Linear methods for classification and their extensions

Logistic regression
linear and quadratic discriminant analysis
optimal separating hyperplane

Support vector machines with kernels, that are nonlinear (later)
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Probability of the data given the model

@ Assume we have 15 red balls and 5 blue balls in a bag.
@ Repeat 5x:
o select a ball
e put it back.
@ The probability of the sequence red, blue, blue,red, red is % . % . % . % . %.

The logarithm logy of the probability is ~ —0.4 -2 -2 —0.4—-0.4 = —5.2
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Likelihood of the model given the data

@ Assume we do not know the probabilities, let 6 be the probability of red. We
have following probabilities of data for different 6.
0 | red blue blue red red

3] 3 1 1 3 3 33
4

4 4 4 4 4 45

@ Take the logy of the probabilities:
0 red blue blue red red

i1 -1 -1 -1 -1 -5
P 074 -132 -132 074 —0.74 | —4.86
3 04 -2 -2 -04 04 | —52
@ Probability of the data given model is called likelihood of the model 6 given
the data.

3

:.

@ Predicting probabilities, maximum likelihood estimate is the same as
maximum log-likelihood estimate.

@ Maximum likelihood € estimate is in our case
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(Log)likelihood

train data prediction likelihood loglik

Xi  8i P(green|x;)  P(blue|x;)  P(yellow|x;)

1 green % 0 % % -1

1 yellow 3 0 3 3 -1

2 green % % 0 % /ng%

2 green 2 3 0 2 log»3

2 blue % % 0 % —log»3

3 blue 0 1 0 1 0
—2 — log>3
+2/og2%

o loglik logarithm of likelihood function is defined as:

N
10) = Z log(P(G = gilxi,0))

o Logistic regression uses:
P(G =Gkl X =x)=

eBmfrBZ‘x
ﬁ/0+/:3Tx :
1+Z/71 e /
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Logistic Function

@ Probability should be from the interval (0, 1).
@ Linear prediction is transformed by logistic function (sigmoid) with the
maximum L.
. . L
o |0gl$tlc m
@ Inverse function is called logit.
i P
o logit log Tp
g, 8 .
Ll -
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Logistic Regression

@ For K- class classification we estimate 2 x (K — 1) parameters

0= {BlOaﬁ]Ta v aﬁ(K71)07ﬁ;—1}'

P(G:G]_|X:X) o T
logP(G:GK|X: ) - B].O—’_le

P(G:GQ|X:X) _ T
PG GalX=x) T

P(G = Gk_1|X = x)
P(G = GK|X :X)

log Bk—1)0 + Br—_1X

that is

eBro+B{ x

+ ZI:I,...,K—l efnthx
1

T4+ ket efntBlx

173 - 211 March 30, 2021

pr(x;0) < P(G = G¢|X = x) =

pr(x;0) < P(G = Gk|X = x) =
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Fitting Logistic Regression Two class

@ This model is estimated iteratively maximizing conditional likelihood of G
given X.

N
(o) = Z log pg, (xi; 0)

@ Two class model: g; encoded via a 0/1 response y;; y; = 1 iff gx = g1.
Let p(x;0) = p1(x;0), p2(x;0) =1 — p(x;0). Then:

N
ue) = Z(y; log p(x;; B) + (1 — yi) log(1 — p(xi; 5))
I/:Vl T
= Z(y;BTX,- — log(1 + €7 )

@ Set derivatives to zero:

@ which is p + 1 nonlinear equations in 3.
@ First component: x; = 1 specifies Z,N:l Vi = Z,N:l p(xi; B) the expected
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Newton—Raphson Algorithm

@ We use Newton—Raphson Algorithm to solve the system of equations

N
ZXI le )) = 0,
i=1

@ we need the second—derivative or Hessian matrix

920(p
6686T - Zx,x p(xi;: B)(1 — p(xi; B))-

@ Starting with 5°“ a single Newton—Raphson update is

820(5) \ ' o)
8,6’8BT) a3 '

6new — ﬂOld _ (

@ where the derivatives are evaluated at 3°.
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Newton—Raphson Algorithm in Matrix Notation

Let us denote:

y the vector of y;
X N x (p+1) data matrix x;
p the vector of fitted probabilities with ith element p(x;; 3°)
W  diagonal matrix with weights p(x;; 3°9)(1 — p(x;; 5°'))
ae
28(6[5) = XT(Y -p)
o°4(B) __ T
36057 = —X"WX
The Newton—Raphson step is (3° < 0)

e = 57 (XTWX) X (y — )

— (XTWX) XWX+ Wy — p))
(XTWX)"1X "Wz
z = XB°% +W-l(y—p) adjusted response

@ p, W,z change each step
This algorithm is reffered to as iteratively reweighted least squares IRLS

B+ arg mﬁin(z — XB)TW(z — Xp)
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South African Heart Disease

@ Analyzing the risk factors of myocardian infarction Ml
@ prevalence 5.1%, in the data 160 positive 302 controls

TABLE 4.2. Results from a logistic regression fit to the South African heart
disease data.

Coefficient ~ Std. Error ~ Z Score

(Intercept) —4.130 0.964  —4.285
sbp 0.006 0.006 1.023
tobacco 0.080 0.026 3.034
1dl 0.185 0.057 3.219

famhist 0.939 0.225 4.178
obesity -0.035 0.029 —-1.187
alcohol 0.001 0.004 0.136

age 0.043 0.010 4.184

o Wald test: Z score |Z| > 2 is significant at at the 5% level.

TABLE 4.3. Results from stepwise logistic regression fit to South African heart
disease data.

Coefficient  Std. Error 7 score

(Intercept) —4.204 0.498 —8.45
tobacco 0.081 0.026 3.16

1dl 0.168 0.054 3.09

famhist 0.924 0.223 4.14

age 0.044 0.010 4.52
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South African Heart Disease

o Wald test: Z score |Z| > 2 is significant at at the 5% level.

TABLE 4.3. Resulls from stepwise logistic regression fit to South African heart
disease data.

Coefficient  Std. Error  Z score

(Intercept) —4204 0495 —8.45
tobacco 0.081 0.026 3.16
1a1 0.168 0.054 3.0
famhist 0.924 0.223 414
age 0.044 0.010 452
o P (/\/I/‘X,-,e) e 4204008 hxiopcco 0. 168xgy +0-920xpampst +0.0xage

1+(5_4'204+0'Oslxtobacco+0'lesxld/+0'924xfamhist+0-044xage)

o Interval estimate 0dds;opacco = €2-081F2%0:026 — (1.03,1.14) increase of odds
of M/ based of the increase of X:opacco-
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L, regularization 'Lasso’-like

N

p
argmaxBo’g(Z()/i(ﬁo + B7x;) — log(1 + G(BOJFBTX"))) —A Z 1)
=1

i=1

@ Newton—Raphson Algorithm or nonlinear programming.
@ )\ = 0 standard logistic regression.
@ A\ — oo moves coefficients towards O.
@ [y is not included into the penalty.
g el
//
3 / F Bhaceo
2 +
E ‘;; /_,_.... b sbp.
| sy
Bl
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Linear Discriminant Analysis

o LDA gives similar results as LR for two classes. It avoids masking in
k—dimensional classification.

@ LDA assumes multivariate gaussian distribution of each class with a common
covariance matrix.

B(K) = — e~ T (xmme)

VivioN

o Under this assumptions it provides bayes optimal estimate.

@ Different covariance matrix for each class leads to Quadratic Discriminant
Analysis.

@ Let us denote N, number of training data in the class Gy.

4 Y

FIGURE 4.4. Left: Two one-dimensional normal density functions are shown.
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Linear Discriminant Analysis

P(G=GX=x) = 7;”(")”
Z£:1 be(x)me
N N
Tk = W
ok(x) = N(p,X)
. _ X
he = Z{x,-.G(/\/)q[ij}

(Xi - Mk)T(Xi - Mk)
(N = K)

™M>
Il
M =

k=1 {X,'ZG Xi):Gk}

To classify new instance x we predict the G, with maximal d:

_ 1 _
Sik(x) = xTZ e — EMkTZ L + logmy
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Linear Discriminant Analysis

i
7

FIGURE 4.5. The left panel shows three Gaussian
distributions, with the same covariance and different
means. Included are the contours of constant density

Example Vovel data ESL X € R9:

train  test

Linear regression 0.48 0.67

Linear discriminant analysis 0.32 0.56
Quadratic discriminant analysis  0.01  0.53
Logistic regression 0.22  0.51
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Quadratic Discriminant Analysis

f
P(G=GX=x) = Kk(Xi
Zz=1 fo(x)me
ao— Ne
Tk = N
fi(x) = Nk, T)
Uk = M
> (Xi - ,Uk)T(X,- — Mk)
Zk p—
{X“G%;=Gk} (|Gk| — 1)

To classify new instance x we predict the Gi with maximal dy:

1 1 _
Ok(x) = ~3 log | X«| — E(XT — uk)TZk l(xT — pik) + log mk
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Quadratic and Regularized Discriminant Analysis

Regularized: . . .
Yi(a) =2k + (1 —a)x

Regularized Discriminant Analysis on the Vowel Data

Misclassification Rate

00 01 02 03 04 05

0.0 0.2 0.4 0.6 08 1.0

‘ - o LDA parameters:
(K-1)x (p+1)
o QDA parameters:
(K1) x (222 4+ 1)

FIGURE 4.6. Two methods for fitting quadratic
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Computations for LDA

e O(NB3), often O(N?37°)
@ QDA and LDA may be computed using matrix decomposition:
o Compute the eigendecomposition for each
(x = ) "2k(x = i) = [UL (x = )] "D U (x = )]
o log|x| =", log dke.
@ Using this decomposition, LDA classifier can be implemented by the following
pair of steps:
o Sphere the data with respect to the common covariance estimate s
X* <~ D 2U" X, where 5 = UDU”.
The common covariance estimate of X™ will now be the identity.

o Classify to the closest class centroid in the transformed space, modulo the
effect of the class prior probabilities 7.
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Reduced—Rank Linear Discriminant Analysis

Finding the sequence of optimal subspaces for LDA:

@ compute the K x p matrix of class centroids M and the common covariance
matrix W (within—class covariance);
@ compute M* = MW 2 using the eigen—decomposition of W,
@ compute B* between—class covariance, the covariance matrix of M* and its
eigen—decomposition B* = V*DgV*T.
e order Dg in the decreasing order

e v, of V* in sequence define the coordinates of the optimal subspaces
o Zy = v/ X with v, = W_%v;.
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Reduced—Rank Linear Discriminant Analysis
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Vovel Example

Classification in Reduced Subspace

N
B
g
LDA and Dimension Reduction on the Vowel Data 2
8
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Local Likelihood and other methods

@ logistic and log-linear models involve the covariates in a linear fashion

N
T
1B00)) = 3~ Ka(x0,x0) (i, x T B(x0))
i=1
N
T
> Kal(xo, xi) {)’iﬁT(Xi — x) — log(1 + €” (X"_XO))}
i=1
o mm T o T
— —
o | @
o o
I I
O «© | O o |
® o ® o
5 5
T 3 g 3
[ [
a N a o
o o
c U ’ TR S L NN _l
100 140 180 220 15 25 35 45
Systolic Blood Pressure Obesity
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South African Heart Disease continued

o Each feature X; is approximated by a natural spline.

@ The overall model is:
logit[P(ch|X)] = 6o + h1(X1) 701 + ha(X2) T02 + ... + hy(X,) 76,

@ 0; are vectors of coefficients multiplying their associated vector of natural
spline basis functions h;

o four basis functions (three inner knots) per spline in this example.

@ binary familyhist with a single coefficient.

@ Combine all p vectors of basic functions into one big vector h(X),
df =1+ ZJ’-’:I df;

@ each basis function is evaluated at each of the N samples

@ resulting in a N x df basis matrix H.

@ and use 'standard’ logistic regression.
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@ Alcohol not significant by g
AIC test e
e covariance Cov(f) is »
estimated by
Y = (HTWH)!
o W the diagonal weight T
matrix ch
@ variance of a single variable i
Jis: .
o (%) = Varlf(X)] =
hi(X;) " 2ihi(X;) ~.
@ error bounds é
F0X) £ 2/y(X). i

0

2
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Separating hyperplane, Optimal separating hyperplane

Classification, we encode the goal class by —1 and 1, respectively.

separate the space x by a hyperplane

not necessary optimal for LDA;

logistic regression finds one if it exists

Perceptron finds separating hyperplane if it exists
exact position depends on initial parameters

FIGURE 4.14. A toy example with two classes sep-
arable by a hyperplane. The orange line is the least
squares solution, which misclassifies one of the train-
ing points. Also shown are two blue separating hyper-
planes found by the perceptron learning algorithm with
different random starts.

hine Learnin

Linear methods for classification 5

URE 4.16. The same data as in Figure 4.1}.

o5 the mazimum margin sep-
(un/m] the two classes. There are three support points
indicated, which lie on the boundary of the margin, and
the optimal separating hyperplane (blue line) bisects the
slab. Included in the figure is the boundary found using

logistc regression (red line), which is very close to the
it Lo Cosbiom 105 )

212 - 225

March 30, 2021
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Optimal Separating Hyperplane (separble case)

We define Optimal Separating Hyperplane as a separating hyperplane with
maximal free space C without any data point around the hyperplane.
Formally:

max C
B,80,118]1=1

subject to y;(x B+ Bo) > Cforalli=1,....N.
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Formally:
max C
B:Bos[1811=1
subject to y;(x B+ Bo) > Cforalli=1,....N.
We re-define: ||8|| = 1 can be moved to the condition (and redefine (p):

||/3||y'(x B+ ho) =2

Since for any (5 and [y satisfying these inequalities, any positively scaled multiple

satisfies them too, we can set [|3]| = & and we get:

2
min — /3
53,80 2” ||

subject to y;(x” B+ Bo) > 1proi=1,...,N.
This is a convex optimization problem. The Lagrange function, to be minimized
w.r.t. 8 and fy, is:

N
Ly = B = Do oulu 75+ o) ~ 1),
i=1
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1 N
= 5191 = el -+ o) = 1),

Setting the derivatives to zero, we obtain:
N
B = Z Q;YiX;
i=1
N
0="> o
i=1
Substituing these in Lp we obtain the so—called Wolfe dual:

N N N
.
Lp = E o — E § OGOYiYX; Xk
i=1 i=1 k=1

subject to a; >0
The solution is obtained by maximizing Lp in the positive orthant, for which
standard software can be used.
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N N N
Lp = E o — E QORYiVEX Xk
i=1 1 k=1

subject to a; > 0
In addition the solution must satisfy the Karush—Kuhn—Tucker conditions:

ailyi(x" B+ Bo) =11 =0

for any i, therefore for any a; > 0 must [y;(x;” 8+ o) — 1] = 0, that means x; is
on the boundary of the slab and for all x; outside the boundary is a; = 0.
The boundary is defined by x; with a; > 0 — so called support vectors.

We classify new observations
G(x) = sign(x" B + Bo)
@ where 8 = vazl Q;yixi,

e By =ys — x] 3 for any SN
support vector as > 0. e
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Optimal Separating Hyperplane (nonseparble case)

@ We have to accept incorrectly classified instances in a non—separable case.
@ We limit the number of incorrectly classified examples.
We define slack ¢ for each data point (&1, ...,&y) = & as follows:
@ &; is the distance of x; from the boundary for x; at the wrong side of the
margin
@ and & =0, for x; at the correct side.
We require 1, & < K.
We solve the optimization problem

max C
B,80,118]1=1

subject to:
yi(xT B+ Bo) > C(1 - &) T~

where Vi is §; >0 a Z,,.Vzlf,- <K.
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Optimal Separating Hyperplane (nonseparble case)

Again, we omit replace the condition ||3]| by defining C = ﬁ and optimize

Yi(xTB+ Bo) = (1 — &)Vi

min || 3||subject to{ € >0,5 ¢ < constant (13)

We solve
1 N
. 2 Z
min — [3 + Y i

subject to & > 0 and y;(x" B+ Bo) > (1 — &;) where 7 has replaced the
constantK, we cans set v = oo for the separable case.
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We solve
1 N
; 2
min — + i
HEICIREPIC
subject to & > 0 and y;(x" B+ Bo) > (1 — &) where 7 has replaced the

constantK, we cans set v = oo for the separable case.
Lagrange multiplyers again for «;, u;:

N
||5H2+725, Za,[y,Xﬁ+Bo) 1—&) =D i
i=1

i=1

Setting the derivative = 0 we get:

N
B = Z Q;YiX;
Ile
0= Z Qi
i=1

o =77 — Hi
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Substitute to get Wolfe dual:

N N

N
Lp = Z aj — Z Z COKYiYIX] Xk
=1 1 k=1

and maximize Lp subject to 0 < a; <~ a vazl a;yi = 0.
Solution satisfyes:

ailyi(x"B+B)—(1-&) = 0
Miﬁi
il B+ Bo) —(1=¢&)] > 0

I
o
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Solution: 3 = Z,N:1 &iyix;
with nonzero coefficients &; — these are boundary points where & = 0 (therefore
0 < @; < 7), and points on the wrong side of the margin & > 0 (and &; = v. Any

~

point with {; = 0 can be used to calculate ,BA’O, typically an average is taken.
Bo for a boundary point &; = 0:

o [yi(<"B + o) — (1 - 0)] =0

Parameter v settled by tuning (crossvalidation).
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Support Vector Machines

@ Genaralization

Let us have the training data (x;,y;)Y;, x; € RP, y; in {—1,1}. We define a
hyperplane
{x:f(x)=x"B+ B =0} (14)

where ||| = 1.
We classify according to
G(x) = sign [xTﬁ + Bo]

where f(x) is a signed distance of x from the hyperplane.
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Kernels

@ We searched for a linear boundary.

@ We enhance the feature space to nonlinear one.

@ Imagine M functions hp(x), m=1,..., M.

o h(x;) = (hy(x), ..., hm(x)) and a decision boundary f(x) = h(t)73 + fo.

The classification function (x) = h(x)73 + o = Z, 1 @iyi(h(x), h(x:)) + Bo
does not need evalutation of h(i), only the scalar product (h(x), h(x;)).

@ kernal functions are function to replace scalar product with a scalar product
in a transformed space.

dth Degree polynomial: | K(x,x!) = (1 + (x,xI))?
Radial basis K(x, x!) = exp(=x=>IC ol )
Neural network K(x,x) = tanh(/<L1< xI) + k2)
Example: Degree 2 with two dimensional input:
K(x,x") = (14 (x,x'))? = (1 + 2x1x] + 2x05 + (x1x])? + (x2x5)% + 2x1.x] x2x3)
that is. M = 6, hl(X) = 1, hz(X) = \@Xl, h3(X) = \@Xz,
ha(x) = xZ,hs(x) = x2,he(x) = V2x1%2.
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Uceni struktury, diskrétni proménné

Definition (KL—divergence)

KL—divergence dvou pravdépodobnostnich rozlozeni P, @ na stejné doméné

sp(P) = sp(Q) je definovand jako: Dii(P||Q) = 3 ceppy P(i)l0g (3

Definition (Entropie)

Entropie pravdépodobnostniho rozloZeni P na doméné sp(P) je definovan3 jako:
H(P) = — > csp(p) P(i)IogP(i).

Definition (Vzajemna informace (Mutual Information))

Mutual Information dvou veli¢in X, Y na doménach sp(X), sp(Y) je definovana

jako: YY) = v P(X=i,Y=j
jako: I(X;Y) = Y iespix) 2jesp(v) PX =1, Y *J)/OgW'
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Chow-Liu Tree

Lemma

Pro stromy s interakcemi maximalné druhého Fadu plati pro Dy, aproximace P’ a
vzoru P

D (PIIP') = = > I(Xi, Xj) + > H(X:) = H(Xa, ..., Xa)

kde Xj ;) je rodic¢ vrcholu X;.

: procedure CHOW-L1U:( dataset )
Calculate I(A, B) for each pair of nodes
Find maximal spanning tree (kostru)

Learn parameters
# Remove orientation.

1
2
3
4 Orient edges (no head—to—head connection)
5
6
7: end procedure
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Neorientované modely s diskrétnimi proménnymi

@ Boltzmann machine (=lsing models; special case of Markov random field)
visible and hidden nodes

only pairwise interactions

binary valued nodes

constant node Xp = 1.

p(X,©) = exp Z 0 Xi Xk — P(O©)
(j,k)EE
®(©) = log Y |exp( D 0xXiXk)

xXeX (j,k)EE

@ Issing model implies a logistic form for each node conditional on the others
1

PO =X = x0) = T o ~ Lgwee k)

@ Restricted Boltzmann machines
o dvé vrstvy, viditelnd a skryta, v ramci vrstvy zadné hrany - snaze se udi.
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Chow-Liu Tree Undirected Variant

For models with interactions of degree maximally 2 (trees) it holds Dy, the
approximation P’ of P

Die(PIIP') == 3 (X, X))+ > H(X) — H(X, ..., X,)

(i) €E i=1..p

Algorithm: Chow-Liu (variant)

o Calculate I(Xj, X;) for each
pair of nodes

@ Find maximal spanning tree

(kostru)
o Learn parameters.
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Uceni Bolznamnn machine

@ Uceni parametr(

o iterativné
e napf. lterative proportional fitting IPF Jirousek and Preudil.

@ Uceni struktury

e napf. Hoefling and Tibshirany: glasso extension to discrete Markov Networks.
e porad dost pomalé a trochu nepresné.

@ Restricted Boltzmann machine
e uceni daleko rychlejsi diky podminéné nezavislosti
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Restricted Boltzmann Machine

X
Visible V, Visible Vs,

[ownwwenns ] © 0 @3 N (/A2
I8 I8
0232 R25%7

[onorans] 3 ¢ 794940658

ﬂ LL72N\NT7T18%79

28x28

e 837809927
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Markov Properties (Zeros are dangerous)

Definition (Markov properties: Global, Local, Pairwise)

Let G be an undirected graph over V.
(GM) A probability measure P over V is (globally) Markov with respect to G iff

V(A,BEV,CC V) AlgB|IC= AL B|CvP.

(LM) A probability measure has local Markov property iff
(VAe V): AL V\ Fas|Na [P]

(PM) A probability measure has pairwise Markov property iff VA, B e V A+ B
not connected by an edge holds A 1L B|V \ {A, B} [P]

These properties are equivalent for stricty positive measures.

Counterexamples for measures with zero probability everywhere except (0, 0, 0)

and (1,1,1).
See [Milan Studeny:Struktury podminéné nezavislosti, Matfyzpress 2014]..
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Examples

V={AB,C} E={(b,c)}. Let us have a
binary probability measure V' nonzero at points
(0,0,0) and (1,1,1) [Studeny p.101].

Al B{C} :
AL C|{B}& does not imply A 1L BC|{}.

| A

Example

V={AB,C} E={(b,c)}. Let us have a
binary probability measure V' nonzero at points
(0,0,0,0) and (1,1,1,1) [Studeny p.101].
A 1L CD|{B}
B 1l CD|{A}
C 1L AB|{D}
D 1 AB|{C}

& does not imply A 1L C|{}.
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Separating hyperplane, Optimal separating hyperplane

Classification, we encode the goal class by —1 and 1, respectively.

separate the space x by a hyperplane

not necessary optimal for LDA;

logistic regression finds one if it exists

Perceptron finds separating hyperplane if it exists
exact position depends on initial parameters

FIGURE 4.14. A toy example with two classes sep-
arable by a hyperplane. The orange line is the least
squares solution, which misclassifies one of the train-
ing points. Also shown are two blue separating hyper-
planes found by the perceptron learning algorithm with
different random starts.

Support Vector Machines

12

URE 4.16. The same data as in Figure 4.1}.

o5 the mazimum margin sep-
(un/m] the two classes. There are three support points
indicated, which lie on the boundary of the margin, and
the optimal separating hyperplane (blue line) bisects the
slab. Included in the figure is the boundary found using

logistc regression (red line), which is very close to the
it Lo Cosbiom 105 )
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Optimal Separating Hyperplane (separble case)

We define Optimal Separating Hyperplane as a separating hyperplane with
maximal free space C without any data point around the hyperplane.
Formally:

max C
B,80,118]1=1

subject to y;(x B+ Bo) > Cforalli=1,....N.
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Formally:
max C
B:Bos[1811=1
subject to y;(x B+ Bo) > Cforalli=1,....N.
We re-define: ||8|| = 1 can be moved to the condition (and redefine (p):

||/3||y'(x B+ ho) =2

Since for any (5 and [y satisfying these inequalities, any positively scaled multiple

satisfies them too, we can set [|3]| = & and we get:

2
min — /3
53,80 2” ||

subject to y;(x” B+ Bo) > 1proi=1,...,N.
This is a convex optimization problem. The Lagrange function, to be minimized
w.r.t. 8 and fy, is:

N
Ly = B = Do oulu 75+ o) ~ 1),
i=1
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1 N
= 5191 = el -+ o) = 1),

Setting the derivatives to zero, we obtain:
N
B = Z Q;YiX;
i=1
N
0="> o
i=1
Substituing these in Lp we obtain the so—called Wolfe dual:

N N N
.
Lp = E o — E § OGOYiYX; Xk
i=1 i=1 k=1

subject to a; >0
The solution is obtained by maximizing Lp in the positive orthant, for which
standard software can be used.
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N N N
Lp = E o — E QORYiVEX Xk
i=1 1 k=1

subject to a; > 0
In addition the solution must satisfy the Karush—Kuhn—Tucker conditions:

ailyi(x" B+ Bo) =11 =0

for any i, therefore for any a; > 0 must [y;(x;” 8+ o) — 1] = 0, that means x; is
on the boundary of the slab and for all x; outside the boundary is a; = 0.
The boundary is defined by x; with a; > 0 — so called support vectors.

We classify new observations
G(x) = sign(x" B + Bo)
@ where 8 = vazl Q;yixi,

e By =ys — x] 3 for any SN
support vector as > 0. e
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Optimal Separating Hyperplane (nonseparble case)

@ We have to accept incorrectly classified instances in a non—separable case.
@ We limit the number of incorrectly classified examples.
We define slack ¢ for each data point (&1, ...,&y) = & as follows:
@ &; is the distance of x; from the boundary for x; at the wrong side of the
margin
@ and & =0, for x; at the correct side.
We require 1, & < K.
We solve the optimization problem

max C
B,80,118]1=1

subject to:
yi(xT B+ Bo) > C(1 - &) T~

where Vi is §; >0 a Z,,.Vzlf,- <K.
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Optimal Separating Hyperplane (nonseparble case)

Again, we omit replace the condition ||3]| by defining C = ﬁ and optimize

Yi(xTB+ Bo) = (1 — &)Vi

min || 3||subject to{ € >0,5 ¢ < constant (10)

We solve
1 N
. 2 Z
min — [3 + Y i

subject to & > 0 and y;(x" B+ Bo) > (1 — &;) where 7 has replaced the
constantK, we cans set v = oo for the separable case.
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We solve
1 N
; 2
min — + i
HEICIREPIC
subject to & > 0 and y;(x" B+ Bo) > (1 — &) where 7 has replaced the

constantK, we cans set v = oo for the separable case.
Lagrange multiplyers again for «;, u;:

N
||5H2+725, Za,[y,Xﬁ+Bo) 1—&) =D i
i=1

i=1

Setting the derivative = 0 we get:

N
B = Z Q;YiX;
Ile
0= Z Qi
i=1

o =77 — Hi
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Substitute to get Wolfe dual:

N NN
Lp = Z o — Z Z QOKYiYIX; Xk
i—1

i=1 k=1

and maximize Lp subject to 0 < a; <~ a vazl a;yi = 0.
Solution satisfyes:

ailyi("B+Bo) —(1-&)] = 0
pii = 0
il B+ Bo) —(1=¢&)] > 0
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Solution: 3 = Z,N:1 &iyix;
with nonzero coefficients &; — these are boundary points where & = 0 (therefore
0 < @; < 7), and points on the wrong side of the margin & > 0 (and &; = v. Any

~

point with {; = 0 can be used to calculate ,BA’O, typically an average is taken.
Bo for a boundary point &; = 0:

o [yi(<"B + o) — (1 - 0)] =0

Parameter v settled by tuning (crossvalidation).
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Support Vector Machines

@ Genaralization

Let us have the training data (x;,y;)Y;, x; € RP, y; in {—1,1}. We define a
hyperplane
{x:f(x)=x"B+ B =0} (11)

where ||| = 1.
We classify according to
G(x) = sign [xTﬁ + Bo]

where f(x) is a signed distance of x from the hyperplane.
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Kernels

@ We searched for a linear boundary.

@ We enhance the feature space to nonlinear one.

@ Imagine M functions hp(x), m=1,..., M.

o h(x;) = (hy(x), ..., hm(x)) and a decision boundary f(x) = h(t)73 + fo.

The classification function (x) = h(x)73 + o = Z, 1 @iyi(h(x), h(x:)) + Bo
does not need evalutation of h(i), only the scalar product (h(x), h(x;)).

@ kernal functions are function to replace scalar product with a scalar product
in a transformed space.

dth Degree polynomial: | K(x,x!) = (1 + (x,xI))?
Radial basis K(x, x!) = exp(=x=>IC ol )
Neural network K(x,x) = tanh(/<L1< xI) + k2)
Example: Degree 2 with two dimensional input:
K(x,x") = (14 (x,x'))? = (1 + 2x1x] + 2x05 + (x1x])? + (x2x5)% + 2x1.x] x2x3)
that is. M = 6, hl(X) = 1, hz(X) = \@Xl, h3(X) = \@Xz,
ha(x) = xZ,hs(x) = x2,he(x) = V2x1%2.
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