Undirected (Pairwise, Continuous) Graphical Models

@ No specific goal variable

@ Any variable may be taken as the goal

o the generative model represents the full probability distribution P(X).

@ Missing edges represent conditional independence of the variables.
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Gaussian Graphical Models

e Multivariate Gaussian Distribution on variables X = (Xi,..., X))
=1 =3 (=) (x—p)
° ¢(x) \/me 2
o |.| is the determinant. we denote p the number of components in x. Then
[2X| = (27)P|Z].

o If X is not invertible it has dependent columns. It means that the variables x;
are lineary dependent.
o If the rank of X is ¢ then there exists a matrix A and a vector v so:
e x = Az + v for new coordinates z with £ dimensions
e We just consider the new coordinates and assume X has a full rank.
@ Applications: genomics and proteomics, Cyclomeric dataset in ESLII.

Margin No. 2

/
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Data: carcass

Data: carcass #Source: Soren Hojsgaard, David Edwards, Steffen Lauritzen:
Graphical Models with R, Springer.

mean.
Fatll 16.00
Meatll 52.00
Fat1l2 14.00
Meatl2 52.00
Fat1l3 13.00
Meat1l3 56.00
LeanMeat  59.00
2  Fatll Meatll Fatl2 Meatl2 Fatl3 Meatl3 LeanMeat
Fatll 11.34 0.74 8.42 2.06 7.66 -0.76 -9.08
Meatll 0.74 32.97 0.67 35.94 2.01 31.97 5.33
Fatl2 8.42 0.67 8.91 0.31 6.84 -0.60 -7.95
Meat12 2.06 35.94 0.31 51.79 2.18 41.47 6.03
Fat13 7.66 2.01 6.84 2.18 7.62 0.38 -6.93
Meatl3 -0.76 31.97 -0.60 41.47 0.38 41.44 7.23
LeanMeat  -9.08 533 -7.95 6.03 -6.93 7.23 12.90
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Concentration matrix

e Concentration (Precision, koncentracni) matrix

K=3x"1

For u # v, k,, = 0 if and only if y, and y, are conditionally independent given all
other variables.

k*¥100 Fatll Meatll Fatl2 Meatl2 Fatl3 Meatl3 LeanMeat
Fatll 44 3 -20 -7 -16 4 10
Meat11 3 16 -3 -6 -6 -6 -3
Fatl2 -20 -3 54 6 -21 -5 9
Meat12 -6 6 14 -1 -9 -0
Fatl13 -16 -6 -21 -1 56 3 7
Meat13 4 -6 -5 -9 3 16 -1
LeanMeat -3 9 -0 7 -1 26
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Partial correlation matrix

Definition (Partial correlation matrix)

Partial correlation matrix is defined from K by

_kuv
Puv|V\{uwv} = /7/(”” kvv .

Lemma

In contrast to concentrations, the partial correlations are invariant under a change
of scale and origin in the sense that if X;" = a;X; + b;, j=1,...,p then
avauk;jv = kyy and PT,\,W\{W} = Puv|V\{uv}-

p*100 Fatll Meatll Fatl2 Meatl2 Fatl3 Meatl3 LeanMeat

Fatll - -11 41 30 32 -16 -29
Meatll -11 - 9 41 19 35 16
Fatl2 41 9 - -24 38 18 -24
Meat12 41 -24 - 2 61 2
Fat13 32 19 38 2 - -9 -18
Meatl3 -16 35 18 61 -9 - 7
LeanMeat 16 -24 2 -18 7 -
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Models

The simplest model just removes edges with small |p,y|v\fuv3|. More advanced
AIC, BIC criteria will be introduced later.

AIC BIC

eanMeal
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Undirected Graphical Models and Their Properties

Definition (Undirected Graphical Model, Markov Graph)

An Undirected Graphical Model (Markov graph, Markov network ) is a graph
G = (V, E), where nodes V represent random variables and the absence of an
edge (A, B) denoted A 1L B implies that the corresponding random variables are
conditionally independent given the rest.

Al B= ALB|V\ {A, B}. (4)

(4) is known as the pairwise Markov independencies of G.

Definition (Separators)

o If A, B and C are subgraphs, then C is said to separate A and B if every
path between A and B intersects a node in C.

o C is called a separator.

@ Separators break the graph into conditionally independent pieces.
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Markov Properties

Definition (Global Markov Property)

A Markov graph G fulfills a Global Markov Property (5) iff for any subgraphs A,
B and C holds:

o if C separates A and B then ALB|C, that is

A 1 B|C = ALB|C. (5)

Theorem

| A

The pairwise and global Markov properties of a graph are equivalent for graphs
with positive distributions.

@ Gaussian distribution is always positive.
@ We may infer global independence relations from simple pairwise properties.

@ The global Markov property allows us to decompose graphs into smaller more
manageable pieces.
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Markov Random Fields (Markovska nahodna pole)

@ A probability density function f over a Markov graph G with the set of
maximal cliques {Cy, ..., Cx} can be represented as

f(x) = . I ¢itxe) =vilxa) - vulxc) (6)

@ where ); are positive functions called clique potentials.

@ they capture the dependence in X, by scoring certain instances xc, higher
than others.

e with the normalizing constant (partition function) Z

Z= / exp| Y loggilyc)
X

i=1,....k

@ For Markov networks with positive distributions the probability density
function (6) implies a graph with independence properties defined by the
cliques in the product.
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Pairwise Markov Graphs

@ A graphical model does not always uniquely
specify the higher—order dependence structure of
ta joint probability distribution.

FOxy2) = ZU(xy)ilx 2l 2)

FO(x,y.2) = %w(wv 2) @7@

@ For Gaussian distribution, parwise interactions
fully specify the model.
@ We focus on pairwise Markov Graphs

e where at most second order interactions are represented (like f(z)).
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Undirected Gaussian graphical model

Definition (Undirected Gaussian graphical model)

An undirected Gaussian graphical model is represented by an undirected graph
G =(X,E), X ={Xq,..., Xy} represent the set of variables and E is a set of
undirected edges.

When a random vector x follows a Gaussian distribution N,(u,X), the graph G
represents the model where K = Y1 is a positive definite matrix with k,, =0
whenever there is no edge between vertices u, v in G.

This graph is called the dependence graph of the model.

For any non adjacent vertices u,v € G it holds: ullv|X\ {u, v}.

Definition (Generating class)

Let C = {C,..., Cc} be the set of cliques of the dependence graph G. A set of
functions g1(), (), - . ., gk() defined on gj(xc,) is called a generating class for
the distribution

fx)= ]I ailxc).

i k
DEEED!
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Marginalization

o We have\/ﬁe_%(x—u)zfl(x—ﬂ)

@ We want the distribution over variables
{X33X57X7} - {Xla cee 7Xp}

Marginal of a Gaussian Distribution

The marginal of a Gaussian distribution is
calculated by removing appropriate dimen-
sions from the mean and covariance matrix.

o p357 = (13, /15, f17) and

Y33 Y35 X7
Y357 = |¥53 Xs5 Xs7
Y73 X75 X7
® Dy x50 =
1 e*%(X3,5,7*Ma,s,?)zg_,ég(xs,SJ*H3,5,7)

A/ |27TZ3,5,7|
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Conditioning

o We ame for ¢(A|B) where

o AC {x,...,%} having g elements,
o the rest B={x1,...,%x} \ A has (p — q) elements.

@ We rearrange the rows and columns to have A together. Then we get

XA HA
X = one column), u = one column),
K =[] )

s _ [ZAA > B
YA 2B

qgxq gx(p—q)
p—q)xq (pP—q)x(p—q)|

Conditional Gaussian

The parameters of the conditional Gaussian distribution ¢(A|B = b) =
N(pag=b, Zag=b) are:

] with dimensions {(

fap=s = pa+ZasTps(b—ps)

ZA|B=b = ZAA — ZABZEéZBA-

Covariance matrix differs but does not depend on the observation b. It depends

on the fact B was observed.
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Conditional Gaussian Example

o 1T =(1,2,3,4)

100 1 5 4 s 51 [0.484 0.055
1 10 2 6 ® #ABZBB = (0242 0.528
°r=15 5 10 3 !
= T asToi(b —
4 6 3 10 ® LaB=b 1,UA+0A88 B%(O MB()2 .
. 484 0.055] [(2.8 —
o We observed (X3,X;) to be @ pugp = [2} + [0.242 0.528} {(4_1 B 4)]
(2.8,4.1)
o We ask for ¢(A|B) = ® fiap = [ﬂ + [_000%313} = [(2)?)8&81171]
P({ X1, Xo}[{ Xz, Xa}) ' o
s 5 4 ® Y AB=h = LAA — LABL gL BA
i ! 6} oy, [0 1] [253 2266
10 3 AlB=b= 11 10 2.266 4.136
°res= |3 10] ox. - [12530 3266
. [0l —0033 AETh T 3,266 14.136
®Xes= | 0033 0.1 }
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Partition Matrix Inverse Properties

Kaa Kas (zAA ZAB)_(/AA
Kea Kss) \XBa XBs 0

o Top right:
KaaXag + KagXps=0
~KaaZapXgs = Kas
YT gy = —KiaiKas.

@ and top left, substitute (7):

KaaXaa + KapXpa = laa
KaaXaa
Kaa

+

Yan — ZasXppZnA

Pl  Undirected (Pairwise Continuous) Graphical Models 2 36 - 109
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Regression Coefficients

pag—p = fa+XasTps(b— pis)
Yas=b = Xaa— Laslppisa

o Consider x; to be a linear function of others with the noise e; ~ N(0,0?):

X12..p = a1+ Prxa+ Bzxg+ ...+ Bpxp e

@ Set A the first dimension, B the remaining (p — 1) x (p — 1) matrix:

X2
XUB=(ar )T = Hag+ZasTga(|---| —ns) +e
Xp
o Recall (8): Yas¥gs = —KuaKas
o then o7 = ;- with coefficients /3
(ki2, ..., kip)

(B2, -+, P1d) = —

ki1
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Parameter Learning (may be omitted)

@ Let us have the data xy,...,xy over variables x ~ N,(u, X)

°eS=1% Z,{V:l(x,- —X)(x; — X)T is the empirical covariance matrix.

@ Our model is represented by the concentration matrix © = ¥~ and mean p.
o Log-likelihood of the data is

N N N, _ -
logl(©, 1) = Elogdet(e) - Etr(@S) - E(X —uw)TO(x — p).

o for a fixed © is the maximum for p: p = x and the last term is 0. We get

@ logl(®©, ) x logdet(©) — tr(©S)

® where tr(©S) =3, %", Suvkuv, therefore only s,, corresponding to non-zero
k,, are considered by the sum.

@ We replace the equality conditions by Lagrange multiplyers:
£c(©) = logdet(©) — tr(©S) — > (; 1y¢e VikOik

@ We maximize. The derivative © should be zero (I is a matrix with non-zero
for missing edges):

@ '-5-T=0
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Towards the Algorithm (may be omitted)

We iterate one row/column after another.
We start with the sample covariance matrix

W0e5

We derive the formula for the last row/column: the derivative

Wi wio S11 s M1 712) —0
T - T - T =
Wip W S1p S22 Y12 722

The upper right block can be written as wyp — s;p — 12 = 0.
o W is inverse of ©

Wi wi) (O b2\ _ (1 0
le W22 917; 922 OT 1
@ therefore the last column without last row is:

wip = —Wi1012 /00 = Wi

Substitute into the derivative Wi18 — s10 — y12 =0
A *

we solve for the rows with zero v: 3* = (W)~ tsfy.
The diagonal 6y, is (1 bottom right): é = wyp — whp.
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Estimation of an Undirected Graphical Model Parameters

1: procedure GRAPHICAL REGRESSION:( S sample covariance )
2 W <« S initialize

3 repeat

4 for j=1,2,...,pdo

5: Partition W; jth row and column, Wi; the rest
6 solve Wy 5" — si, = 0 for reduced system

7 ,BA’ — B* by padding with zeros

8 update wyp < Wllﬁ

9 end for

10: until convergence

11: for j=1,2,...,pdo

12: lines 5:-8: above and

13: solve 6y < m

14: solve 912 < 76\ . 922

15: end for

16: end procedure
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Example

I

Machine Learning

[1.00,1.16,4.00] "

H 10.00 1.00
1.00 10.00
Wo=5=1500 200
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2.00 10.00 3.00 Why =
| 6.00 3.00 10.00
[10.00  6.00 . _
| 6.00 10.00} Wa =
[0.156  —0.094 we-l
|—0.094 0.156 22 -
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Structure Learning

@ We add a lasso penalty ||©||; which denotes the L; norm

o the sum of the absolute values of the elements of © and we ignore the

diagonal.

e The negative penalized log-likelihood is a convex function of ©.

@ we maximize penalized log-likelihood
logdet(©) — tr(©S) — A||O]]1
@ the gradient equation is now
O - S—\Sign(®) =0
e sub-gradient notation
o Sign(0) = sign(B) for 6 # 0

o Sign(0i) € [-1,1] for O =0
@ the update for the first row and column will be

W11 — s12 + ASign(3) = 0

e since 3 and 612 have opposite signs.
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Graphical Lasso

1: procedure GRAPHICAL LASsoO:( S sample covariance, A penalty )
2 W <« S + Al initialize

3 repeat

4 for j=1,2,...,pdo

5: Partition W; jth row and column, Wi; the rest

6 solve Wi18 — s12 + ASign(3) = 0 using the cyclical

7 ... coordinate-descent algorithm for the modified lasso
8 end for

9 until convergence

10: forj:122,...,pdo

11: solve 05y + m

12: solve 912 “— —B . 922

13: end for

14: end procedure
15: procedure COORDINATEDESCENT:( V « Wiy )
16: repeat j=1,2,....p—1

17: B; = S(s12 — Xy ViiB3i: M)/ Vi
18: until convergence
19: end procedure #5(x, t) = sign(x)(|x| — t)+
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Graphical Lasso Properties

o Computational speed

The graphical lasso algorithm is extremely fast

can solve a moderately sparse problem with 1000 nodes in less than a minute.
It can be modified to have edge—specific penalty parameters Aj

setting Ajx = oo will force fj to be zero

graphical lasso subsumes the parameter learning algorithm.

@ Missing data
e some missing observations may be imputed by EM algorithm from the model
o latent — fully unobserved variables — do not bring more power in Gaussian
graphical model
o latent variables are very important in discrete distributions (later).

Machine Learning Undirected (Pairwise Continuous) Graphical Models 2 36 - 109 March 18, 2021 58 / 315



Example
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Gaussian Distribution Reparametrization (skipped)

e For a Gaussian Distribution ¢(x) = ——L— e~ 2(x—m= " (x=)

V|27X| €

@ we define

e concentration matrix K = ¥}
o h=Ku 1 1, T
o a= —%log(2m) + 3log(|K|) — 51" Kp.

@ We can rewrite the join probability density to
_p 1 1
¢(x) = (2m) K[> expq —5(x = p)K(x —p)
—B 1k 1 7 T L r
= (2m)72|K|z exp —5H K+ h X~ 5X Kx
T 1 7
= expqath xfix Kx

1
= exp {a + X hyx, — 2Zu7vKu,vxuxv} :
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Gaussian Distribution Decomposition (skipped)

If the concentration matrix of a multivariate Gaussian distribution fulfills condition
of a graph model then the distribution can be written as a product of distributions
on cliques of the graph.

° ¢(x) =exp {a + Ycuhux, — %Zu7vKu7vxuxv}
@ Let us have two sets of vertices A, B separated by the set C. Then
Yue A, ve Bk, =0.
o We split the summation in the formula: ¢(x) =
exp { ) a+ zuEALJChuxu + ZVGBUCthv - zVECthv }
_E(Zu,vEAUCKu,vxuxv + ZU7VEBUCKU,VXUXV - Zu,vECI{u,vXuXv)
o therefore ¢(x) = g(A, C)h(C, B).

A C B
A | Kaa  Kac |
C Kac Kcc Kces
B | Kec  Kss |
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Gaussian Processes

@ An infinite (continuous) number of Gaussian variables
@ to any value x a new variable N(u = f(x), Zy|rest)
@ we have only a finite number of observations which means a finite number of
variables
e we can marginalize unobserved variables out (the integral is 1, we multiply by
1, we just remove),
@ we can predict at any x, continuously.

2 2
1 / . 1
50 50
g ' ' g
=] . >
(] ° . o
-1 \/ N -1
_2 -2
-5 , 5 -5 _ 5
input, x input, x
(a), prior (b), posterior
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Gaussian Processes

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning,
the MIT Press, 2006

Definition (Gaussian Process)

A Gaussian process is a set of random variables where any finite subset follows
multivariate Gaussian distribution.

We define the mean m(x) and the symmetric positive semidefinite covariance
function k(x,x!):

E[f(x)]

E[(f(x) = m(x))(f(x) = m(x))]

==
<
SO
sINEV)
N— N
[l

a Gaussian process is
f(x) = GP(m(x), k(x,x)).

We assume m(x) = 0 it simplifies the formulas.
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Brownian Motion (Wiener Process)

https://www.coursera.org/lecture/stochasticprocesses /week-4-6-two-definitions-of-a-brownian-
motion-THRqL

Definition (Brownian motion 1)

@ By = 0 for sure
@ stationary and independent increments
@ B, — By ~ N(0,s — t)
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Definition (Brownian motion 2)

Definition (Brownian motion 1) Gaussian process with
@ By =0 almost surely e m=0 and
@ B; stationary and e k(x,y) = min(x,y).

independent increments - m—
Positive semidefinite:

OBS—BtNN(O,S—t) Ommts) fo ft
@ fi(x)fs(x)=1iffx € [O, t]&x € [0, s]

Lemma (2=1)
e K(0,0) = min(0,0) =0
@ The process has variance 0 at t = 0 and m(0) = 0.

@ covariance is linear in both arguments, s > t

cov(Bs — By, Bs — B;) = cov(Bs, Bs) — cov(B:, Bs) — cov(Bs, Bt) + cov(B:.
= s—2t+t=s5—t
@ increments, s > t > b > aQ # independence skipped, from Gaussian vectors
cov(By — Bs, Bs — B:) = cov(Bp, Bs) — cov(Bs, Bs) — cov(Bs, Bt) + cov(Bs, B:)

b—a—b+a=0.
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Linear Regression as a Gaussian Process

o Consider ¢(x) set of features of x (or simply the identity ¢(x) = x).
@ Assume the function f is a linear combination of the features with weights w.

o Assume m(x) = 0 to simplify the formula.

Linear function of features (may be omitted)

f(x) = ¢(x)"w with prior w ~ N(0,%,).

e mean E[f(x)] = ¢(x) "E[w] =0
o covariance E[f(x)f(x)] = ¢(x) "E[ww ]p(x!) = ¢(x)TZ,0(x))

o Note that the covariance of outputs f(x) is a function of inputs.

Corresponds to the Gaussian process with the covariance

K(X, XT) = ¢(X)TZ,p0(X]).

o for any number of data samples X.
@ For low number of samples the covariance matrix will be singular.
Now we leave the linearity assumption and change the covariance function.
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Squared exponential covariance function

Definition (Squared exponential covariance function)

Squared exponential (SE) covariance function

2 L|x, — xq|2
cov(f(xp), f(xq)) = k(Xp,Xq) = 0 exp et

with hyperparameters
o (2 lenghtscale,

e 02 signal variance.

@ Again, the covariance on y is defined by the covariance on the inputs x.
@ the covariance defines also the distribution on functions f:

f, ~ N0, K(X., X.)).
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Prediction

@ noisy-free prediction y = f(x)
cov(yp,¥q) = k(xp,xq)
e from noisy observations y = f(x) + ¢, e ~ N(0,02)

COV(yPa)/q) = k(xpaxq)-f—a'%(qu
cov(y) = K(X,X)+oal

@ We observe y and we want to predict f,:

K(X,X)+ 02l K(X, X,
7] wo [ )

@ Predictive distribution

f*|Xay>X*

N(f., cov(f.))
E[f.|X,y, X.] = K(X., X)[K(X, X) + 21"ty
= K(X., X.) = K(Xs, X)[K(X., X) + 0217 K (X, X,)

> 2
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Predictive distribution

£ Xy, Xe ~ N(F.,cov(f.))
fo 2 E[R[X )y, X] =KX, X)[K(X, X) +aal "ty
cov(f,) = K(X., X.) — KX, X)[K(X., X) 4+ 021K (X, X,)

e We denote K = K(X, X), K.(X, X.), for a single variable k, = k(x, x..).
Then for x,:

f. & kl[K+o2 1y

T 2/-1
V(E) = k(xex.) - KT[K + 021 Ik,
Prediction overions [n] [ ] @) j[
@ is a linear function of observations cansian st =)= = ORI -

mlilw

o for a <= (K+a2l) 1ty
° we predlct

F(xe) <= D0 cik(xi,xx)
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Marginal likelihood (may be omitted)

@ 'In sample’ prediction f follows:
£ ~ N(O, K(X, X))

o Noisy-free observations y = f:
| n
log p(y|X) = log p(f| X) = _Ef K™ f — 5 log |K| — 5 log 27
e For noisy observations y|f ~ N(f,o21), y ~ N(0, K + o21)

1 B 1 n
log p(y|X) = —EyT(K +o2l) "ty — 5 log |K + o21| — 5 log 2.
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Hyperparameters ¢, o

@ a. Data are generated by a GP with SE (¢,0¢,0,) = (1,1,0.1) (lenghtscale,

signal variance, noise variance)
@ b. 95% confidence intervals for (0.3,1.08,0.00005)
@ c. 95% confidence intervals for (3.0,1.16,0.89).
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Conditional Covariance (may be

output, f(x)

Figure 2.4: Panel (a) is identical to Figure 2.2(b) showing three random functions
drawn from the posterior. Panel (b) shows the posterior co-variance between f(x) and
f(x') for the same data for three different values of x’. Note, that the covariance at
close points is high, falling to zero at the training points (where there is no variance,
since it is a noise-free process), then becomes negative, etc. This happens because if
the smooth function happens to be less than the mean on one side of the data point,
it tends to exceed the mean on the other side, causing a reversal of the sign of the
covariance at the data points. Note for contrast that the prior covariance is simply
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POMDP Aircraft Collision Avoidance

e multirotor aircraft (drones) and v

helicopters actions N
e turns ®‘ = >
e vertical meneuvers "y @@
e horizontal plane accelerations - < \(
@ QMDP with hyper—parameters *~

o Ks, K1, Rmin Weights was learned,

k weights was = 1. A
o The performance for a specific dy

hyper-parameters is costly to Voy

evaluate. @@ Vo d,

N i

1
R(S, a) = max Rm,‘n, _(kax|ax| + kay|ay|) - Ksm — KT(kdXd)% + kdyd)%)
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Bayesian Optimization

@ Simulate process and evaluate

Gaussian process posterior on the objective function

collision probability il
F(Ks, K7, Rmin) at a minimal
number of points
@ learn a Gaussian model * o w e w  m w
@ find the most promising values to N
evaluate next
o we minimize y = F(Rp) and 0
search the maximal probability of ol V/ L " )
improvement -
o 'the chance to improve’ is Peter I. Frazier: A Tutorial on Bayesian Op-
expressed by the Expected timization, rXiv:1807.02811v1 [stat.ML] 8
improvement (E/) Jul 2018
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Bayesian Optimization

o The Expected improvement (E/) is defined to be:

El(x) = E[(min(Y (X)) = Y(x)"[Y(X) =y]
= E[(min(y) — Y(x))"|Y(X) =]

o this can be solved analytically (¢ cdf, ¢ pdf Gaussian distribution):

El(x) = (min(y) — n(x))® (W) ol (nm(?(;)ﬂ()()>

@ to maximize y:
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Covariance Functions

o radial basis functions RBF ¢(r), for r = |x — x!|
o Modified Bessel functions (for « not integer, the limit otherwise)
X)2m+a

° I (X) = :10 0 mlr(m{f—a-f—l) (5
° K (X) _ 7r I—a(x)=la(x)

sinam

covariance function | expression Stacionary inf. rank

constant 2 y

linear Zd dedxd

polynomial (x- x| + a2)P y

squared exponential exp(—%) y y

Matérn, y:k—i—% 2,,+r(y) <@r)yK,, (%r) y y

exponential exp(—7) y y

~-exponential exp(—(7)") y y

rational quadratic 1+ 2(’5[2 o y y

neural network sin~! 2x" £l - y y
\/(1+2§Tz§)(1+2;7 )
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