Model Inference and Averaging

• Baging, Stacking, Random Forest, Boosting

Bagging – Bootstrap Aggregating

- Bootstrap
 - Repeatedly select n data samples with replacement
 - Each dataset b=1:B is slightly different
 - estimation of test error (out of bag data)
 - estimation of variance of the error
 - NOW: averaging models learned on different samples
 - this reduces variance of tree model.

$$\hat{f}_{\text{bag}}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^{*b}(x)$$

Bagging Trees

- Decision trees have high variance.
- Bagging often improves tree prediction.

- On each sample, train decision tree WITHOUT PRUNNING.
- Predict:
 - Average of tree prediction in regression.
 - In classification:
 - Majority vote: most common prediction.
 - Weighted average: average p_k predictions of trees.

Out Of Bag Error Estimation

• Reasonable good and does not need crossvalidation.

- For each data sample
 - Predict on trees where the sample was not used for learning,
 - Average the predictions,
 - Calculate error (square, 0-1) for the sample.
- Average the errors.

FIGURE 8.8. Bagging and random forest results for the Heart data. The test error (black and orange) is shown as a function of B, the number of bootstrapped training sets used. Random forests were applied with $m = \sqrt{p}$. The dashed line indicates the test error resulting from a single classification tree. The green and blue traces show the OOB error, which in this case is considerably lower.

Variable Importance Measures

 Mean decrease in RSS, deviance or Gini index (relative to the maimum)

Variable Importance Measures

• Single tree:

$$\mathcal{I}_{\ell}^{2}(T) = \sum_{t=1}^{J-1} \hat{i}_{t}^{2} I(v(t) = \ell)$$

- For each internal node t
 - Calculate difference RSS (deviance, 0-1) *i*
 - before and after (weighted) the split
 - For each predictor /
 - summ gains of internal nodes with this predictor.
- Set of trees:
 - Average previous measure across trees *M*. $\mathcal{I}_{\ell}^2 = \frac{1}{M} \sum_{\ell}^{M} \mathcal{I}_{\ell}^2(T_m).$
- Report it relative to maximum *100.

Random Forset

- Like bagging, but
- Each time a split is consider

 a random sample of m predictors is chosen
 only thise are considered for split.
- This makes the trees more different each other.
- A strong predictor cannot take all.
- Recommended *m* for classification $\lfloor \sqrt{p} \rfloor$ regression $\lfloor p/3 \rfloor$

Algorithm 15.1 Random Forest for Regression or Classification.

1. For b = 1 to B:

- (a) Draw a bootstrap sample \mathbf{Z}^* of size N from the training data.
- (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
 - i. Select m variables at random from the p variables.
 - ii. Pick the best variable/split-point among the m.
 - iii. Split the node into two daughter nodes.
- 2. Output the ensemble of trees $\{T_b\}_1^B$.

To make a prediction at a new point x:

Regression: $\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x).$

Classification: Let $\hat{C}_b(x)$ be the class prediction of the *b*th random-forest tree. Then $\hat{C}^B_{\rm rf}(x) = majority \ vote \ \{\hat{C}_b(x)\}^B_1$.

Task For You

• Modify previous algorithm to get Bagging Trees.

Stacking

- Aggregates models of different types:
 - Tree, Neural network, GAM, log. Reg., ...
- We learn a model on top of previous ones.
- Simple to avoid overfitting.
- Linear regression without intercept, i.e. weights.
- Model that minimizes one-leave-out error

$$\hat{w}^{\text{st}} = \underset{w}{\operatorname{argmin}} \sum_{i=1}^{N} \left[y_i - \sum_{m=1}^{M} w_m \hat{f}_m^{-i}(x_i) \right]^2$$

• Final prediction is: $\sum_{m} \hat{w}_{m}^{\text{st}} \hat{f}_{m}(x)$.

Stochastic Search: Bumping

- A try to avoid local minima.
- Select M bootstap samples (and original data),
- train a model on each sample,
- Select the best model (on original training set).

Hopefully,
 some sample
 breaks the tie
 of XOR.

Bumped 4-Node Tree

Boosting

- Learn ensamble of trees.
- Each time, concentrate on the records BADLY PREDICTED by previous trees,
 - Residuals in regression,
 - Weighted data in classification.
 - high weight of a record means hi model.

FINAL CLASSIFIER $G(x) = \operatorname{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(x) \right]$ Weighted Sample $\cdots \in G_M(x)$ Weighted Sample $\cdots \in G_3(x)$ \uparrow Weighted Sample $\cdots \in G_2(x)$ \uparrow Training Sample $\cdots \in G_1(x)$

Intraction depth, Shrinkage (for Boosting)

Two ways to avoid fast convergence:

- Learn SIMPLE trees, only 2 or a few leaves.
 - Decision stumps: trees with 2 leaves
 - No interaction between predictors is modeled.
 - Interaction of 2 variables tree depth <=2.
- Use shrinkake parameter λ,
 - simmilarly to LASSO.

Typically 0.01 or 0.001, many trees needed,

 λ =1 means no shrinkage, less trees required.

Algorithm 10.1 AdaBoost.M1.

- 1. Initialize the observation weights $w_i = 1/N, i = 1, 2, ..., N$.
- 2. For m = 1 to M:
 - (a) Fit a classifier G_m(x) to the training data using weights w_i.
 (b) Compute

$$\operatorname{err}_{m} = \frac{\sum_{i=1}^{N} w_{i} I(y_{i} \neq G_{m}(x_{i}))}{\sum_{i=1}^{N} w_{i}}$$

- (c) Compute $\alpha_m = \log((1 \operatorname{err}_m)/\operatorname{err}_m)$. (d) Set $w_i \leftarrow w_i \cdot \exp[\alpha_m \cdot I(y_i \neq G_m(x_i))], i = 1, 2, \dots, N$.
- 3. Output $G(x) = \operatorname{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(x) \right].$

Algorithm 8.2 Boosting for Regression Trees

1. Set $\hat{f}(x) = 0$ and $r_i = y_i$ for all *i* in the training set.

2. For
$$b = 1, 2, ..., B$$
, repeat:

- (a) Fit a tree \hat{f}^b with d splits (d+1 terminal nodes) to the training data (X, r).
- (b) Update \hat{f} by adding in a shrunken version of the new tree:

$$\hat{f}(x) \leftarrow \hat{f}(x) + \lambda \hat{f}^b(x). \tag{8.10}$$

(8.11)

(c) Update the residuals,

$$r_i \leftarrow r_i - \lambda f^b(x_i).$$

3. Output the boosted model,

$$\hat{f}(x) = \sum_{b=1}^{B} \lambda \hat{f}^{b}(x).$$
 (8.12)

'Skin of Orange' Example (Spere)

- We have 10 predictors,
- Y is defined as:

$$Y = \begin{cases} 1 & \text{if } \sum_{j=1}^{10} X_j^2 > \chi_{10}^2(0.5), \\ -1 & \text{otherwise.} \end{cases}$$

- 2000 samples.
- Decision stump: 45.8% error,
- Boosting: 5.8% error after 400 iterations.

Algorithm 10.3 Gradient Tree Boosting Algorithm.

- 1. Initialize $f_0(x) = \arg \min_{\gamma} \sum_{i=1}^N L(y_i, \gamma)$.
- 2. For m = 1 to M:

(a) For $i = 1, 2, \ldots, N$ compute

$$r_{im} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f=f_{m-1}}$$

(b) Fit a regression tree to the targets r_{im} giving terminal regions $R_{jm}, j = 1, 2, ..., J_m$.

(c) For $j = 1, 2, \ldots, J_m$ compute

$$\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{jm}} L\left(y_i, f_{m-1}(x_i) + \gamma\right).$$

(d) Update
$$f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm}).$$

3. Output $\hat{f}(x) = f_M(x)$.

Setting	Loss Function	$-\partial L(y_i, f(x_i)) / \partial f(x_i)$
Regression	$\frac{1}{2}[y_i - f(x_i)]^2$	$y_i - f(x_i)$
Regression	$ y_i - f(x_i) $	$\operatorname{sign}[y_i - f(x_i)]$
Regression	Huber	$\begin{aligned} y_i - f(x_i) \text{ for } y_i - f(x_i) &\leq \delta_m \\ \delta_m \text{sign}[y_i - f(x_i)] \text{ for } y_i - f(x_i) &> \delta_m \\ \text{where } \delta_m &= \alpha \text{th-quantile}\{ y_i - f(x_i) \} \end{aligned}$
Classification	Deviance	kth component: $I(y_i = \mathcal{G}_k) - p_k(x_i)$

TABLE 10.2. Gradients for commonly used loss functions.

MARS - Multivariate Additive Regression Splines

• We define set of basis functions (reflected pairs):

$$\mathcal{C} = \{ (X_j - t)_+, \ (t - X_j)_+ \} \begin{array}{l} t \in \{x_{1j}, x_{2j}, \dots, x_{Nj}\} \\ j = 1, 2, \dots, p. \end{array}$$

for each variable, each value in the training data:

MARS – cont.

• we look for a model of the form:

$$f(X) = \beta_0 + \sum_{m=1}^M \beta_m h_m(X)$$

- where $h_m(X)$ are functions in C only some! to avoid overfitting.
- We itteratively extend the model set ${\cal M}$ and add to the model terms of the form:

$$\hat{\beta}_{M+1}h_{\ell}(X) \cdot (X_j - t)_+ + \hat{\beta}_{M+2}h_{\ell}(X) \cdot (t - X_j)_+, \ h_{\ell} \in \mathcal{M}$$

С

Non-linear Model Functions

 We may consider also product of function from M with a candidate from C

FIGURE 9.11. The function $h(X_1, X_2) = (X_1 - x_{51})_+ \cdot (x_{72} - X_2)_+$, resulting from multiplication of two piecewise linear MARS basis functions.

Overfitted Model – What to do?

- The model is usually overfitted.
- We delete backwards functions from M that minimally increase RSS.
- We select the best size of the model.

Generalized Crossvalidation

If the crossvalidation is too time consuming, we use an estimate:

$$\operatorname{GCV}(\lambda) = \frac{\sum_{i=1}^{N} (y_i - \hat{f}_{\lambda}(x_i))^2}{(1 - M(\lambda)/N)^2}$$

- effective number of parameters: $M(\lambda)$
- r number of lin. indep. elems. of M $M(\lambda) = r + cK$
- K number of knots in M

$$c = 3$$

Algorithm 10.4 Gradient Boosting for K-class Classification.

- 1. Initialize $f_{k0}(x) = 0, \ k = 1, 2, \dots, K$.
- 2. For m=1 to M:

(a) Set

$$p_k(x) = \frac{e^{f_k(x)}}{\sum_{\ell=1}^K e^{f_\ell(x)}}, \ k = 1, 2, \dots, K.$$

(b) For k = 1 to K:

- i. Compute $r_{ikm} = y_{ik} p_k(x_i), \ i = 1, 2, ..., N$.
- ii. Fit a regression tree to the targets r_{ikm} , i = 1, 2, ..., N, giving terminal regions R_{jkm} , $j = 1, 2, ..., J_m$.
- iii. Compute

$$\gamma_{jkm} = \frac{K-1}{K} \frac{\sum_{x_i \in R_{jkm}} r_{ikm}}{\sum_{x_i \in R_{jkm}} |r_{ikm}| (1-|r_{ikm}|)}, \ j = 1, 2, \dots, J_m$$

iv. Update $f_{km}(x) = f_{k,m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jkm} I(x \in R_{jkm}).$

3. Output $\hat{f}_k(x) = f_{kM}(x), \ k = 1, 2, \dots, K$.

MART – Multivariate Additive Trees

- Gradient tree learning
- Symetric logistic transform

$$p_k(x) = \frac{e^{f_k(x)}}{\sum_{l=1}^{K} e^{f_l(x)}}$$

constraint
$$\sum_{k=1}^{K} f_k(x) = 0.$$

Multinomial deviance loss function

$$L(y, p(x)) = -\sum_{k=1}^{K} I(y = \mathcal{G}_k) \log p_k(x)$$
$$= -\sum_{k=1}^{K} I(y = \mathcal{G}_k) f_k(x) + \log \left(\sum_{\ell=1}^{K} e^{f_\ell(x)}\right).$$