
Undirected (Pairwise, Continuous) Graphical Models

No specific goal variable
Any variable may be taken as the goal
the generative model represents the full probability distribution P(X ).
Missing edges represent conditional independence of the variables.

17.3 Undirected Graphical Models for Continuous Variables 637

λjk =∞ will force θ̂jk to be zero, this algorithm subsumes Algorithm 17.1.
By casting the sparse inverse-covariance problem as a series of regressions,
one can also quickly compute and examine the solution paths as a function
of the penalty parameter λ. More details can be found in Friedman et al.
(2008b).
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FIGURE 17.5. Four different graphical-lasso solutions for the flow-cytometry
data.

Figure 17.1 shows the result of applying the graphical lasso to the flow-
cytometry dataset. Here the lasso penalty parameter λ was set at 14. In
practice it is informative to examine the different sets of graphs that are
obtained as λ is varied. Figure 17.5 shows four different solutions. The
graph becomes more sparse as the penalty parameter is increased.
Finally note that the values at some of the nodes in a graphical model can

be unobserved; that is, missing or hidden. If only some values are missing
at a node, the EM algorithm can be used to impute the missing values
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Gaussian Graphical Models
Multivariate Gaussian Distribution on variables X = (X1, . . . ,Xp)
φ(x) = 1√

|2πΣ|
e− 1

2 (x−µ)Σ−1(x−µ)

|.| is the determinant. we denote p the number of components in x. Then
|2πΣ| = (2π)p|Σ|.

If Σ is not invertible it has dependent columns. It means that the variables xj
are lineary dependent.

If the rank of Σ is ` then there exists a matrix A and a vector ν so:
x = Az + ν for new coordinates z with ` dimensions
We just consider the new coordinates and assume Σ has a full rank.

Applications: genomics and proteomics, Cyclomeric dataset in ESLII.
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Data: carcass

Data: carcass #Source: Soren Hojsgaard, David Edwards, Steffen Lauritzen:
Graphical Models with R, Springer.

mean.
Fat11 16.00

Meat11 52.00
Fat12 14.00

Meat12 52.00
Fat13 13.00

Meat13 56.00
LeanMeat 59.00

Σ Fat11 Meat11 Fat12 Meat12 Fat13 Meat13 LeanMeat
Fat11 11.34 0.74 8.42 2.06 7.66 -0.76 -9.08

Meat11 0.74 32.97 0.67 35.94 2.01 31.97 5.33
Fat12 8.42 0.67 8.91 0.31 6.84 -0.60 -7.95

Meat12 2.06 35.94 0.31 51.79 2.18 41.47 6.03
Fat13 7.66 2.01 6.84 2.18 7.62 0.38 -6.93

Meat13 -0.76 31.97 -0.60 41.47 0.38 41.44 7.23
LeanMeat -9.08 5.33 -7.95 6.03 -6.93 7.23 12.90
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Concentration matrix

Concentration (Precision, koncentrační) matrix
K = Σ−1

Lemma
For u 6= v, kuv = 0 if and only if yu and yv are conditionally independent given all
other variables.

k*100 Fat11 Meat11 Fat12 Meat12 Fat13 Meat13 LeanMeat
Fat11 44 3 -20 -7 -16 4 10

Meat11 3 16 -3 -6 -6 -6 -3
Fat12 -20 -3 54 6 -21 -5 9

Meat12 -7 -6 6 14 -1 -9 -0
Fat13 -16 -6 -21 -1 56 3 7

Meat13 4 -6 -5 -9 3 16 -1
LeanMeat 10 -3 9 -0 7 -1 26
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Partial correlation matrix

Definition (Partial correlation matrix)
Partial correlation matrix is defined from K by

ρuv |V\{uv} = −kuv√
kuukvv

.

Lemma
In contrast to concentrations, the partial correlations are invariant under a change
of scale and origin in the sense that if X∗j = ajXj + bj , j = 1, . . . , p then
avauk∗uv = kuv and ρ∗uv |V\{uv} = ρuv |V\{uv}.

ρ ∗ 100 Fat11 Meat11 Fat12 Meat12 Fat13 Meat13 LeanMeat
Fat11 - -11 41 30 32 -16 -29

Meat11 -11 - 9 41 19 35 16
Fat12 41 9 - -24 38 18 -24

Meat12 30 41 -24 - 2 61 2
Fat13 32 19 38 2 - -9 -18

Meat13 -16 35 18 61 -9 - 7
LeanMeat -29 16 -24 2 -18 7 -
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Models
The simplest model just removes edges with small |ρuv |V\{uv}|. More advanced
AIC, BIC criteria will be introduced later.

AIC

Fat11

Meat11

Fat12

Meat13

LeanMeat

Fat13

Meat12

BIC

Fat11

Meat11

Fat12

Meat13

Meat12

Fat13

LeanMeat
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Undirected Graphical Models and Their Properties

Definition (Undirected Graphical Model, Markov Graph)
An Undirected Graphical Model (Markov graph, Markov network ) is a graph
G = (V ,E ), where nodes V represent random variables and the absence of an
edge (A,B) denoted A ⊥⊥ B implies that the corresponding random variables are
conditionally independent given the rest.

A ⊥⊥ B =⇒ A⊥B|V \ {A,B}. (4)

(4) is known as the pairwise Markov independencies of G.

Definition (Separators)
If A, B and C are subgraphs, then C is said to separate A and B if every
path between A and B intersects a node in C .
C is called a separator.

Separators break the graph into conditionally independent pieces.
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Markov Properties

Definition (Global Markov Property)
A Markov graph G fulfills a Global Markov Property (5) iff for any subgraphs A,
B and C holds:

if C separates A and B then A⊥B|C , that is

A ⊥⊥ B|C =⇒ A⊥B|C . (5)

Theorem
The pairwise and global Markov properties of a graph are equivalent for graphs
with positive distributions.

Gaussian distribution is always positive.
We may infer global independence relations from simple pairwise properties.
The global Markov property allows us to decompose graphs into smaller more
manageable pieces.
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Markov Random Fields (Markovská náhodná pole)

A probability density function f over a Markov graph G with the set of
maximal cliques {C1, . . . ,Ck} can be represented as

f (x) =
∏

i=1,...,k
ψi (xCi ) = ψ1(xC1) · . . . · ψk(xCk ) (6)

where ψi are positive functions called clique potentials.
they capture the dependence in XCi by scoring certain instances xCi higher
than others.
with the normalizing constant (partition function) Z

Z =
∫

X
exp

 ∑
i=1,...,k

log gi (yCi )

 .

For Markov networks with positive distributions the probability density
function (6) implies a graph with independence properties defined by the
cliques in the product.
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Pairwise Markov Graphs

A graphical model does not always uniquely
specify the higher–order dependence structure of
ta joint probability distribution.

f (2)(x , y , z) = 1
Z ψ(x , y)ψ(x , z)ψ(y , z)

f (3)(x , y , z) = 1
Z ψ(x , y , z)

For Gaussian distribution, parwise interactions
fully specify the model.

X

Y Z

We focus on pairwise Markov Graphs
where at most second order interactions are represented (like f (2)).
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Undirected Gaussian graphical model

Definition (Undirected Gaussian graphical model)
An undirected Gaussian graphical model is represented by an undirected graph
G = (X ,E ), X = {X1, . . . ,Xp} represent the set of variables and E is a set of
undirected edges.
When a random vector x follows a Gaussian distribution Np(µ,Σ), the graph G
represents the model where K = Σ−1 is a positive definite matrix with ku,v = 0
whenever there is no edge between vertices u, v in G .
This graph is called the dependence graph of the model.

Lemma
For any non adjacent vertices u, v ∈ G it holds: u⊥⊥v |X \ {u, v}.

Definition (Generating class)
Let C = {C1, . . . ,Ck} be the set of cliques of the dependence graph G. A set of
functions g1(), g2(), . . . , gk() defined on gi (xCi ) is called a generating class for
the distribution

f (x) =
∏

i=1,...,k
gi (xCi ).
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Marginalization

We have 1√
|2πΣ|

e− 1
2 (x−µ)Σ−1(x−µ)

We want the distribution over variables
{x3, x5, x7} ⊂ {x1, . . . , xp}

Marginal of a Gaussian Distribution

The marginal of a Gaussian distribution is
calculated by removing appropriate dimen-
sions from the mean and covariance matrix.

µ3,5,7 = (µ3, µ5, µ7) and

Σ3,5,7 =

Σ33 Σ35 Σ37
Σ53 Σ55 Σ57
Σ73 Σ75 Σ77


φx3,x5,x7 =

1√
|2πΣ3,5,7|

e−
1
2 (x3,5,7−µ3,5,7)Σ−1

3,5,7(x3,5,7−µ3,5,7)
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Conditioning

We ame for φ(A|B) where
A ⊂ {x1, . . . , xp} having q elements,
the rest B = {x1, . . . , xp} \ A has (p − q) elements.

We rearrange the rows and columns to have A together. Then we get

x =
[
xA
xB

]
(one column), µ =

[
µA
µB

]
(one column),

Σ =
[

ΣAA ΣAB
ΣBA ΣBB

]
with dimensions

[
q × q q × (p − q)

(p − q)× q (p − q)× (p − q)

]
.

Conditional Gaussian

The parameters of the conditional Gaussian distribution φ(A|B = b) =
N(µA|B=b,ΣA|B=b) are:

µA|B=b = µA + ΣABΣ−1BB(b − µB)
ΣA|B=b = ΣAA − ΣABΣ−1BBΣBA.

Covariance matrix differs but does not depend on the observation b. It depends
on the fact B was observed.
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Conditional Gaussian Example

µT = (1, 2, 3, 4)

Σ =


10 1 5 4
1 10 2 6
5 2 10 3
4 6 3 10


We observed (X3,X4) to be
(2.8, 4.1)
We ask for φ(A|B) =
φ({X1,X2}|{X3,X4})

ΣAB =
[
5 4
2 6

]
ΣBB =

[
10 3
3 10

]
Σ−1BB

.=
[

0.11 −0.033
−0.033 0.11

]

ΣABΣ−1BB
.=
[
0.484 0.055
0.242 0.528

]
µA|B=b = µA + ΣABΣ−1BB(b − µB)

µA|B
.=
[
1
2

]
+
[
0.484 0.055
0.242 0.528

] [
(2.8− 3)
(4.1− 4)

]
µA|B

.=
[
1
2

]
+
[
−0.0913
0.0044

]
=
[
0.9087
2.0044

]
ΣA|B=b = ΣAA − ΣABΣ−1BBΣBA

ΣA|B=b
.=
[
10 1
1 10

]
+
[
2.530 2.266
2.266 4.136

]
ΣA|B=b

.=
[
12.530 3.266
3.266 14.136

]
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Partition Matrix Inverse Properties

(
KAA KAB
KBA KBB

)(
ΣAA ΣAB
ΣBA ΣBB

)
=
(
IAA 0
0 IBB

)

Top right:

KAAΣAB + KABΣBB = 0
−KAAΣABΣ−1BB = KAB (7)

ΣABΣ−1BB = −K−1AAKAB . (8)

and top left, substitute (7):

KAAΣAA + KABΣBA = IAA

KAAΣAA + (−KAAΣABΣ−1BBΣBA) = IAA

K−1AA = ΣAA − ΣABΣ−1BBΣBA (9)
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Regression Coefficients

µA|B=b = µA + ΣABΣ−1BB(b − µB)
ΣA|B=b = ΣAA − ΣABΣ−1BBΣBA

Consider x1 to be a linear function of others with the noise ε1 ∼ N(0, σ21):
x1|2...p = a1 + β12x2 + β13x3 + . . .+ β1pxp + ε1

Set A the first dimension, B the remaining (p − 1)× (p − 1) matrix:

x1|B=(x2,...,xp)T = µA|B + ΣABΣ−1BB(

 x2. . .
xp

− µB) + ε

Recall (8): ΣABΣ−1BB = −K−1AAKAB
then σ21 = 1

k11 with coefficients β

(β12, . . . , β1d ) = − (k12, . . . , k1p)
k11

.
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Parameter Learning (may be omitted)

Let us have the data x1, . . . , xN over variables x ∼ Np(µ,Σ)
S = 1

N
∑N

i=1(xi − x̄)(xi − x̄)T is the empirical covariance matrix.
Our model is represented by the concentration matrix Θ = Σ−1 and mean µ.
Log-likelihood of the data is

logL(Θ, µ) = N
2 logdet(Θ)− N

2 tr(ΘS)− N
2 (x̄ − µ)T Θ(x̄ − µ).

for a fixed Θ is the maximum for µ: µ = x̄ and the last term is 0. We get
logL(Θ, µ) ∝ logdet(Θ)− tr(ΘS)
where tr(ΘS) =

∑
u
∑

v suvkuv , therefore only suv corresponding to non-zero
kuv are considered by the sum.
We replace the equality conditions by Lagrange multiplyers:
`C (Θ) = logdet(Θ)− tr(ΘS)−

∑
(j,k)/∈E γjkθjk

We maximize. The derivative Θ should be zero (Γ is a matrix with non-zero
for missing edges):

Θ−1 − S − Γ = 0
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Towards the Algorithm (may be omitted)
We iterate one row/column after another.
We start with the sample covariance matrix

W0 ← S

We derive the formula for the last row/column: the derivative(
W11 w12
wT
12 w22

)
−
(
S11 s12
sT
12 s22

)
−
(

Γ11 γ12
γT
12 γ22

)
= 0

The upper right block can be written as w12 − s12 − γ12 = 0.
W is inverse of Θ (

W11 w12
wT
12 w22

)(
Θ11 θ12
θT
12 θ22

)
=
(

I 0
0T 1

)
therefore the last column without last row is:

w12 = −W11θ12/θ22 = W11β

Substitute into the derivative W11β − s12 − γ12 = 0
we solve for the rows with zero γ: β̂∗ = (W ∗11)−1s∗12.
The diagonal θ22 is (1 bottom right): 1

θ22
= w22 − wT

12β.
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Estimation of an Undirected Graphical Model Parameters

1: procedure Graphical Regression:( S sample covariance )
2: W ← S initialize
3: repeat
4: for j = 1, 2, . . . , p do
5: Partition W ; jth row and column, W11 the rest
6: solve W ∗11β∗ − s∗12 = 0 for reduced system
7: β̂ ← β̂∗ by padding with zeros
8: update w12 ←W11β̂
9: end for
10: until convergence
11: for j = 1, 2, . . . , p do
12: lines 5:-8: above and
13: solve θ̂22 ← 1

w22−wT
12β̂

14: solve θ̂12 ← −β̂ · θ̂22
15: end for
16: end procedure
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Example

X1

X2 X3

X4

W0 = S =


10.00 1.00 5.00 4.00
1.00 10.00 2.00 6.00
5.00 2.00 10.00 3.00
4.00 6.00 3.00 10.00



W11 =

10.00 2.00 6.00
2.00 10.00 3.00
6.00 3.00 10.00


W ∗11 =

[
10.00 6.00
6.00 10.00

]
W ∗,−111 =

[
0.156 −0.094
−0.094 0.156

]
β∗ = [−0.22, 0.53]T

β = [−0.22, 0, 0.53]T

w12 ← [1.00, 1.16, 4.00]T

W22 =

10.00 1.16 4.00
1.16 10.00 3.00
4.00 3.00 10.00


W ∗22 =

[
10.00 1.16
1.16 10.00

]
W ∗,−122 =

[
0.101 −0.012
−0.012 0.101

]
β2∗ = [0.08, 0.19]T

β2 = [0.08, 0.19, 0]T

w2r ← [1.00, 2, 0.88]T
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Structure Learning
We add a lasso penalty ||Θ||1 which denotes the L1 norm

the sum of the absolute values of the elements of Θ and we ignore the
diagonal.
The negative penalized log-likelihood is a convex function of Θ.

we maximize penalized log-likelihood

logdet(Θ)− tr(ΘS)− λ||Θ||1 (10)

the gradient equation is now

Θ−1 − S − λSign(Θ) = 0 (11)

sub-gradient notation
Sign(θjk ) = sign(θjk ) for θjk 6= 0
Sign(θjk ) ∈ [−1, 1] for θjk = 0

the update for the first row and column will be

W11β − s12 + λSign(β) = 0 (12)

since β and θ12 have opposite signs.
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Graphical Lasso

1: procedure Graphical Lasso:( S sample covariance,λ penalty )
2: W ← S + λI initialize
3: repeat
4: for j = 1, 2, . . . , p do
5: Partition W ; jth row and column, W11 the rest
6: solve W11β − s12 + λSign(β) = 0 using the cyclical
7: . . . coordinate-descent algorithm for the modified lasso
8: end for
9: until convergence
10: for j = 1, 2, . . . , p do
11: solve θ̂22 ← 1

s22−wT
12β̂

12: solve θ̂12 ← −β̂ · θ̂22
13: end for
14: end procedure
15: procedure CoordinateDescent:( V ←W11 )
16: repeat j = 1, 2, . . . , p − 1
17: β̂j ← S(s12j −

∑
k 6=j Vkj β̂j , λ)/Vjj

18: until convergence
19: end procedure #S(x , t) = sign(x)(|x | − t)+
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Graphical Lasso Properties

Computational speed
The graphical lasso algorithm is extremely fast
can solve a moderately sparse problem with 1000 nodes in less than a minute.
It can be modified to have edge–specific penalty parameters λjk
setting λjk =∞ will force θ̂jk to be zero
graphical lasso subsumes the parameter learning algorithm.

Missing data
some missing observations may be imputed by EM algorithm from the model
latent – fully unobserved variables – do not bring more power in Gaussian
graphical model
latent variables are very important in discrete distributions (later).
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Example

17.3 Undirected Graphical Models for Continuous Variables 637

λjk =∞ will force θ̂jk to be zero, this algorithm subsumes Algorithm 17.1.
By casting the sparse inverse-covariance problem as a series of regressions,
one can also quickly compute and examine the solution paths as a function
of the penalty parameter λ. More details can be found in Friedman et al.
(2008b).
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FIGURE 17.5. Four different graphical-lasso solutions for the flow-cytometry
data.

Figure 17.1 shows the result of applying the graphical lasso to the flow-
cytometry dataset. Here the lasso penalty parameter λ was set at 14. In
practice it is informative to examine the different sets of graphs that are
obtained as λ is varied. Figure 17.5 shows four different solutions. The
graph becomes more sparse as the penalty parameter is increased.
Finally note that the values at some of the nodes in a graphical model can

be unobserved; that is, missing or hidden. If only some values are missing
at a node, the EM algorithm can be used to impute the missing values
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Gaussian Distribution Reparametrization (skipped)

For a Gaussian Distribution φ(x) = 1√
|2πΣ|

e− 1
2 (x−µ)Σ−1(x−µ)

we define
concentration matrix K = Σ−1
h = Kµ
a = − p

2 log(2π) + 1
2 log(|K |)− 1

2µ
T Kµ.

We can rewrite the join probability density to

φ(x) = (2π)−
p
2 |K | 12 exp

{
−1
2(x− µ)K (x− µ)

}
= (2π)−

p
2 |K | 12 exp

{
−1
2µ

TKµ+ hT x− 1
2xTKx

}
= exp

{
a + hT x− 1

2xTKx
}

= exp
{
a + Σuhuxu −

1
2Σu,vKu,v xuxv

}
.
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Gaussian Distribution Decomposition (skipped)

Lemma
If the concentration matrix of a multivariate Gaussian distribution fulfills condition
of a graph model then the distribution can be written as a product of distributions
on cliques of the graph.

φ(x) = exp
{
a + Σu∈Uhuxu − 1

2Σu,vKu,v xuxv
}

Let us have two sets of vertices A,B separated by the set C . Then
∀u ∈ A, v ∈ B kuv = 0.
We split the summation in the formula: φ(x) =

exp
{

a + Σu∈A∪Chuxu + Σv∈B∪Chv xv − Σv∈Chv xv
− 1

2 (Σu,v∈A∪CKu,v xuxv + Σu,v∈B∪CKu,v xuxv − Σu,v∈CKu,v xuxv )

}
therefore φ(x) = g(A,C)h(C ,B).

A C B
A KAA KAC
C KAC KCC KCB
B KBC KBB
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Gaussian Processes
An infinite (continuous) number of Gaussian variables
to any value x a new variable N(µ = f (x),Σx |rest)
we have only a finite number of observations which means a finite number of
variables

we can marginalize unobserved variables out (the integral is 1, we multiply by
1, we just remove),

we can predict at any x , continuously.
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Gaussian Processes

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning,
the MIT Press, 2006

Definition (Gaussian Process)

A Gaussian process is a set of random variables where any finite subset follows
multivariate Gaussian distribution.

We define the mean m(x) and the symmetric positive semidefinite covariance
function k(x , x |):

m(x) = E[f (x)]
k(x, x|) = E[(f (x)−m(x))(f (x|)−m(x|))]

a Gaussian process is

f (x) = GP(m(x), k(x, x|)).

We assume m(x) = 0 it simplifies the formulas.
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Brownian Motion (Wiener Process)
https://www.coursera.org/lecture/stochasticprocesses/week-4-6-two-definitions-of-a-brownian-
motion-THRqL

Definition (Brownian motion 1)
B0 = 0 for sure
stationary and independent increments
Bs − Bt ∼ N(0, s − t)
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Definition (Brownian motion 1)
B0 = 0 almost surely
Bt stationary and
independent increments
Bs − Bt ∼ N(0, s − t)

Definition (Brownian motion 2)
Gaussian process with

m = 0 and
k(x , y) = min(x , y).

Positive semidefinite:
min(t, s) =

∫∞
0 ft (x)fs (x)dx

ft (x)fs (x) = 1 iff x ∈ [0, t]&x ∈ [0, s]

Lemma (2⇒1)
K (0, 0) = min(0, 0) = 0
The process has variance 0 at t = 0 and m(0) = 0.
covariance is linear in both arguments, s ≥ t

cov(Bs − Bt ,Bs − Bt) = cov(Bs ,Bs)− cov(Bt ,Bs)− cov(Bs ,Bt) + cov(Bt ,Bt)
= s − 2t + t = s − t

increments, s ≥ t ≥ b ≥ a # independence skipped, from Gaussian vectors

cov(Bb − Ba,Bs − Bt) = cov(Bb,Bs)− cov(Ba,Bs)− cov(Bb,Bt) + cov(Ba,Bt)
= b − a − b + a = 0.
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Linear Regression as a Gaussian Process
Consider φ(x) set of features of x (or simply the identity φ(x) = x).
Assume the function f is a linear combination of the features with weights w.

Assume m(x) = 0 to simplify the formula.

Linear function of features (may be omitted)

f (x) = φ(x)T w with prior w ∼ N(0,Σp).

mean E[f (x)] = φ(x)TE[w] = 0
covariance E[f (x)f (x|)] = φ(x)TE[wwT ]φ(x|) = φ(x)T Σpφ(x|)

Note that the covariance of outputs f (x) is a function of inputs.

Corresponds to the Gaussian process with the covariance

K (X ,X |) = φ(X )T Σpφ(X |).

for any number of data samples X .
For low number of samples the covariance matrix will be singular.

Now we leave the linearity assumption and change the covariance function.
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Squared exponential covariance function

Definition (Squared exponential covariance function)
Squared exponential (SE) covariance function

cov(f (xp), f (xq)) = k(xp, xq) = σ2f exp
(
−1
2
|xp − xq|2

`2

)
.

with hyperparameters
`2 lenghtscale,
σ2f signal variance.

Again, the covariance on y is defined by the covariance on the inputs x.
the covariance defines also the distribution on functions f :

f∗ ∼ N(0,K (X∗,X∗)).
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Prediction

noisy-free prediction y = f (x)

cov(yp, yq) = k(xp, xq)

from noisy observations y = f (x) + ε, e ∼ N(0, σ2n)

cov(yp, yq) = k(xp, xq) + σ2nδpq

cov(y) = K (X ,X ) + σ2nI

We observe y and we want to predict f∗:[
y
f∗

]
∼ N(0,

[
K (X ,X ) + σ2nI K (X ,X∗)

K (X∗,X ) K (X∗,X∗)

]
)

Predictive distribution

f∗|X , y,X∗ ∼ N(f∗, cov(f∗))
f∗ , E[f∗|X , y,X∗] = K (X∗,X )[K (X ,X ) + σ2nI]−1y

cov(f∗) = K (X∗,X∗)− K (X∗,X )[K (X∗,X ) + σ2nI]−1K (X ,X∗)
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Predictive distribution

f∗|X , y,X∗ ∼ N(f∗, cov(f∗))
f∗ , E[f∗|X , y,X∗] = K (X∗,X )[K (X ,X ) + σ2nI]−1y

cov(f∗) = K (X∗,X∗)− K (X∗,X )[K (X∗,X ) + σ2nI]−1K (X ,X∗)

We denote K = K (X ,X ), K∗(X ,X∗), for a single variable k∗ = k(x, x∗).
Then for x∗:

f ∗ , kT
∗ [K + σ2nI]−1y

V(f∗) = k(x∗, x∗)− kT
∗ [K + σ2nI]−1k∗

Prediction

is a linear function of observations
for α⇐ (K + σ2

nI)−1y
we predict
f (x∗)⇐

∑n
i=1 αi k(xi , x∗)
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Marginal likelihood (may be omitted)

’In sample’ prediction f follows:

f ∼ N(0,K (X ,X ))

Noisy-free observations y = f:

log p(y|X ) = log p(f|X ) = −1
2 fTK−1f − 1

2 log |K | − n
2 log 2π

For noisy observations y|f ∼ N(f, σ2nI), y ∼ N(0,K + σ2nI)

log p(y|X ) = −1
2yT (K + σ2nI)−1y−

1
2 log |K + σ2nI| −

n
2 log 2π.
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Hyperparameters `, σf
a. Data are generated by a GP with SE (`, σf , σn) = (1, 1, 0.1) (lenghtscale,
signal variance, noise variance)
b. 95% confidence intervals for (0.3,1.08,0.00005)
c. 95% confidence intervals for (3.0,1.16,0.89).
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Conditional Covariance (may be omitted)
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POMDP Aircraft Collision Avoidance

multirotor aircraft (drones) and
helicopters actions

turns
vertical meneuvers
horizontal plane accelerations

QMDP with hyper–parameters
Ks ,KT , Rmin weights was learned,
k weights was = 1.
The performance for a specific
hyper-parameters is costly to
evaluate.

algorithm must decide to take action laterally or vertically rather than continue to postpone actions that
would actually resolve the encounter.

The implication of a aircraft’s ability to hover is that, for optimal performance, tracking of the planned
trajectory should be built directly into the collision avoidance maneuver logic. Decomposing the encounter
into a collision resolution phase and an independent return-to-path phase would require not only two different
algorithms for the two phases, the algorithms would need to undergo extensive interoperability verification
checks. On the other hand, incorporating the two phases into a single optimization problem exponentially
increases its size and the time required to find an optimal solution to it. Compounding this exponential
increase is the fact that encounters no longer count down reliably to CPA, which means that solution
approaches like Gauss-Seidel value iteration, employed by the first implementation of ACAS X, can no
longer be used to find the optimal policy in just a single iteration.7 These special considerations in the use
of longitudinal (speed) maneuvers means that simple extensions to algorithms designed to use vertical or
horizontal maneuvers are unlikely to be successful.

C. Dynamics

The collision avoidance problem is formulated in the two horizontal dimensions (2D) in order to assist in
tuning and visualization of results. The eight states that characterize the 2D problem are defined in fig. 1
and are described in table 1: two relative range states (rx and ry), two velocities for the ownship (vox and
voy) and two for the intruder (vix and viy), and two states that indicate the absolute displacement from
the desired trajectory at that time (dx and dy). The desired trajectory is normalized to unit velocity in the
x-axis and zero velocity in the y-axis. This simplification reduces the number of states required to specify
the desired trajectory and avoids loss of generality because the coordinate frame of the ownship may be
rotated and scaled into the POMDP coordinate frame to find the appropriate action. A companion paper
contains a detailed explanation of how the dimensionless distance units are computed in real time so they
are compatible with the algorithm.5 The algorithm may be extended to three dimensions by adding relative
altitude between the ownship and intruder, absolute altitude of the ownship (so that collisions with the
ground may be avoided), and absolute vertical velocities of the ownship and intruder.

dx

dy

rx

ry

vox

voy

vix

viy

Figure 1: States used to formulate the collision avoidance algorithm

The dynamic equations used to model the aircraft trajectories are relatively simple because the prediction
horizon they are used over is very short, with updates done every 0.1 to 1 seconds. Related work has also
not found a benefit to using more complex dynamic equations.7

3 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 N

A
SA

 A
M

E
S 

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n 
Ju

ne
 1

5,
 2

01
6 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73
 

R(s, a) = max
[
Rmin,−(kax |ax |+ kay |ay |)− Ks

1
krx r2x + kry r2y

− KT (kdxd2
x + kdyd2

y )
]
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Bayesian Optimization

Simulate process and evaluate
collision probability
F (Ks ,KT ,Rmin) at a minimal
number of points
learn a Gaussian model
find the most promising values to
evaluate next

we minimize y = F (R∗P ) and
search the maximal probability of
improvement
’the chance to improve’ is
expressed by the Expected
improvement (EI)

Figure 1: Illustration of BayesOpt, maximizing an objective function f with a 1-dimensional continuous
input. The top panel shows: noise-free observations of the objective function f at 3 points, in blue; an
estimate of f(x) (solid red line); and Bayesian credible intervals (similar to confidence intervals) for f(x)
(dashed red line). These estimates and credible intervals are obtained using GP regression. The bottom panel
shows the acquisition function. Bayesian optimization chooses to sample next at the point that maximizes
the acquisition function, indicated here with an “x.”

We construct the mean vector by evaluating a mean function µ0 at each xi. We construct the
covariance matrix by evaluating a covariance function or kernel Σ0 at each pair of points xi, xj . The
kernel is chosen so that points xi, xj that are closer in the input space have a large positive correlation,
encoding the belief that they should have more similar function values than points that are far apart.
The kernel should also have the property that the resulting covariance matrix is positive semi-definite,
regardless of the collection of points chosen. Example mean functions and kernels are discussed below in
Section 3.1.

The resulting prior distribution on [f(x1), . . . , f(xk)] is,

f(x1:k) ∼ Normal (µ0(x1:k),Σ0(x1:k, x1:k)) , (2)

where we use compact notation for functions applied to collections of input points: x1:k indicates the
sequence x1, . . . , xk, f(x1:k) = [f(x1), . . . , f(xk)], µ0(x1:k) = [µ0(x1), . . . , µ0(xk)], and Σ0(x1:k, x1:k) =
[Σ0(x1, x1), . . . ,Σ0(x1, xk); . . . ; Σ0(xk, x1), . . . ,Σ0(xk, xk)].

Suppose we observe f(x1:n) without noise for some n and we wish to infer the value of f(x) at some
new point x. To do so, we let k = n + 1 and xk = x, so that the prior over [f(x1:n), f(x)] is given by
(2). We may then compute the conditional distribution of f(x) given these observations using Bayes’
rule (see details in Chapter 2.1 of Rasmussen and Williams (2006)),

f(x)|f(x1:n) ∼ Normal(µn(x), σ2
n(x))

µn(x) = Σ0(x, x1:n)Σ0(x1:n, x1:n)−1 (f(x1:n)− µ0(x1:n)) + µ0(x)

σ2
n(x) = Σ0(x, x)− Σ0(x, x1:n)Σ0(x1:n, x1:n)−1Σ0(x1:n, x).

(3)

This conditional distribution is called the posterior probability distribution in the nomenclature of

4

Peter I. Frazier: A Tutorial on Bayesian Op-
timization, rXiv:1807.02811v1 [stat.ML] 8
Jul 2018
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Bayesian Optimization

The Expected improvement (EI) is defined to be:

EI(x) = E[(min(Y (X ))− Y (x))+|Y (X ) = y]
= E[(min(y)− Y (x))+|Y (X ) = y]

this can be solved analytically (Φ cdf, φ pdf Gaussian distribution):

EI(x) = (min(y)− µ(x))Φ
(
min(y)− µ(x)

σ(x)

)
+ σ(x)φ

(
min(y)− µ(x)

σ(x)

)
to maximize y:

EI(x) = ∆(x)+σ(x)φ
(

∆(x)
σ(x)

)
− |∆(x)|Φ

(
∆(x)
σ(x)

)
(∆(x) = µ(x)−max(y) )
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Covariance Functions

radial basis functions RBF ϕ(r), for r = |x− x||
Modified Bessel functions (for α not integer, the limit otherwise)

Iα(x) =
∑∞

m=0
1

m!Γ(m+α+1)

( x
2

)2m+α

Kα(x) = π
2

I−α(x)−Iα(x)
sinαπ

covariance function expression Stacionary inf. rank
constant σ20 y
linear

∑D
d=1 σ

2
dxdx |d

polynomial (x · x| + σ20)p y
squared exponential exp(− r2

2`2 ) y y
Matérn, ν = k + 1

2
1

2ν−1Γ(ν)

(√
2ν
` r
)ν

Kν
(√

2ν
` r
)

y y
exponential exp(− r

` ) y y
γ-exponential exp(−( r

` )γ) y y
rational quadratic (1 + r2

2α`2 )−α y y

neural network sin−1
 2̃xT Σ̃x|√

(1+2̃xT Σ̃x)(1+2x̃|
T

Σx̃|)

 y y
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