Support vector machines

optimal sepatrating hyperplane, kernels (jadra)



Separating Hyperplane

 Hyperplane splits the space in two parts.
* We try to separate -1,1 (red, green).
 Many possibilities:

* Not necessary optimal

- linear regression
- LDA
o Optimal if exists:
FIGURE 4.14. A toy ezample with two classes separable by a hyperplane. The

- logistic regression
orange line is the least squares solution, which misclassifies one of the training
—_ neu ral netWO rk points. Also shown are two blue separating hyperplanes found by the perceptron

learning algorithm with different random starts.

o different for different initialisation, order of examples.

* \WWe want to define unique optimal hyperplane.



Hyperplane L (affine set; nadrovina)

* L defined by an equation: | -
fo+BTx =0

« For any point on L: /
BTx = —Po

* Vector normal is defined:

* The signed distance to L is:

X 1
B*T (x — x0) = W(STX + Bo) 3



Optimal Separating Hyperplane

(separable case)

Separates training cases correctly,
* maximizes the margin between classes
(that is maximizes the robustness of the split).

FIGURE 4.14. A toy example with two classes separable by a hyperplane. T

FIGURE 4.16. The same data as in F-igu?‘e 4.14. The shaded region del; orange line is the least squares solution, which misclassifies one of the train
. , ) points. Also shown are two blue separating hyperplanes found by the perceptr

the maximum margin separating the two classes. There are three support |, 10 aleorithm with different random starts.

indicated, which lie on the boundary of the margin, and the optimal separating



Search for the Optimal Sep. Hyper.

2T B3+ Bo=0

e \We search:

max M
/6.,/30”/6”:1

under conditions:

y;(X,-TB + Bo) > M for all examples i =1,..., N.
(that is all examples are on correct side).
» Technical staff:

| 3]l = 1 we move to the condition (and change y):

max M
ﬁ:.ﬁﬂ

under conditions Hle,Hy,-(x;T_,B + (o) > M for all examples i =1,..., N. 5
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Lagrange Multipliers

max M
8,80

under conditions ﬁy,-(xfﬁ + o) > M for all examples i =1,..., N.

If it holds for one 3, By, it holds for all positive multiplications. We can
choose || 8] = 4; and we get:

2

3

1
5.6 2
under conditions y;(x;' 8+ Bo) > 1proi=1,...,N.
It is convex optimization problem, that can be solved by Lagrange
functions:

1

N
Lo = ZIBIP =3 lolo] 5+ fo) 1]



Wolfe Dual Form

1 N
Lp = ming, g, (2|ff'3||2 — ) ailyi(x" B+ Bo) — 1])

i=1

We set the derivative = 0 and we get:

N
6 = Zaf,-y,-x,-

."=1ﬁI|r
0= Z B%
i—1

Replacing Lp we get Wolfe dual form:

Lp = Zﬂff — —ZZ& QY ViX; Xk

=1 k=1

that we maximize under conditions «; > 0



Support Vectors - «; >0

It is convex optimization problem with known numeric algorithms.

The solution fulfills Karush-Kuhn=Tucker condition:
ailyi(x" B+ Bo) —1] =0

for all 7.

For any a; > 0 must [y;(x” 3 + Bo) — 1] = 0 therefore
» either x; is on the border,
» for all x; outside the border is a; = 0.

The resulting border depends only on vectors on the border that are
called support vectors.



Support Vector Classification

F

* For each example, we get i

N
8: E @f'y;r'xf
=1

 for any support point on the boundary

ailyi(x 64 Bo) —1] =0

 \We calculate

/éz) — Vi — XSTB
* The resulting classification is:

G(x) = sign(x" B + fo)



High Sensitivity on Input
(Overfitting?)
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FIGURE 9.5. Left: Two classes of observations are shown in blue and in
purple, along with the mazimal margin hyperplane. Right: An additional blue
observation has been added, leading to a dramatic shift in the mazimal margin
hyperplane shown as a solid line. The dashed line indicates the maximal margin
hyperplane that was obtained in the absence of this additional point.
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Non-Separable Case: Slacks

» Classes may not be separable.

* For each example, we introduce SLACK

variable:

e on proper side of the margin: & =0 1

» example is on the wrong side: & =1 — —yi(x" 8+ o)
 Incorrectly classified examples have slack at

least 1.

e \We restrict the sum of slacks or introduce a
penalty coefficient on the sum of slacks.
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General Optimal Separating Hypp.

T B+ B=0

FIGURE 12.1. Support vector classifiers. The left panel shows the separable
case. The decision boundary is the solid line, while broken lines bound the shaded
mazimal margin of width 2M = 2/||3|. The right panel shows the nonseparable
(overlap) case. The points labeled §; are on the wrong side of their margin by
an amount & = M&;; points on the correct side have £ = 0. The margin is
mazximized subject to a total budget ) & < constant. Hence & is the total
distance of points on the wrong side of their margin.
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Optimal Separating Hyperplane

We solve optimization

N
max M — &
Boolll=1 ; |
under (new 2 - N) conditions:

yi(x" B+ o) = M(1 - &)

and
& > 0.

* |t is equivalent to maximize M = el
 v=infinity for separable case.
. y €{-1, 1} encodes the goal class.
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Lagrange Functions ...

N
max M —~9 » &
8,80, 1B]|1=1 " ; '

M replaced by Hf_lif\l:

min —HO’H2 +7 ZE:

B,Bo 2

constrained & > 0 and y;(x" 3 + 3y) > (1 —&).

Lagrange functions again: «;, u; > 0:

N N
L2 _ Liye By
P = 5”.9)“ T ?_1 i — ?_1: ailyi(x; B+ Bo) — (1 = &)]

N
- Z ik

=1
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Derivatives 0, Dual

N N
. 1.
ming 3, ., (LP = §||.=3||2 +’}"§ & — § ailyi(x” B+ Bo) — (1= &)] — E wi&;
i=1 i=1 .

Derivatives set to zero:

N
8 = Z QYiXi
i=1
N
0 = Zﬁ'f}"f
i=1
QOp = T T H

Wolfe dual:

N N N
1
MaXa; (LD — E xj — E E E G;ﬂky;ka;TXk)

constrained by 0 < «; <~ and qu_l ajy; = 0.



e Convex optimization problem with linear
constraints,

e solution exists,
. we get a for each data point.

Support vectors &; > 0 are either
> on the border: & =0 (and 0 < &; < 7),

» on wrong side of the margin: E; > 0 (and a; = 7).
Solution has following properties:
ailyi(x' B+ o) — (1 = &)]

lur{i
J/E(X;Tﬁ +60)—(1-¢&) > 0

il
o o
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Separating Hyperplane - General

« For each data point, get a.
Calculate 3 = 2:11 &YX,

Calculate ;’% = Vm — x;ﬁ from any example on the margin with &,, = 0:
am | Ym(XT B+ By) — (1 —0)| =0

Parameter « set by crossvalidation.
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Which vectors have :-

non-Zero a
non-Zero s

Support vectors?

Incorrectly

pha?
ack?

Example
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Optimal Separating Hyperplane

* Goal class is coded by -1,1.

* \We use optimization procedure, for each
example we get ¢X;

« Select any example with 0 < & < v, denote it s.
 New example x is classified:
G = 3 i+ (v — 10B).
that is -

G(I) = sigﬂ(xT,B + Bo), ,

19

e Parameter gamma is set by tunning (CV).



Training Error: 0.270

Test Ermror:
Bayes Error:

0.288
0.210
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FIGURE 12.2. The linear support vector boundary for the mixture data exam-
ple with two overlapping classes, for two different values of V. The broken lines
indicate the margins, where f(x) = +1. The support points (co; > 0) are all the
points on the wrong side of their margin. The black solid dots are those support
points falling exactly on the margin (§; =0, a; > 0). In the upper panel 62% of
the observations are support points, while in the lower panel 85% are. The broken

purple curve in the background is the Bayes decision boundary.
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Linear Cut may be sub-optimal
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FIGURE D.8. Lett: The observations foll into two closses, with o non-linear

boundary between them. Right: The support vector classifier seeks o linear bound-

ary, ond consequently performs very poorly.
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Support vector machines

» Support vector machines look for linear
separating hyperplane in nonlinear
transformation of the input space

 Find the difference:
C(x) = 3 o™i+ (vs — 27 B).

1=1
M

G(x) = Y oy Koo)'+ (ys — x5 B).
=1

22



SVM -Example

» Original feature space Xi, X, transform to
Hu (X1, X2) = {1, /(2) - X1,/(2) - X2,/(2) - X1 - X, X2, X3 }.
» Find optimal separating hyperplane in the feature space Hy,
f([X1, X2]) =

[1, V@) X, (2) - X, /(2) - X - xg,xf,xg] B+ Bo.

» This is equivalent to find SVM classifier in the original feature space
with the polynomial kernel degree 2: K(x, x!) = (1 + (x, x!))?, that
IS:

f(x) = h(x)"B+ B

N
— Z a;yi(h(x), h(x;)) + Bo

N
= > k(o x) + o
=1

23



Kernel Functions

e The most common kernel functions are:

dth Degree polynomial:

K(x. x1) = (1+ (x,x]))

Radial basis

i

K (x,xl) = exp(= )

Neural network

K(x, x!) = tanh(k1(x, x) + k2)

24



Consider for example a feature space with two mputs X and Xs. and a
polynomial kernel of degree 2. Then

K(X,X') = (1+(X,X"))’
— (1 + X X| + Xy, X))?

=14+ 2X X[ +2X X5 + (X1 X7)? + (XoX5)? +2X X[ X0 XJ.
(12.23)

Then M = 6, and if we choose h1(X) = 1, hao(X) = V2X], ha(X) =

v’EXg._. h-'l(X} — Xlz hE(X) — XQE and hE(X} = 1@X1X2, then K(X.,XI) =

(h(X),h(X")). From (12.20) we see that the solution can be written

25



FIGURE 9.9, Left: dn SVM with o polynomial kernel of degree 5 is applied to

the non-linear dote from Figure 9.5, resulling in o for more appropriate decision
rule. Right: An SVM with o radial kernel is applied. In this ezample, either kernel
13 copable of copturing the decision boundary.

26
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FIGURE 9.10. EOC curves for the Heart dola braining set. Left The support
vector classifier and LDA are compared. Right: The support vector classifier is
compared to an SVM using o radial basis kernel with v = 107%, 107%, and 1071,
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FIGURE 9.11. ROC curves for the test set of the Heart date. Left: The support

wector classifier and LDA are compared. Right: The support vector clussifier is
compared to an SVM using a radial basis kernel with v = 1072, 1072, and 1071,



SVM - Degree-4 Polynomial in Feature Space SVM - Radial Kernel in Feature Space

Training Error: 0.180
Test Emror: 0245 -

BayesEmor 0210 ~ s

Training Error: 0.160
Test Emor: 0.218

Bayes Emor:  0.210 -

FIGURE 12.3. Two nonlinear SVMs for the mixture data. The upper plot uses
a 4th degree polynomial kernel, the lower a radial basis kernel (with v = 1). In
each case (Vwas tuned to approximately achieve the best test error performance,
and ¥ = 1 worked well in both cases. The radial basis kernel performs the best
(close to Bayes optimal), as might be expected given the data arise from miztures

of Gaussians. The broken purple curve in the background is the Bayes decision
boundary.



SVM as penalization method

Both tasks lead to the same solution:

e Solve: m|n—|\[)’||2+fyz§,

3,80 2

constrained & > 0 and y;(x" 3+ Bo) > (1 = &).

° Or: With f(x) = h(xz)T 3 + (0. consider the optimization problem

N
A
E?m Z 1 —yif(zi)]++ §| 3

where the subsecript “47 indicates positive part.

29



FIGURE 12.4. The support vector loss function (hinge loss), co o
negative log-likelihood loss (binomial deviance) for logistic regressio
ror loss, and a “Huberized” version of the squared hinge loss. All a
function of yf rather than f, because of the symmetry between the
y = —1 case. The deviance and Huber have the same asymptotes
loss, but are rounded in the interior. All are scaled to have the Lin

slope of —1.
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1 —yf(z)]: otherwise
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Skin of Orange Example

» Skin of Orange:

e aballin 4 dimensions

- one class inside
- second on the skin.

e 6 additionall noisy features.

TABLE 12.2. Skin of the orange: Shown are mean (standard error of the mean)
of the test error over 50 simulations. BRUTO fits an additive spline model adap-
tively, while MARS fits a low-order interaction model adaptively.

Test Error (SE)
Method No Noise Features Six Noise Features
1 SV Classifier 0.450 (0.003) 0.472 (0.003)
2  SVM/poly 2 0.078 (0.003) 0.152 (0.004)
3  SVM/poly 5 0.180 (0.004) 0.370 (0.004)
4 SVM/poly 10 0.230 (0.003) 0.434 (0.002)
5 BRUTO 0.084 (0.003) 0.090 (0.003)
6 MARS 0.156 (0.004) 0.173 (0.005) 31




