centers and/or uniformly distributed values or values based on
sample mean and variance.

@ Use weighted data, each row i with unobserved variables filled by j is the
weight ;.
o Expectation step: For each data row:
o Calculate the conditional probability of possible values of unobserved variables
given the model.
@ Maximize step: for some models we know:
e gaussians - mean and standard deviation are maximum likelihood estimates of

W, o,
o discrete - the ratios of observed counts.
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Mixture of Two Gaussians, one input feature x

o Model parameters: 7, ji1, 02, 12, 03, initialize g randomly, 7 = 0.5, 0% =
sample variance, 7 prior of the second cluster

@ Expectation — step: fill the data, estimate weights, v, = P(C; = 2|x;):

_ 7T¢92 (Xl')
(1 =)o, (xi) + o, (x;)

@ Maximize — step: estimate new model,

S (1= )x
Y (=)

N
2 _ Zi:l Yi(xi — N2)2
02 - N
Z;=1 Vi

N
S Dz Vi

N

i

p =

o iterate E-M until convergence.
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Mixture of K Gaussians

@ Model parameters 71, ..., Tk, f1,- -, ks 21, - -, 2k Such that Zszl T = 1.
@ Expectation: weights of unobserved 'fill-ins’ k of variable C:

Pik = P(C:k|x,):aP(x,\C,:k)P(C,:k)
Zf:l 7T'/¢9, (Xi)

N
Pk = E Pik
i=1
@ Maximize: mean, variance and cluster 'prior’ for each cluster k:
Pik
Br E — X
— Pk

5 (Xi - Mk)(Xi - Mk)T IIIIII aalllann /\/\

o 2 4 6 0 2 4 6
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Density Classification

density
0.05 0.10 0.15 0.20 0.25
|
1
Il

a1 39
Model Parameters
2
L

Observed Data Log-fikeihood
2

5 10 15 20 T T T T T
Heration N 2 3 a 5
Latent Data Parameters
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Hierarchical Mixture of Experts

@ a hierarchical extension of naive
Bayes (latent class model)

@ a decision tree with 'soft splits’ » s \
@ splits are probabilistic functions of a ) N\
linear combination of inputs (not a
. . . Gati Gati
single input as in CART) Networ Networ
o terminal nodes called 'experts’
@ non—terminal nodes are called an! N\ o
g1 / \ 921 112 / \ 2[2
gating network \
@ may be extended to multilevel. Expert, Expert, Expert, Expert
Network Network Network Network
Pr(y|z, 611) Pr(y|z, 621) Pr(y|z, 012) Pr(y|z, 622)
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Hierarchical Mixture of Experts

e data (x;,y;), i=1,..., N, y; continuous or
categorical, first x; = 1 for intercepts.

T /
~Tx .
e J . . / \
o gi(x,v)=————+,j=1,...,K children ; -
&%) T Gl St S
k=1 \
of the root,
T
v.,x 9y 9212
_ e j¢ _ 9 92|
Ogglj(X/}/j[)—iK Wlx,e—l,...,K
J
k=1 Expert, Expert, Expert, Expert
H Network Network Network Network
children of the root, Pryle.0n)  Pr(yle.0x) Pr(yle,012)  Pr(yle,022)

e Terminals (Experts) o EM algorithm

ession Gaussian linear reg. model, 0, = (ng,aj£2), o A; Ay 0-1 latent
I J

_ /T
Y =0 +e variables — branching
cation The linear logistic reg. rlnodeI: E step expectations for A's
Pr(Y =1|x,05) = ——+ i
14e it M step estimate parameters HME

by a version of multiple
logistic regression.
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