Model Inference and Averaging

» Baging, Stacking, Random Forest, Boosting
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Bagging — Bootstrap Aggregating

* Bootstrap

- Repeatedly select n data samples with replacement
- Each dataset b=1:B is slightly different

« estimation of test error (out of bag data)

« estimation of variance of the error

« NOW: averaging models learned on different samples
* this reduces variance of tree model.

f bag (% Z
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Bagging Trees

Decision trees have high variance.
Bagging often improves tree prediction.

On each sample, train decision tree
WITHOUT PRUNNING.
Predict:

- Average of tree prediction in regression.

- In classification:

« Majority vote: most common prediction.
. Weighted average: average p_predictions of trees.



Out Of Bag Error Estimation

 Reasonable good and does not need
crossvalidation.

* For each data sample

- Predict on trees where the sample was not used for
learning,

- Average the predictions,
- Calculate error (square, 0-1) for the sample.

* Average the errors.
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Variable Importance Measures

* Mean decrease in RSS, deviance or Gini index
(relative to the maimum)
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Variable Importance Measures

» Single tree: T2(T) =S 2 1(v(t) = )
- For each internal node t

« Calculate difference RSS (deviance, 0-1) i

. before and after (weighted) the split

 For each predictor /

. summ gains of internal nodes with this predictor.

o Set of trees:
- Average previous measure across trees M. N
N -
T} = - > T (Tw)
. . . m=1
e Report it relative to maximum *100.



Random Forset

 Like bagging, but
 Each time a split is consider
a random sample of m predictors is chosen
only thise are considered for split.
* This makes the trees more different each other.
* A strong predictor cannot take all.

« Recommended m for classification L\/f?J
regression | p/3] .



Algorithm 15.1 Random Forest for Regression or Classification.
I. For b=1 to B:

(a) Draw a bootstrap sample Z* of size N from the training data.

(b) Grow a random-forest tree T} to the bootstrapped data, by re-
cursively repeating the following steps for each terminal node of
the tree, until the minimum node size n,,;, is reached.

i. Select m variables at random from the p variables.
ii. Pick the best variable/split-point among the m.
iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {713 }¥.
To make a prediction at a new point x:
Regression: fB(z) = - Zszl Ty(x).

Classification: Let éb(x) be the class prediction of the bth random-forest
tree. Then C%(z) = majority vote {Cy(x)}?P.




Task For You

* Modify previous algorithm to get Bagging Trees.



Stacking

» Aggregates models of different types:
- Tree, Neural network, GAM, log. Reg,, ...
 We learn a model on top of previous ones.
» Simple — to avoid overfitting.
 Linear regression without intercept, i.e. weights.

e Model that minimizes one-leave- out error
N

W' = argmin E E Wi [ (224)

w )
=1 m=1

Aat

. Final prediction is: Y., WSt f(2) .




Stochastic Search: Bumping

e Atry to avoid local minima.

» Select M bootstap samples (and original data),
* train @a model on each sample,

» Select the best model (on original training set).

Regular 4-Node Tree Bumped 4-Node Tree

* Hopefully,
some sample

breaks the tie
of XOR.




Boosting

e | earn ensamble of trees.

 Each time, concentrate on the records BADLY
PREDICTED by previous trees,

- Residuals in regression, FINAL CLASSIFIER
. . - . G(x) :‘sign D1 G ()
- Weighted data in classification, e Gu()
« high weight of a record means hi I
model. Gala)
!
Gao(x)

<> - oo



Intraction depth, Shrinkage (for Boosting)

Two ways to avoid fast convergence:
* Learn SIMPLE trees, only 2 or a few leaves.

- Decision stumps: trees with 2 leaves
* No interaction between predictors is modeled.
- Interaction of 2 variables — tree depth <=2.

* Use shrinkake parameter A,
- simmilarly to LASSO.
Typically 0.01 or 0.001, many trees needed,

A=1 means no shrinkage, less trees required.



Algorithm 10.1 AdaBoost.M1.

1. Initialize the observation weights w; = 1/N, i =1,2,..., N.
2. Form =1 to M:

(a) Fit a classifier G,,(x) to the training data using weights w;.

(b) Compute

Soisy wil (yi # G (1)
Zi1 Wi
(¢c) Compute o, = log((1 — err,,)/err,,).
(d) Set w; <= w; - explag, - I(y; # Gm(z))], i =1,2,...,N.

err,, =

3. Output G(x) = sign [25—1 ame(a:)}.



Algorithm B.2 Soasfing for Regression Trees

1, Set f{m} =0 and » = g for all 4 In the training =et.
Y Forb=1,%2 ..., 5B, repeat;

(a) Fita iree f* with dsplite (d+ 1 terminal nodes) to the training
data (X, »).

(b) Update # by adding in ashrunken version of the new tree:
fle) « F&) + A7), (8.10)
(z) Update the residuals,
rs = rs— A (@) (8.11)

5. Cutput the boosted model,

=
HOEDPPFUE? (8.12)




'Skin of Orange' Example (Spere)

 We have 10 predictors,
* Y is defined as:

: 10 r r -
v o_ 1 if ijl Xf > ng(o.u)?
—1 otherwise.

e 2000 samples.
e Decision stump: 45.8% error,
» Boosting: 5.8% error after 400 iterations.

9.34
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Algorithm 10.3 Gradient Tree Boosting Algorithm.

1. Initialize fo(x) = arg min, Zil L(y;, 7).
2. Form =1 to M:

(a) Fori=1,2,...,N compute

. IBL(yi,f(:r:i))]
o Of(x;) fmfo '

(b) Fit a regression tree to the targets r;,, giving terminal regions
ija ? — 152: SR a*IWI'

(¢) For j =1,2,...,J, compute

Yim = argmin Y L(yi, frn—1(2:) +7).
K Ti€ERjm

(d) Update fm(2) = fm—1(2) + 377 YimI (2 € Rjm).

3. Output f‘(,]) = fm(x).




TABLE 10.2. Gradients for commonly used loss functions.

Setting Loss Function —0L(y;, f(xi))/0f(x;)

Regression %[uE — f(x))? | vi — f(2)

Regression lyi — f(25)] sign|y; — f(2;)]

Regression Huber yi — f(x;) for |y; — f(x;)| < o
Omsign|y; — f ()] for |y; — f(x:)] > 6m
where d,,, = ath-quantile{|y; — f(x;)|}

Classification | Deviance kth component: I(y; = Gr) — pr(2;)




MARS - Multivariate Additive
Regression Splines

* \We define set of basis functions (reflected pairs):
C = {(‘}{j - '{)-I-' (f - -Xj)-F} t € {z1j,T25,---,TNj}

j=1,2,...,p.

for each variable, each value in the training data:

(2—1) x—t, iftx>t, nd  (t—2) t—x, ifx<t,
r—t), = . anc —x), = :
+ 0, otherwise, + 0, otherwise.,

-2y L (@

Basis Function
0.0 01 0.2 0.3 04 05

0.0 0.2 0.4 t 0.6 0.8 1.0



MARS — cont.

 we look for a model of the form:

M
f(‘r) = Po + Z ‘-'j-nl,hm(X)

m=1

 where »,.(x) are functions in C
only some! to avoid overfitting.
« We itteratively extend the model set M
and add to the model terms of the form:

3M+1hg(‘\r) (X —1)+ + 3M+ghg()() (t— X))+, he € M






Non-linear Model Functions

* \WWe may consider also product of function from

M with a candidate from C

FIGURE 9.11. The function h(X, X2) ()\1 —x51 )4 - (w72 — X2) 4, resulting
from multiplication of two piecewise linear MARS basis functions.

hoo(X) - (X; =)y and  hp,(X)-(t— X))y, t € {xi;}

h(Xy, X2) \




Overfitted Model — What to do?

* The model is usually overfitted.

 \We delete backwards functions from M

that minimally increase RSS.

e We select the be_

Test Misclassification Err

0.2

0.055

s’: size of the model.




Generalized Crossvalidation

If the crossvalidation is too time consuming, we
use an estimate:

. _ZN (y; — f)\( i)
GCV(\) = (1 = M(X)/N)2

effective number of parameters: M ()

r number of lin. indep. elems. of M M (\) = r+cK
K number of knots in M

¢ =3



Algorithm 10.4 Gradient Boosting for K -class Classification.
1. Inmitialize fro(z) =0, k=1,2,..., K.

2. For m=1 to M:

(a) Set
() M 1a. K
pk m — K 2 = 2 yert2 *
> oy €@

(b) For k =1 to K:

i. Compute rigm = Yir — Pr(x;), i=1,2,...,N.
ii. Fit a regression tree to the targets rjpm. @ = 1,2,..., N,
giving terminal regions Rjkm. j = 1,2....,Jy,.
iii. Compute

K - ]. ZIiERjkm Tizkm
Yikm = 3
o K ZmiERjkm, ‘Ttkml(l o |rtkm|)

F=1,2,... Jm

iv. Update fim(2) = fem—1(x) + Zj:l YikmI (2 € Rjkm).

3. Output .f;ﬁ(:;r:) = fem(x), k=1,2,...,K.




MART — Multivariate Additive Trees

» Gradient tree learning

» Symetric logistic transform
eJr(x)

ZE l(f:

pr(x) =

constraint z:‘::] fk(rrf) = 0.
e Multinomial deviance loss function

M:&*

L(y,p(x)) = -— I(y = G ) log pr.(x)

&
I
[y

M:r:

K
I(y = Gk) fre(x) + log (Z raff(m)) ,

o
Il
[y



