
  

Moving Beyond Linearity
● Basic non-linear models

one input feature:
● polynomial regression
● step functions
● splines
● smoothing splines
● local regression.
more features:
● generalized additive models.



  

Polynomial Regression
● Fit a polynom:

● linear regression

● logistic regression

● (variance)



  

Wage Data Example
● more appropriate than linear fit (ANOVA)
● (usually) high variance close to borders of 'x'



  

Step Function
● transform continuous predictor to discrete bins,
● fit model using bins:



  

Basis Functions
● our model is in the form:

for any set of functions
● For example:

● powers of x
● interval indicators
● gaussian kernels
● truncated polynomials

● Not too many of them to avoid overfitting!  



  

Regression Splines
● Split feature range into intervals

● knots – split points
● default: quantiles of data.

● Fit d=3 degree polynomial in each interval
● require to all derivatives up to (d-1) continuous.

● Examples: 
● piecewise constant is spline degree d=0;
● polynomial fit is a spline without any knot 

(just endpoints)



  

Continuous Derivative Requirement



  

The Spline Basis Representation
● A cubic spline with K knots:

● truncated power basis function:

● basis functions:

● powers of X up to degree d=3 
● truncated power basis d=3 for each knot

● standard linear regression to 'new' data matrix.



  

Spline Example, Pointwise Variance



  

Natural Spline
● Additional constrains: linear on boundaries

● 2*(d-1) constrains
● added knots min(x) and max(x),

● generally, more stable estimates at the 
boundaries, 
● narrower confidence intervals.

● Logistic regression
transformed input
simillarly.



  

Number and Locations of the Knots
● locations: 

● usually split data to K+1 quantiles
– (equally sized bins)

● you may try: more knots in more varying parts
● Number of knots

● crossvalidation
● degrees of freedom

– cubic spline: K knots, K+1 intervals, 3+K parameters
– natural cubic spline: 4 restrictions, 2 knots more = K+1 p.



  

CV – Degrees of Freedom



  

Splines vs. Polynomial Regression



  

Smoothing Splines
● penalyzation method
● we search g that minimizes:

● lambda is a tuning parameter,
● lambda 0 – interpolation
● lambda infinity – strait line, linear regression.

● g(x) is a natural cubic spline with knots x
1
, ...,x

n

● shrunken version of that from previous section
caused by lambda.



  

Choosing the Smoothing Parameter
● crossvalidation 

● one-leave-out can be done efficiently
● g can be expressed as (S is nxn matrix):

● Residual sum of squares:

● Degrees of freedom:



  

Smoothing Spline Example



  

Kernel Methods
● generalization of nearest-neighbour method
● kernel function defines weights of neighbour 

examples
● prediction is the weighted average

(Nadaraya-Watson)



  

Common Kernels
● Gaussian
● Epanechnikov                      Tri-cube



  

Local Regression
● fit least squares regression on weighted RSS,

minimizing:

● Fitted value is given by:
● Span of the kernel

● 'inverse' 
degrees of freedom.



  

Generalized Additive Models (GAM)
● we handele multiple predictors,
● allow non-linear transformation of them,
● maintain additivity w.r.t. parameters, i.e.



  

GAM Example
● Model:

● year: smoothing spline df=4
● age: smoothing spline df=5
● education: categorical (standard dummy vars.)



  

Evaluation: Backfitting
● Natural splines: 

● just join the transformed input matrixes,
● perform linear regression on transformed input.

● Learning Smooting Splines requires Backfitting:
● repeatedly update the fit for each predictor in turn
● holding others fixed
● apply fitting method to partial residuals:



  

GAM for Classification



  

Structural Regression Models
● penalyzed methods, bayesian methods

Lasso, Ridge reg.,
smoothing spline

● kernal methods a local regression

● dictionary methods, basis functions



  

Splines in More Dimensions
● Too many products of one-dim. basic functions.
● We need a way to select.


